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Abstract: Beam-like structures are a class of common but important structures in
engineering. Over the past few centuries, extensive research has been carried out
to obtain the static and dynamic response of beam-like structures. Although build-
ing the finite element model to predict the response of these structures has proven
to be effective, it is not always suitable in all the application cases because of high
computational time or lack of accuracy. This paper proposes a novel approach to
predict the deflection response of beam-like structures based on a deep neural net-
work and the governing differential equation of Euler-Bernoulli beam. The
Prandtl-Ishlinskii model is introduced as an element of prediction model to simu-
late the plasticity of this beam structure. Finally the application of the proposed
approach is demonstrated through four numerical examples including linear
elastic/ideal plastic beam under concentrated/sinusoidal load and elastic/plastic
continues beam under seismic load to demonstrate a proof of concept for the
effectiveness of this AI-based approach.

Keywords: Beam-like structure; surrogate model; deep neural network; Prandtl-
Ishlinskii model

1 Introduction

As an important structural member, beam has been studied for over several centuries. A large number of
classic and fundamental studies on beam analysis have been reported in the literature including in traditional
steel structures [1], concrete structures [2–9], nano materials [10–14], and functionally graded materials [15],
to cite a few examples. Beams are also used as the simplified model for some complex structures, such as
bridge structures [16–21], chimney structures [22], and tall buildings [23]. Therefore, a large number of
methods have been proposed to obtain the static and dynamic response of beam-like structures.
Analytical method for beam analysis is a traditional approach which is still commonly used. This method
can be used to obtain the exact solution for the deflection or stress analysis of beam structures, however,
it can only be applied in static analysis. Finite element method (FEM), as the most widely used method,
is a practical approach for this purpose, however, it requires discretization, mesh generation and an
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iterative calculation, especially for materials with nonlinear force-displacement behavior. Nevertheless, for
some situations that high accuracy of the results is not necessary, FEM, as a faster response prediction
method of beam structure is a feasible solution. However, for large systems FEM is not an efficient
approach and is time consuming. As an alternative approach, surrogate model is a type of approximate
mathematical modeling that can be used to describe or predict important response properties of a real
structure. Given the advantage of low computational cost, surrogate models have been widely applied in
several areas of engineering including structural optimization [24–27], reliability analysis [28–31],
damage detection [32–43], processing big data collected from the structures sensor network [44], etc. For
different application scenarios, different surrogate models have been proposed. The common models
include: polynomial response surface models [45,46], Kriging model [47–49], neural network model
[50–56]. Neural networks, in particular, because of their powerful and universal approximation capability
[57,58], are widely used as a valid surrogate model.

In structural response prediction area, neural network is also a useful tool. The properties of neural
networks make it possible to describe and model dynamic systems. Early in 1993, Masri et al. [59] used
a multilayer perceptron (MLP) with three hidden layers to identify the Duffing oscillator. Later, He, Wu
and their co-workers used a back-propagation (BPNN) neural network and self-recurrent neural network
(SRNN) in response prediction of linear elastic structures [60–62]. Joghataie et al. [63] introduced the
Prandtl–Ishlinskii operator [64] into FFNN as the hidden layer and proposed the Prandtl neural network
(PNN) to predict the dynamic response of systems with hysteresis. Lagaros and Papadrakakis [65] used
neural networks to predict the seismic response of a nonlinear three-dimensional building. With the
development of powerful computer technology, many researchers focused their research on deep learning
[66,67]. Deep learning models are regarded as a special form of neural network model and have been
used in response prediction [68].

Although a large number of researchers have already focused on neural network based response
prediction of dynamic systems, most neural network based models are a black-box model [69]. That
means the network cannot capture the complex dynamic characteristics of most systems. In addition,
black box neural networks are not suited or reliable for most engineering applications and for adaptation
in surrogate models. Another drawback of these models is the need for a large volume of data to train
them. In order to develop an alternative approach, such as a white-box model or gray-box model for
development of surrogate models, some researchers have proposed direct utilization of neural networks
for solving the governing differential equations (DE) of these systems [70–74].

Recently, deep learning, which is basically a network with multiple hidden layers of neurons, has also
been applied in solving and identifying the ordinary and partial different equations. Han et al. [75] used a
deep learning method to solve a type of high order nonlinear differential equation. Sirignano et al. [76]
proposed a strategy for improving Galerkin method by deep learning and introduced a deep learning
based Galerkin method to solve partial differential equations. Wu et al. [77–79] proposed a physics-based
machine learning method for solving hydrodynamic problems. Raissi et al. [80–84] utilized deep research
in physic-based deep learning and demonstrated its potential applications by developing an automatic
differential operator [85] and Runge-Kutta method [86]. Based on these recent developments and success
in utilization of deep neural network, and given their unique capabilities, deep neural networks have the
potential to be used for developing new types of surrogate models with high accuracy and robustness for
the dynamic response of structural systems. In order to utilize these networks to develop an alternative,
direct and efficient tool for the direct solution of structural dynamics problems, some fundamental
research is needed.

In this paper, as a preliminary step towards the aforementioned goal, we introduce a new type of deep
neural network based on the governing equations of Euler-Bernoulli beam to predict its deflection response.
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Beams made of both elastic and plastic materials are taken into consideration. The plastic behavior of the
material is regarded as a hysteretic behavior in the macro level and is modeled by Prandtl–Ishlinskii
model. Finally, two numerical examples are presented to validate the effectiveness of the proposed
method. The results are compared respectively with the modal superposition method and finite element
method. As this study shows, within a certain accuracy, the proposed method is much faster than the
conventional method. Therefore, the proposed approach offer a potentially significant alternative approach
to be considered for engineering applications.

2 The Formulation of the Proposed Method

In this section the formulation of the proposed strategy is presented.

2.1 The Governing Equation of the Beam
The dynamic behavior of Euler-Bernoulli beam can be described by the following partial differential

equation (PDF):

m
@2

@t2
w x; tð Þ þ c

@

@t
w x; tð Þ þ EI

@2

@x2
w x; tð Þ ¼ f x; tð Þ t 2 0; T½ �; x 2 � (1)

where w x; tð Þ is the deflection, m and c are the linear mass density and damping, EI is the bending stiffness
and f x; tð Þ is the excitation. Besides, we need the initial condition w x; 0ð Þ ¼ w0 xð Þ and the boundary
condition w x; tð Þ ¼ g x; tð Þ x 2 @� to analyze the vibration of beam.

Similar to finite element method, for the solution of Eq. (1) u x; tð Þ can be expressed as the combination
of deflections at several discrete points and can be expressed as:

u x; tð Þ ¼ Φw (2)

In Eq. (2), Φ and w can be expressed as follows:

Φ ¼ f1 xð Þ f2 xð Þ . . . fi xð Þ . . . fm xð Þ½ � (3)

w ¼ w x1; tð Þ w x2; tð Þ . . . w xi; tð Þ . . . w xm; tð Þ½ �T (4)

We call matrix Φ as the shape function vector. In order to satisfy Eq. (1), we construct the following
objective function as:

J xð Þ ¼ Φ xð Þw� w x; tð Þk k2x2�; t2 0;T½ � (5)

The shape function vectorΦ xð Þ is approximated by a deep neural network (ANN-1). If J xð Þ ¼ 0, u x; tð Þ
is an exact solution of the governing partial differential Eq. (1). Therefore, the goal is to find a shape function
vector Φ xð Þ that can minimize the error J xð Þ.

Let x ¼ xi i ¼ 1; 2; . . . mð Þ, thus, the following differential function set with an unknown function set
w ¼ w x1; tð Þ w x2; tð Þ . . . w xi; tð Þ . . . w xm; tð Þ½ �T can be obtained:
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When the time space t is discretized t1; t2; . . . ; tn½ � and tiþ1 ¼ ti þ Dt . The deflection response
w x1; tiþ1ð Þ, w x2; tiþ1ð Þ; . . . w xn; tiþ1ð Þ at coordinate x ¼ x1; x2; . . . xn can be predicted by a feed-forward
neural network (ANN-2).

Therefore, the deflection response of the Euler-Bernoulli can be predicted by using a deep neural
network with two sub-nets as in Fig. 1.

The deep neural network in Fig. 1 can be divided into two sub-nets as ANN-1 and ANN-2. ANN-1 is
used to approximate the coefficient vector Φ, and ANN-2 predicts the response at the coordinates of
x1; x2; . . . xm. Usually some nonlinear functions are used as the activation function to simulate the
vibration of the beam, such as hyperbolic tangent function, logistic function as well as ReLU function or
trigonometric function, etc. The number of hidden layers will also effect the prediction result of deep
learning model. Generally speaking, the prediction precision will increase with the number of hidden
layers. However, due to the limitation of computing power and the number of training samples, the
number of hidden layers cannot increase infinitely. In real examples, we determine the number of hidden
layers mainly from two aspects: First is the complexity of load distribution. The other is the material
property of beam-like structure. In our research practice, the model of elastic structure is usually with 1-
3 hidden layer while the model of plastic structure is with 3-5 hidden layer.

Prediction of beam deflection response can be described through the following steps:

1. Data preparation: Obtain the training data from an experiment, field test or numerical simulation
when the beam is subjected to load f1 x; tð Þ. The following data are needed for the model training.

1) Sets 1: n1 set of deflection response: w x1; tið Þ, w x2; tið Þ; . . . w xm; tið Þ; i ¼ 1; 2; . . . n1

2) Sets 2: n2 set of deflection response: x;w xj; tj
� �� �

j ¼ 1; 2; . . . n, where xjE 0; L½ � and L is the total
length of the beam, and tjE t1; t2; . . . ; tnf g
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Figure 1: The architecture of the proposed neural network for the response prediction of beam
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2.Model training:We will use part of the data in sets 1 for training the artificial neural network without
hidden layers for response prediction (ANN-2). And part of the data in sets 2 to train the deep neural network
for function approximation (ANN-1).

3. Model test: The remaining part of data set 1 and set 2 can be used to test the trained model. If the
model is well-trained, the predicted results by ANN-1 and ANN-2 will be close to the real value.

4. Response prediction: ANN-2 can be used to predict the responsew x1; tið Þ, w x2; tið Þ; . . . w xm; tið Þ
under load f2 x; tð Þ. ANN-1 is used to predict the response w x; tið Þ at any coordinate x along the beam. If
the external excitation f2 x; tð Þ and the initial condition are given, proposed deep neural network can be
used to predict the deflection response of beam. Meanwhile, the angel and curvature response can also be
obtained by calculating the numerical differentiation of deflection response.

2.2 Response Prediction of a Linear Elastic Beam
For an elastic beam, a linear network with several hidden layers can be used as a sub net of ANN-2. The

number of layers are usually less than three. In this network, a linear function is used as the activation
function for each layers. The architecture of sub net ANN-2 is presented in Fig. 2.

2.3 Response Prediction of a Linear Elastic Beam
Plasticity is widely encountered in the displacement response of engineering structures. The plasticity of

beam like structures usually manifests as hysteresis in macro level. Therefore, the following equation can be
used to describe the bending deformation of plastic beam.

m xð Þ @
2

@t2
w x; tð Þ þ c xð Þ @

@t
w x; tð Þ þ R w00ð Þ ¼ f x; tð Þ (7)

where R w00ð Þ is the resilience, or the restoring force, a function related to curvature w00 ¼ @2w x; tð Þ
@x2

, stiffness,

coordinate x and time t. Similar to elastic beam, the deflection w x; tð Þ can be written as the combination of the
deflection at several points.

We introduce hysteresis in ANN-2 by using Prandtl-Ishlinskii model to build Prandtl neural network
(PNN) [63]. Prandtl-Ishlinskii model is a hysteretic operator widely applied in controls engineering and
can simulate the hysteretic system well. The Prandtl-Ishlinskii model can be expressed as:
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Figure 2: The architecture of ANN-2 for the response prediction of linear beam
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y sð Þ ¼
Z R

0
w rð Þer x sð Þ½ �dr (8)

where y sð Þ is the output signal, x sð Þ is the input signal, w cð Þ is the density function and er is the stop operator
which is expressed in Eq. (9):

er x 0ð Þ½ � ¼ er x 0ð Þ½ � (9)

er x tð Þ½ � ¼ er x tð Þ � x tið Þ þ er tið Þ½ � (10)

where er xð Þ ¼ min r; max �r; xf gf g, t 2 ti; tiþ1½ �. And x tð Þ should be a monotonic function in the
section ti; tiþ1½ �. r is a parameter which defines the shape of hysteresis loop. Fig. 3 shows the hysteresis
loop of the stop operator.

If we approximate Eq. (8) as a sum of infinite terms, the following Eq. (9) can be obtained as:

y sð Þ ¼
XM
i¼1

w rð Þer x sð Þ½ � (11)

Therefore, the architecture of ANN-2 can be rebuilt as shown in Fig. 4. Compared with the network for a
linear beam, the stop operator eri i ¼ 1; 2ð Þ is used as the activation function. r1; r2; . . . rM are the hyper-
parameters of neural network and they can be determined by the following equation [87]:

ri ¼ i xmaxj j
M

(12)

3 Numerical Examples

In this section, several numerical examples are presented for both linear and nonlinear cases. The first
example simulates the linear dynamic response of a simply-supported elastic beam subjected to a
concentrated force in the mid-span. We use the data from harmonic vibration as the training data. And the
final result under triangular andrectangular periodic loads are compared with the result from the finite
element model based on Newmark-β method. In the second examples, a simply-supported beam made of
an ideal elasto-plastic material is presented. The third and fourth examples include a continuous beam
under seismic load and the nonlinear dynamics of this beam with plastic deformation.

x

y

Figure 3: The hysteretic loop of the stop operator
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The analysis result from the finite element model is calculated by ABAQUS and used to train the deep neural
network model. The surrogate model is used to predict the nonlinear response of a bridge under seismic load.

3.1 Linear Vibration of an Elastic Beam
The length of beam L is 235 mm while the cross section is rectangular with a height of h = 23 mm and a

width of b = 7 mm. The material density ρ is 2800 kg/m3 and the elastic modulus E is 72 GPa. The beam is
subjected to a concentrated load on the mid-span as shown in Fig. 5.

For building the surrogate model to predict the deflection response of the beam, we will choose five
points along the beam as x1; x2; x3; x4; x5f g and the corresponding deflections as W x1; tð Þ; W x2; tð Þ;f
W x3; tð Þ; W x4; tð Þ; W x5; tð Þg. In this example, x1 ¼ 0:1L; x2 ¼ 0:3L; x3 ¼ 0:5L; x4 ¼ 0:7L; x5 ¼ 0:9L.

To obtain the training data, we assume the force term f tð Þ ¼ Fsin �tð Þ and obtain the deflection response
of different points as the training data. Where F ¼ 100N and � ¼ 0:001�, v1 is the fundamental natural
frequency of the beam. The training data of the deflection varies with time as shown in Fig. 6.

A multilayer perceptron with 5 hidden layers is used in this numerical example to approximate the shape
function vector which describes the dynamic displacement of the beam as shown in Fig. 7. In the deep neural
network, the sine function sin(x) is used as an activation function for each hidden layer.

To verify the effectiveness of the deep learning model to predict the response of a beam structure the
response of the beam under a triangularand a rectangular periodic load are used in the examples. Fig. 8
shows the time history of these periodic loads. The response predictions are presented in Figs. 9 and 10
and compared with the results from finite element (FEM).
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Figure 4: Architecture of ANN-2 for the response prediction of a nonlinear beam
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3.2 Nonlinear Dynamic Response of a Plastic Beam
In this section, the dynamic response of an ideal elasto-plastic beam is presented as an example. The

beam is simply-supported with the length L ¼ 2000 mm and a rectangular cross section
A ¼ 100 mm� 100 mm. The material characteristics are listed as: Elastic modulus E ¼ 200 Gpa, and
yield strength fy ¼ 380 Mpa. A sinusoidal load with a constant uniform amplitude Q tð Þ ¼ 7:5� 105 sinpt
is applied in the middle span as shown in Fig. 11.

Since it is difficult to obtain the exact solution for the vibration of a structure with plastic material
beahvior, we use a finite element model (FEM) by ABAQUS to obtain the training data and verify the
response prediction. Rayleigh proportional damping matrix is used in the analysis, which is a linear

f(t)

L = 0.235 m

Figure 5: The force diagram of the simply-supported beam

Figure 6: The training data of response prediction for example 1
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Figure 7: The ANN-1 for shape function approximation in example 1
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combination of stiffness matrix and mass matrix. The expression of Rayleigh damping can be written as:
C ¼ aK þ bM . In this example, a ¼ 3:0 and b ¼ 0:0. Because of the plasticity of the beam, we use a
piecewise shape function to describe the dynamic displacement. Therefore, to make sure the shape
coefficients f1; f2 . . . ; fn are independent, we build a network with several sub-nets as in Fig. 12.
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Figure 9: Response prediction under a triangular periodic load. (a) The 3D figures of the deflection as a
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t = 0.4 s and (c) The deflection of beam when t = 6.5 s
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In this network, section the chosen function Fa;h xð Þ is used as the first layer of the network which is
defined as:

Fah xð Þ ¼
0 x 2 �1; a� hð Þ
x x 2 a� h; aþ h½ �
0 x 2 aþ h;þ1ð Þ

8<
: (13)

Every sub-net contains five hidden layers with the activation function sin xð Þ to approximate the shape
coefficients.
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Figure 10: Response prediction under a rectangular periodic load. (a) The 3D figures of the deflection as a
function of time t and coordinate x under a rectangular periodic load, (b) The deflection of beam at t = 0.6 s
and (c) The deflection of beam at t = 5.8 s
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Figure 11: The force diagram of the plastic simply-supported beam
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The training data are shown in Fig. 13 which gives the variation of the transverse deformation of beam as
a function of time.

A multilayer perceptron with 5 hidden layers is used in each sub-net of the numerical example to
approximate the shape function vector. Similar to the previous example, a sine function sin(x) is used as
the activation function for each hidden layer.

Several different loads are applied to the deep learning model to verify the effectiveness of the model as
shown in Fig. 14. The response predictions are compared with the analysis result by ABAQUS.

Figs. 15 and 16 present the response predictions and the result by ABAQUS. The hysteretic loops of the
beam are shown in Fig. 17. As can be seen, the results obtained for the hysteretic response for the deep
learning model match closely with the results from ABAQUS. Therefore, the deflection response of a
plastic beam can be predicted by the neural network model studied in this paper. This means that the
nonlinear hysteretic behavior can be simulated by the Prandtl-Ishlinskii model effectively.

To better illustrate the advantages of proposed method, we regard the result of elastic beam by mode
superposition method and result of plastic beam by solid unit model as the exact results. We regard the
results of elastic beam by mode superposition method and plastic beam by solid unit model as the exact
values. As it is shown in Tab. 1, the proposed method is superior to that of FEM analysis in terms of the
computational time and for the same structure and the external load.

Thus, it can be speculated that for the application of this approach, in dealing with more complex and
large structures the proposed model should be advantageous.
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The number of chosen points will also influence the response prediction precision. Therefore, we
compare the prediction result when the number of selected points are different. As it is presented in
Fig. 18, the deflection prediction result of different selected points are compared. In general, the
prediction result is closer to the real response with the increase of the number of selected points.
However, thee more chosen points mean the more undetermined parameter of deep learning model. More
training samples are required for neural network training. Because of the limitation of training samples,
the chosen point number is usually less than five.

3.3 Vibration of Elastic Continue Beam under Seismic Load
As it is shown in Fig. 19, a continuous beam subjected to seismic load is considered with the length of

beam L = 15000 mm. The cross section is rectangular with a height of h = 300 mm and a width of
b = 700 mm. The beam is made of elastic material with density ρ = 7800 kg/m3 and elastic modulus
E ¼ 210 GPa. For building the surrogate model to predict the deflection response of the beam, we will
choose five points along the beam as x1; x2; x3; x4f g and the corresponding deflections as

Figure 13: The training data for the response prediction for example 2
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Figure 14: The test load for the verification used in example 2. (a) Triangular periodic load and (b)
Harmonic load
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fW x1; tð Þ; W x2; tð Þ; W x3; tð Þ; W x4; tð Þ;g. In this example, x1 ¼ 0:2L; x2 ¼ 0:4L; x3 ¼ 0:6L; x4 ¼ 0:8L.
We use the deflection response under white noise load as the training data. The white noise data we use
to generate the training data is presented in Fig. 20. The trained model is utilized to predict
the displacement response under EI Centro earthquake. Fig. 21 shows part of the training data. We use
the same deep learning model as in Section 3.1 to predict the displacement response of elastic beams
under seismic load. The response predictions are compared with the analytical results by using OpenSees.
As it is shown in Fig. 22, the proposed deep learning model can well predict the deflection response of
the elastic beam under seismic load.
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Figure 15: Response prediction of a plastic beam under triangular periodic load. (a) The 3D figures of the
beam deflection as a function time t and coordinate x under triangular periodic load, (b) The deflection of
beam at t = 1.0 s, (c) The deflection of beam at t = 4.8 s, (d) The beam deflection W 0:5L; tð Þ and (e) The
beam deflection W 0:3L; tð Þ
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Figure 16: Response prediction of a plastic beam under harmonic load. (a) The 3D plots of the dynamic
deflection as a function of time t and coordinate x under rectangular periodic load, (b) The deflection of
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Figure 17: Hysteretic loops of the restoring force for a beam under triangular periodic and harmonic loads.
(a) Triangular periodic load and (b) Harmonic load

Table 1: Comparison of calculation time of proposed method and finite element method

Method Proposed approach
(by MATLAB)

ABAQUS
(beam element)

ABAQUS (plane
stress element)Material Property

Linear elastic 0.55 s 71.12 s 120.43 s

Ideal plastic 12.25 s 187.68 s 523.12 s
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Figure 18: A comparison of deflection prediction of different chosen point at t = 0.5 s under triangular
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Figure 19: The force diagram of the continue beam under seismic load
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Figure 20: The training and test load for response prediction. (a) Training load- white noise and (b) Test
load- EI centro earthquake
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Figure 21: The training displacement response data. (a) Training response of elastic beam W 0:1L; tð Þ, (b)
Training response of plastic beam W 0:2L; tð Þ, (c) Training response of elastic beam at t = 7.36 s and (d)
Training response of elastic beam at t = 83.6 s
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3.4 Vibration of Plastic Continuous Beam under Seismic Load
In engineering application, a consideration of plastic deformation for beam-like structures is very

important in structural design and analysis. Therefore, an example of a plastic continuous beam under
seismic load is presented in this section. As in Fig. 19, a continuous beam subjected to seismic load is
considered with the length of beam L = 15000 mm. The cross section is rectangular with a height of
h = 300 mm and a width of b = 700 mm. The beam is made of an ideal plastic material with density
ρ = 7800 kg/m3, elastic modulus E ¼ 210 GPa and yield strength fy ¼ 335 Mpa. We choose five points
along the beam as x1; x2; x3; x4f g and the corresponding deflections as fW x1; tð Þ; W x2; tð Þ; W x3; tð Þ;
W x4; tð Þ;g. In this example, x1 ¼ 0:2L; x2 ¼ 0:4L; x3 ¼ 0:6L; x4 ¼ 0:8L.

As shown in Fig. 23, a seismic load is used to generate the training data. The trained model is utilized to
predict the displacement response under EI Centro earthquake. Fig. 24 shows part of the training data. The
deep learning model to predict the displacement response of plastic beam under seismic load has the same
architecture as the model in Section 3.2. As shown in Fig. 25, the proposed deep learning model can predict
the deflection response of the plastic beam under seismic load. However, due to the error caused by Prandtl-
Ishlinskii model, the prediction has a lower but acceptable accuracy.
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Figure 22: Response prediction of elastic beam under seismic load. (a) Response prediction of elastic beam
W 0:1L; tð Þ, (b) Response prediction of elastic beam W 0:2L; tð Þ, (c) Response prediction of plastic beam at
t = 13.64 s and (d) Response prediction of plastic beam at t = 27.92 s
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Figure 24: The training displacement response data of plastic beam. (a) Training response of elastic beam
W 0:1L; tð Þ, (b) Training response of elastic beam W 0:2L; tð Þ, (c) Training response of elastic beam at
t = 20.80 s and (d) Training response of elastic beam at t = 41.53 s

0 10 20 30 40 50
-6

-4

-2

0

2

4

6

0 10 20 30 40 50
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Time t(s)Time t(s)

G
ro

un
d 

ac
ce

le
ra

tio
n 

(m
/s

2 )

G
ro

un
d 

ac
ce

le
ra

tio
n 

(m
/s

2 )

(a) (b)

Figure 23: The training and test load for response prediction. (a) Training load and (b) Test load
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4 Conclusions

Based on the governing partial differential equation of Euler-Bernoulli beam, a deep learning surrogate
model for the deflection response prediction of beam-like structures is proposed. The model can be divided
into two sub-networks. The first network (ANN-1) approximates the shape function of the beam by deep
neural network while the second one (ANN-2) is a feedback neural network which can predict the
displacement and the velocity response at each reference point. The beams made of both elastic and
plastic materials are analyzed by using Prandtl-Ishlinskii model to simulate the hysteresis of the structure.

Four numerical examples are presented to validate the effectiveness of the proposed approach. The
example shown in Section 3.1 is a surrogate model of the elastic beam which uses the training data from
mode superposition method, and the predicted results are compared with the Newmark-β method. The
second example considers the material’s plasticity. Training data are generated by ABAQUS. The third
and fourth examples aim to simulate the seismic response prediction of elastic and plastic beam. The
following conclusions can be drawn from the results:

1. The proposed deep learning based model can well predict the deflection response of an elastic and a
plastic beam structure.
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Figure 25: Response prediction of elastic beam under seismic load. (a) Response prediction of elastic beam
W 0:1L; tð Þ, (b) Response prediction of elastic beam W 0:2L; tð Þ, (c) Response prediction of elastic beam at
t = 3.64 s and (d) Response prediction of elastic beam at t = 7.92 s

0 20 40
-20

-10

0

10

20

 OpenSees
 Deep learning model

Time t(s)

0 20 40

-20

-10

0

10

20
 OpenSees
 Deep learning model

D
is

pl
ac

em
en

t r
es

po
ns

e 
(m

m
)

D
is

pl
ac

em
en

t r
es

po
ns

e 
(m

m
)

Time t(s)

(a) (b)

SDHM, 2020, vol.14, no.4 333



2. Compared with the elastic beam, there will be a bigger error when the nonlinear vibration of the
plastic beam is predicted by the proposed approach. Even so, the prediction result is still acceptable.

3. The hysteresis of the structure that represents the plasticity can be simulated by the Prandtl-Ishlinskii
model which is embedded in the deep learning model and the hysteresis loop can be approximated.

4. The proposed method runs much faster than the conventional finite element method, in terms of the
computational time. Therefore, the proposed method has some advantages in practical engineering
problems.

5. The proposed method can be used for the seismic response prediction of beam-like structure. And
describe the vibration shape of both elastic and plastic beam. It will help in the seismic analysis
of bridge structure. Application of the proposed approach for more analyzing the dynamic
response of more complex problems needs to be investigated.
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