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Abstract: We proposed a mathematical model of the coronavirus disease 2019
(COVID-19) to investigate the transmission and control mechanism of the disease
in Nigeria. Using stability theory of differential equations, the qualitative behavior
of model is studied. The pandemic indicator represented by basic reproductive
number R0 is obtained from the largest eigenvalue of the next-generation matrix.
Local as well as global asymptotic stability conditions for the disease-free equili-
brium is obtained which determines the conditions to stabilize the exponential
spread of the disease. Further, we examined this model by using Atangana–Balea-
nu fractional derivative operator and existence criteria of solution for the operator
is established. We consider the data of reported infection cases from April 1,
2020, till April 30, 2020, and parameterized the model. We have used one of
the reliable and efficient method known as iterative Laplace transform to obtain
numerical simulations. The impacts of various biological parameters on transmis-
sion dynamics of COVID-19 is examined. These results are based on different
values of the fractional parameter and serve as a control parameter to identify
the significant strategies for the control of the disease. In the end, the obtained
results are demonstrated graphically to justify our theoretical findings.

Keywords: Mathematical model; COVID-19; Atangana-Baleanu fractional
operator; existence of solutions; stability analysis; numerical simulation

1 Introduction

The ongoing ravaging COVID-19 is a contagious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The first case of the disease was reported in December 2019 in Wuhan, China,
and has, within few weeks, spread across the globe, leading to the present 2020 COVID-19 pandemic [1].
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The coronavirus disease 2019 has been regarded as the largest global health crisis in human history as a result
of the magnitude of confirmed cases, accompanied by the degree of fatalities across the continents [2].
Reliable data had it that by April 2020, COVID-19 pandemic had led to over 3 million confirmed cases
with 230,000 deaths and the disease has spread to over 210 nations globally [3]. The symptoms and signs
of COVID-19 develop within 2 to 14 days [4]. Infected individuals may exhibit fever, fatigue, cough and
breathing disorder that is similar to those infections instigated by SARS-CoV and MERS-CoV [5].
However, many COVID-19 acute cases and fatalities come from the elderly people (from the age of
65 upward) and individuals with severe health challenges (such as people with kidney disease,
hypertension, diabetes, obesity and other health issues that deteriorate the immune system) [3].

The first confirmed case in Nigeria was reported on 27 February 2020, the patient was an Italian citizen,
who had recently arrived in Lagos from Europe and who, a few days later, tested positive for the disease. [6].
The disease continues to rise gradually over the month of April 2020, after a substantial number of cases was
recorded. Since then, Nigeria is focused on spotting and referring identified infectious patients for treatment
to devoted COVID-19 centers. As of 18 June 2020, Nigeria had reported 17,735 confirmed cases out of
which 11,299 are active cases, 5,967 recovered peoples and 469 deaths due to COVID-19 infection [7].

The global scourge of COVID-19 pandemic has elicited the attention of scholars in different disciplines,
prompting several proposals to examine and envisage the development of the pandemic [8]. Ndairov et al. [9]
proposed a model for the transmissibility of COVID-19 in the presence of super-spreaders individuals. They
perform the stability and sensitivity analyses of the model and discovered that daily reduction in the number
of confirmed cases of COVID-19 is a function of the number of hospitalizations. Yang et al. [10] proposed a
model to study the transmission pathways of COVID-19 in terms of human-to-human and environment-to-
human spread. Their analysis confirms the tendency of COVID-19 to remain pandemic even with prevention
and intervention measures.

A model for the dynamics of COVID-19 with parameter estimations, sensitivity analysis and data fitting
is investigated in [11], while a model for COVID-19 infection that describes the impact of slow diagnosis on
the dynamics of COVID-19 is also studied in [12]. In [13], the researchers used a statistical study of
coronavirus disease data to calculate time-regulated risk for fatality from the COVID-19 in Wuhan. Their
results indicate that movement restrictions and adequate social distancing procedures are capable of
reducing the spread of the disease. Furthermore, a data-oriented model that includes behavioral impacts of
humans and governmental efforts on the dynamics of COVID-19 in Wuhan is proposed in [14]. A good
number of mathematics and non-mathematics studies have also been conducted on COVID-19 [15–21].

In recent times, the integer order differential systems are generalized and improved in order to formulate
several mathematical models using fractional differential operators. Since demonstration of some real-world
phenomena with the help of fractional derivative operator is more appropriate and useful for improving
performance of numerous engineering and applied sciences systems [22–29]. In this paper, initially we
formulate the mathematical model in terms of integer order derivative and then apply the Atangana–
Baleanu fractional derivative operator. The motivation behind utilizing the Atangana–Baleanu operator is
that it has nonlocal and nonsingular kernel in the form of Mittag-Leffler function. Moreover, the complex
behavior in the model must be ideal portrayed utilizing this operator. Literature pertaining to Atangana–
Baleanu derivative and their applications to several systems arising in the field of applied sciences and
engineering can be cited in [30–34].

2 Formulation of the Model

The population of human under consideration is divided into six compartments which are, susceptible
S(t), since the incubation period of COVID-19 is between two to fourteen days, there are those who are
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infected without exhibiting any sign and symptoms and are undetected E(t). Individuals who are infected or
suspected case of COVID-19 need to go through an incubation period before the suspected symptoms can
be noticeable, these categories are quarantined Q(t), a proportion of the population have been infected with
sign and symptoms of COVID-19 and are highly infectious but not yet quarantined or isolated I(t). C(t)
represents confirmed case of COVID-19 from Quarantine category. R(t) represents recovery after treatment.
The susceptible population is increased by immigration or by birth at a rate h, in each of the classes,
individuals can die a natural death at a rate h, there is a force of infection between the susceptible
population and exposed population, this is represented by b1, e represents the progression from exposed
class to highly infected class, the disease induced death rate for highly infected class, quarantine class and
confirmed case of COVID-19 class is represented by d, proportion of people identified as suspected case of
COVID-19 are represented by b2, after medical diagnosis, some of the suspected cases are confirmed,
others that are not detected can return back to the susceptible population at a rate a. In the meantime, some
highly infectious individuals will be moved to quarantine class at a rate c. The progression rate from
quarantine to confirm case after diagnosis is denoted by s. The pictorial diagram illustrating the model is
shown in Fig. 1, while the system of equations governing the model is given as:

dS

dt
¼ h� b1SI � lS þ aQ;

dE

dt
¼ b1SI � lþ b2 þ eð ÞE;

dI

dt
¼ eE � cþ lþ dð ÞI ;

dQ

dt
¼ cI þ b2E � aþ lþ dþ sð ÞQ;

dC

dt
¼ sQ� lþ dþ ’ð ÞC;

dR

dt
¼ ’C � lR: (1)

μS

γI

φC

(μ + δ)Q
(μ + δ)C

(μ + δ)I

S E I

Q C R

β1SI

β2E

Figure 1: The model’s flow diagram
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The rest of the sections are organized as follows: Some valuable preliminaries dependent on the
Atangana–Baleanu fractional operator is given in Section 3. In Section 4, we present stability analysis of
the equilibria (drug-free equilibrium state and endemic equilibrium state). Analysis of fractional
coronavirus model using the Atangana–Baleanu operator is given in Section 5. The Approximation
technique and Numerical Simulation are given to reveal the behavior of dynamics components is
accounted for in Section 6. The conclusion is finally drawn in the last Section 7.

3 Preliminaries

This section of the paper will convert some basic definitions and properties related to Fractional calculus.
During the paper process, we are going to refer to the following given specific definitions and properties of
the Atangana–Baleanu fractional derivatives of Caputo type [32] that are peculiar to our study.

Definition 3.1 The Caputo fractional derivative for order j > 0 is defined as

c
aD

j
t f tð Þ ¼ 1

� n� jð Þ
Z t

a
t � nð Þn�j�1f nð Þ nð Þdn;

where n� 1,j � n; n 2 N ; f 2 Cn�1 0; t½ �:
Definition 3.2 The Atangana–Baleanu fractional derivative for a given function for order j in Caputo

sense are defined as

ABC
aD

j
t f tð Þ ¼ B jð Þ

1� j

Z t

a

df nð Þ
dn

Ej � j
1� j

t � nð Þj
h i

dn;

where B jð Þ ¼ 1� jð Þ þ j
� jð Þ is a normalization function and Ea �ð Þ is the Mittag-Leffler function.

Definition 3.3 Atangana–Baleanu fractional integral order j is defined as

AB
0I

j
t f tð Þð Þ ¼ 1� j

B jð Þ f tð Þ þ j
B jð Þ� jð Þ

Z t

a
f nð Þ t � nð Þj�1dn

if f tð Þ is a constant, integral will be resulted with zero.

Definition 3.4 The Laplace transforms for the Atangana–Baleanu fractional operator of order j;where 0
< j � 1 is given as

L ABC
aD

jf tð Þ� �
sð Þ ¼ B jð Þ

1� j
sj Lff ðtg sð Þ � sj�1f að Þ

sj þ j
1� j

:

Theorem 3.1. The following time fractional ordinary differential equation

ABC
0D

jf tð Þ ¼ # tð Þ
has a unique solution considering the inverse Laplace transform and the convolution property below

f tð Þ ¼ 1� j
B jð Þ # tð Þ þ j

B jð Þ� jð Þ
Z t

0
# nð Þ t � nð Þj�1dn:

4 Basic Properties of the Model

4.1 The Invariant Region

The invariant region sets out the domain where the model’s solutions are both biologically and
mathematically meaningful. Since the model deals with human population, all of the model’s variables
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and parameters are assumed to be positive. To achieve this, we consider first the total human population Nh,
where Nh = S + E + I + Q + C + R.

By differentiating with respect to t both side of the total population N

dNh

dt
¼ dE

dt
þ dI

dt
þ dQ

dt
þ dC

dt
þ dR

dt
:

dNh

dt
¼ h� l S þ E þ I þ Qþ C þ Rð Þ � dI � dC � dQ ) h� lNh � dI � dC � dQ: (2)

In the absence of the disease induced death due to COVID-19 d ¼ 0ð Þ, Eq. (2) becomes

dNh

dt
¼ h� lNh: (3)

Integrating on both sideZ
dNh

h� lNh
�

Z
dt ) �1

l
ln h� lNhð Þ � t þ k ) h� lNh � Ae�lt; (4)

with the initial condition Nh 0ð Þ ¼ Nh0, where A is constant. Applying the initial condition in Eq. (4), we get

Nh � h
l
� h� lNh

l

� �
e�lt: (5)

As t ! 1 in Eq. (5), the total human population reduces to Nh � h
l
. In this regard, all the feasible

solution sets for human population in Eq. (1) enters and remains in the region

Z ¼ S;E; I ;Q;C;Rð Þ 2 <6
þ : Nh � h

l

� �
: (6)

We therefore conclude that the proposed model is well posed and are both biologically and
mathematically meaningful in the domain Z.

4.2 Positivity of Solution

For the COVID-19 model dynamics in Eq. (1) to be epidemiologically meaningful it is important to
prove that all its state variables are positive for all time.

Theorem 4.1

Let the Z ¼ S;E; I ;Q;C;Rð Þ 2 <6
þ : S0 � 0;E0; I0;Q0;C0;R0

� �
. Then the solutions S;E; I ;Q;C;Rf g

are non-negative for t � 0.

Proof:

First, we consider the susceptible compartment in Eq. (1) give as
dS

dt
¼ h� b1SE � lS þ aQ:

dS tð Þ
dt

� � b1E þ lð ÞS tð Þ ) dS tð Þ
S tð Þ � � b1E þ lð Þdt )

Z
dS tð Þ
S tð Þ � �

Z
b1E þ lð Þdt: (7)

By applying the initial condition S0 and solving the above Eq. (7), we get S tð Þ � S0e b1Eþlð Þt � 0:

By repeating the same procedure for E; I ;Q;C;R respectively in the system Eq. (1), we obtained the
following results
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E tð Þ � S0e
lþb2þeð Þt � 0; I tð Þ � I0e

cþdþlð Þt � 0; Q tð Þ � Q0e
aþlþdþsð Þt � 0;

C tð Þ � C0e
lþdþ’ð Þt � 0; R tð Þ � R0e

�lt � 0: (8)

This shows that the solutions of the model are positive. Hence the proof.

4.3 Disease-Free Equilibrium State (DFE)

The COVID-19 model in Eq. (1) has a disease-free equilibrium DFE obtain by setting the right-hand
side of Eq. (1) to zero. Therefore,

�DFE ¼ S;E; I ;Q;C;Rð Þ ¼ h
l
; 0; 0; 0; 0; 0

� 	
(9)

4.4 Existence of Endemic Equilibrium Point (EE)

We present the existence of the COVID-19 endemic equilibrium states. It is a positive equilibrium state
where the COVID-19 disease is persisting in the population.

Theorem 4.2. Let there be a unique endemic equilibrium state when the basic reproduction number
R0 > 1 in the COVID-19 periodically forced model in Eq. (1).

Proof. Suppose �EE ¼ S�;E�; I�;Q�;C�;R�ð Þ is a nontrivial equilibrium state of system Eq. (1) which
then connote that all the compartment of �EE are non-negative. By equating the left-hand side of Eq. (1) to
zero we get the following endemic equilibrium states

S� ¼ k1k2
b1e

;

E� ¼ k2k3 b1eh� k1k2lð Þ
eb1 ab2k2 þ aec� k1k2k3ð Þ ;

I� ¼ k3 b1eh� k1k2lð Þ
b1 ab2k2 þ aec� k1k2k3ð Þ ;

Q� ¼ b2k2 þ ecð Þ b1eh� k1k2lð Þ
b1 ab2k2 þ aec� k1k2k3ð Þ ;

C� ¼ s’ b2k2 þ ecð Þ b1eh� k1k2lð Þ
b1k4 ab2k2 þ aec� k1k2k3ð Þk4 ;

R� ¼ s’ b2k2 þ ecð Þ b1h� k1lð Þ
b1lek4 ab2k2 þ aec� k1k2k3ð Þ : (10)

where

k1 ¼ lþ b2 þ eð Þ; k2 ¼ cþ lþ dð Þ; k3 ¼ aþ lþ bð Þ; k4 ¼ lþ dþ ’ð Þ: (11)

4.5 Basic Reproduction Number R0

The basic reproductive ratio is a threshold quantity that represents the overall number of secondary
diseases caused by a single infected individual created into a fully susceptible population throughout its
infectious period. F and V are the matrices for the new infections generated and the terms of transition.
Following the same approach as [35], we have
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f ¼
b1SI
eE

cI þ b1E
sQ

0
BB@

1
CCA; v ¼

lþ b2 þ eð ÞE
cþ lþ dð ÞI

aþ lþ dþ sð ÞQ
lþ dþ ’ð ÞC

0
BB@

1
CCA:

The Jacobian matrix of f and v computed at the disease-free equilibrium is given as F and V such that

F ¼
0 b1S 0 0
e 0 0 0
b2 c 0 0
0 0 s 0

0
BB@

1
CCA; V ¼

lþ b2 þ eð Þ 0 0 0
0 cþ lþ dð Þ 0 0
0 0 aþ lþ dþ sð Þ 0
0 0 0 lþ dþ ’ð Þ

0
BB@

1
CCA;

V�1 ¼

1

k1
0 0 0

0
1

k2
0 0

0 0
1

k3
0

0 0 s
1

k4

0
BBBBBBBBB@

1
CCCCCCCCCA
: Therefore; FV�1 ¼

b1S 0 0 0
e
k1

0 0 0

b2
k1

c
k2

0 0

0 0
s
k3

0

2
6666664

3
7777775

By substituting k1 and k2 from Eq. (11), we therefore obtain the basic reproduction number which is the
spectral radius of the matrix FV�1 as

R0 ¼ heb1
l lþ b2 þ eð Þ cþ lþ dð Þ : (12)

4.6 Global Stability of the Disease-Free Equilibrium

Theorem 4.3. If R0 � 1, then the disease-free equilibrium �DFE ¼ h
l
; 0; 0; 0; 0; 0

� 	
is globally

asymptotically stable otherwise it is unstable.

Proof. We consider the Lyapunov function of the type L ¼ x1E þ x2I and L0 ¼ x1E0 þ x2I 0

where, x1 ¼ e
k1k2

; x2 ¼ 1

k2

L0 ¼ e
k1k2

b1SI � k1Eð Þ þ 1

k2
eE � k2Ið Þ ¼ eb1SI

k1k2
� eE

k2
þ eE

k2
� I ¼ eb1SI

k1k2
� I

¼ eb1SI
k1k2

� 1

� 	
� eb1h

lk1k2
� 1

� 	
I

∴ L ¼ I R0 � 1ð Þ (13)

From the result in Eq. (12), we can conclude that L0 � 0provided that R0 � 1. In addition, L0 ¼ 0
provided that R0 ¼ 1 or I ¼ 0.

5 Analysis of Fractional Coronavirus Model Using the Atangana-Baleanu Operator

Let us consider the mathematical model given by an ordinary differential equation system Eq. (1) using
Atangana–Baleanu fractional derivative operator as below
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ABC
0D

jS tð Þ ¼ �1 t; S tð Þð Þ ¼ h� b1SI � lS þ aQ

ABC
0D

jE tð Þ ¼ �2 t; E tð Þð Þ ¼ b1SI � lþ b2 þ eð ÞE
ABC

0D
jI tð Þ ¼ �3 t; I tð Þð Þ ¼ eE � cþ lþ dð ÞI

ABC
0D

jQ tð Þ ¼ �4 t; Q tð Þð Þ ¼ cI þ b2E � aþ lþ dþ sð ÞQ (14)

ABC
0D

jC tð Þ ¼ �5 t; C tð Þð Þ ¼ sQ� lþ dþ ’ð ÞC
ABC

0D
jR tð Þ ¼ �6 t; R tð Þð Þ ¼ ’C � lR

where ABC
0Dj represents the fractional operator of type Atangana–Baleanu–Caputo (ABC) having fractional

order j; where 0 < j � 1, subject to initial conditions

S0 tð Þ ¼ S 0ð Þ; E0 tð Þ ¼ E 0ð Þ; I0 tð Þ ¼ I 0ð Þ; Q0 tð Þ ¼ Q 0ð Þ;
C0 tð Þ ¼ C 0ð Þ; R0 tð Þ ¼ R 0ð Þ: (15)

The system in Eq. (14) can be converted to the Volterra-type integral equation by using the ABC
fractional integral. The model is written by referring Theorem 3.1 as below:

S tð Þ � S 0ð Þ ¼ 1� j
B jð Þ h� b1S tð ÞI tð Þ � lS tð Þ þ aQ tð Þf g

þ j
B jð Þ� jð Þ

Z t

0
h� b1S nð ÞI nð Þ � lS nð Þ þ aQ nð Þf g t � nð Þj�1dn;

E tð Þ � E 0ð Þ ¼ 1� j
B jð Þ b1S tð ÞI tð Þ � lþ b2 þ eð ÞE tð Þf g

þ j
B jð Þ� jð Þ

Z t

0
b1S nð ÞI nð Þ � lþ b2 þ eð ÞE nð Þf g t � nð Þj�1dn;

I tð Þ � I 0ð Þ ¼ 1� j
B jð Þ eE tð Þ � cþ lþ dð ÞI tð Þf g þ j

B jð Þ� jð Þ
Z t

0
eE nð Þ � cþ lþ dð ÞI nð Þf g t � nð Þj�1dn;

Q tð Þ � Q 0ð Þ ¼ 1� j
B jð Þ cI tð Þ þ b2E tð Þ � aþ lþ dþ sð ÞQ tð Þf g

þ j
B jð Þ� jð Þ

Z t

0
cI nð Þ þ b2E nð Þ � aþ lþ dþ sð ÞQ nð Þf g t � nð Þj�1dn;

C tð Þ � C 0ð Þ ¼ 1� j
B jð Þ sQ tð Þ � lþ dþ ’ð ÞC tð Þf g þ j

B jð Þ� jð Þ
Z t

0
sQ nð Þ � lþ dþ ’ð ÞC nð Þf g t � nð Þj�1dn;

R tð Þ � R 0ð Þ ¼ 1� j
B jð Þ ’C tð Þ � lR tð Þf g þ j

B jð Þ� jð Þ
Z t

0
’C nð Þ � lR nð Þf g t � nð Þj�1dn: (16)

Theorem 5.1 The kernels �1; �2; �3; �4; �5 and�6 given in Eq. (14) satisfy the Lipschitz condition
and contraction if the following inequality holds:

0 � p1; p2; p3; p4; p5; p6 < 1:

Proof: Let the kernel �1 t; S tð Þð Þ ¼ h� b1SI � lS þ aQ:
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Let S1 and S2 be two functions; then we obtain the following:

k�1 t; S1 tð Þð Þ � �1 t; S2 tð Þð Þ k ¼ k h� b1S1I � lS1 þ aQð Þ � h� b1S2I � lS2 þ aQð Þk
¼ k � ðb1I þ lÞ S1 tð Þ � S2 tð Þð Þk � ðb1kI tð Þk þ lÞkS1 tð Þ � S2 tð Þk
� ðb1M1 þ lÞkS1 tð Þ � S2 tð Þk
� ðb1M1 þ lÞkS1 tð Þ � S2 tð Þk � p1kS1 tð Þ � S2 tð Þk; (17)

where p1 ¼ b1M1 þ l; M1 ¼ max
t 2 J

kI tð Þk.
Similarly, we get,

k�2 t;E1 tð Þð Þ � �2 t;E2 tð Þð Þk � p2kE1 tð Þ � E2 tð Þk;
k�3 t; I1 tð Þð Þ � �3 t; I2 tð Þð Þk � p3kI1 tð Þ � I2 tð Þk;
k�4 t;Q1 tð Þð Þ � �4 t;Q2 tð Þð Þk � p4kQ1 tð Þ � Q2 tð Þk;
k�5 t;C1 tð Þð Þ � �5 t;C2 tð Þð Þk � p5kC1 tð Þ � C2 tð Þk;
k�6 t;R1 tð Þð Þ � �6 t;R2 tð Þð Þk � p6kR1 tð Þ � R2 tð Þk; (18)

where,

p2 ¼ lþ b2 þ eð Þ; p3 ¼ cþ lþ d; p4 ¼ aþ lþ dþ s; p5 ¼ lþ dþ ’, and p6 ¼ l.

Considering the kernels of the model, Eq. (16) can be rewritten as

S tð Þ ¼ S 0ð Þ þ 1� j
B jð Þ �1 t; S tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�1 n; S nð Þð Þf g t � nð Þj�1dn;

E tð Þ ¼ E 0ð Þ þ 1� j
B jð Þ �2 t; E tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�2 n; E nð Þð Þf g t � nð Þj�1dn;

I tð Þ ¼ I 0ð Þ þ 1� j
B jð Þ �3 t; I tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�3 n; I nð Þð Þf g t � nð Þj�1dn;

Q tð Þ ¼ Q 0ð Þ þ 1� j
B jð Þ �4 t; Q tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�4 n; Q nð Þð Þf g t � nð Þj�1dn;

C tð Þ ¼ C 0ð Þ þ 1� j
B jð Þ �5 t; C tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�5 n; C nð Þð Þf g t � nð Þj�1dn;

R tð Þ ¼ R 0ð Þ þ 1� j
B jð Þ �6 t; R tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�6 n; R nð Þð Þf g t � nð Þj�1dn: (19)

Therefore, we get the following recursive formula.

Sn tð Þ ¼ S 0ð Þ þ 1� j
B jð Þ �1 t; Sn�1 tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�1 n; Sn�1 nð Þð Þf g t � nð Þj�1dn;

En tð Þ ¼ E 0ð Þ þ 1� j
B jð Þ �2 t; En�1 tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�2 n; En�1 nð Þð Þf g t � nð Þj�1dn;
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In tð Þ ¼ I 0ð Þ þ 1� j
B jð Þ �3 t; In�1 tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�3 n; In�1 nð Þð Þf g t � nð Þj�1dn;

Qn tð Þ ¼ Q 0ð Þ þ 1� j
B jð Þ �4 t; Qn�1 tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�4 n; Qn�1 nð Þð Þf g t � nð Þj�1dn;

Cn tð Þ ¼ C 0ð Þ þ 1� j
B jð Þ �5 t; Cn�1 tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�5 n; Cn�1 nð Þð Þf g t � nð Þj�1dn;

Rn tð Þ ¼ R 0ð Þ þ 1� j
B jð Þ �6 t; Rn�1 tð Þð Þf g þ j

B jð Þ� jð Þ
Z t

0
�6 n; Rn�1 nð Þð Þf g t � nð Þj�1dn: (20)

We next get the difference between the iterative terms in the expression

�1n tð Þ ¼ Sn tð Þ � S n�1ð Þ tð Þ ¼ 1� j
B jð Þ �1 t; Sn�1 tð Þð Þ � �1 t; Sn�2 tð Þð Þf g

þ j
B jð Þ� jð Þ

Z t

0
�1 n; Sn�1 nð Þð Þ � �1 n; Sn�2 nð Þð Þf g t � nð Þj�1dn;

�2n tð Þ ¼ En tð Þ � E n�1ð Þ tð Þ ¼ 1� j
B jð Þ �2 t; En�1 tð Þð Þ � �2 t; En�2 tð Þð Þf g

þ j
B jð Þ� jð Þ

Z t

0
�2 n; En�1 nð Þð Þ � �2 n; En�2 nð Þð Þf g t � nð Þj�1dn;

�3n tð Þ ¼ In tð Þ � I n�1ð Þ tð Þ ¼ 1� j
B jð Þ �3 t; In�1 tð Þð Þ � �3 t; In�2 tð Þð Þf g

þ j
B jð Þ� jð Þ

Z t

0
�3 n; In�1 nð Þð Þ � �3 n; In�2 nð Þð Þf g t � nð Þj�1dn ;

�4n tð Þ ¼ Qn tð Þ � Q n�1ð Þ tð Þ ¼ 1� j
B jð Þ �4 t; Qn�1 tð Þð Þ � �4 t; Qn�2 tð Þð Þf g

þ j
B jð Þ� jð Þ

Z t

0
�4 n; Qn�1 nð Þð Þ � �4 n; Qn�2 nð Þð Þf g t � nð Þj�1dn;

�5n tð Þ ¼ Cn tð Þ � C n�1ð Þ tð Þ ¼ 1� j
B jð Þ �5 t; Cn�1 tð Þð Þ � �5 t; Cn�2 tð Þð Þf g

þ j
B jð Þ� jð Þ

Z t

0
�5 n;Cn�1 nð Þð Þ � �5 n;Cn�2 nð Þð Þf g t � nð Þj�1dn;

�6n tð Þ ¼ Rn tð Þ � R n�1ð Þ tð Þ ¼ 1� j
B jð Þ �6 t; Rn�1 tð Þð Þ � �6 t; Rn�2 tð Þð Þf g

þ j
B jð Þ� jð Þ

Z t

0
�6 n;Rn�1 nð Þð Þ � �6 n; Rn�2 nð Þð Þf g t � nð Þj�1dn : (21)
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where

Sn ¼
X1
m¼0

�1m; En ¼
X1
m¼0

�2m; In ¼
X1
m¼0

�3m; Qn ¼
X1
m¼0

�4m; Cn ¼
X1
m¼0

�5m;Rn ¼
X1
m¼0

�6m:

Applying the norm of both sides and considering triangular inequality, the Eq. (21) becomes

k�1n tð Þk ¼ kSn tð Þ � S n�1ð Þ tð Þk � 1� j
B jð Þ k�1 t; Sn�1 tð Þð Þ � �1 t; Sn�2 tð Þð Þk

þ j
B jð Þ� jð Þ k

Z t

0
�1 n; Sn�1 nð Þð Þ � �1 n; Sn�2 nð Þð Þf g t � nð Þj�1dnk;

k�2n tð Þk ¼ kEn tð Þ � E n�1ð Þ tð Þk � 1� j
B jð Þ k�2 t; En�1 tð Þð Þ � �2 t; En�2 tð Þð Þk

þ j
B jð Þ� jð Þ k

Z t

0
�2 n; En�1 nð Þð Þ � �2 n;En�2 nð Þð Þf g t � nð Þj�1dnk;

k�3n tð Þk ¼ kIn tð Þ � I n�1ð Þ tð Þk � 1� j
B jð Þ �3 t; In�1 tð Þð Þ � �3 t; In�2 tð Þð Þkk

þ j
B jð Þ� jð Þ k

Z t

0
�3 n; In�1 nð Þð Þ � �3 n; In�2 nð Þð Þf g t � nð Þj�1dn k;

k�4n tð Þk ¼ kQn tð Þ � Q n�1ð Þ tð Þk � 1� j
B jð Þ k�4 t; Qn�1 tð Þð Þ � �4 t; Qn�2 tð Þð Þk

þ j
B jð Þ� jð Þ k

Z t

0
�4 n; Qn�1 nð Þð Þ � �4 n; Qn�2 nð Þð Þf g t � nð Þj�1dnk;

k�5n tð Þk ¼ kCn tð Þ � C n�1ð Þ tð Þk � 1� j
B jð Þ k�5 t; Cn�1 tð Þð Þ � �5 t; Cn�2 tð Þð Þk

þ j
B jð Þ� jð Þ k

Z t

0
�5 n;Cn�1 nð Þð Þ � �5 n;Cn�2 nð Þð Þf g t � nð Þj�1dnk;

k�6n tð Þk ¼ kRn tð Þ � R n�1ð Þ tð Þk � 1� j
B jð Þ k�6 t; Rn�1 tð Þð Þ � �6 t; Rn�2 tð Þð Þk

þ j
B jð Þ� jð Þ k

Z t

0
�6 n;Rn�1 nð Þð Þ � �6 n; Rn�2 nð Þð Þf g t � nð Þj�1dnk: (22)

Since the kernels satisfy the Lipschitz condition, we get the following

k�1n tð Þk � 1� j
B jð Þ p1k�1 n�1ð Þ tð Þk þ

j
B jð Þ� jð Þ p1

Z t

0
t � nð Þj�1k�1 n�1ð Þ nð Þkdn;

k�2n tð Þk � 1� j
B jð Þ p2k�2 n�1ð Þ tð Þk þ

j
B jð Þ� jð Þ p2

Z t

0
t � nð Þj�1k�2 n�1ð Þ nð Þkdn;
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k�3n tð Þk � 1� j
B jð Þ p3k�3 n�1ð Þ tð Þk þ

j
B jð Þ� jð Þ p3

Z t

0
t � nð Þj�1k�3 n�1ð Þ nð Þkdn;

k�4n tð Þk � 1� j
B jð Þ p4k�4 n�1ð Þ tð Þk þ

j
B jð Þ� jð Þ p4

Z t

0
t � nð Þj�1k�4 n�1ð Þ nð Þkdn;

k�5n tð Þk � 1� j
B jð Þ p5k�5 n�1ð Þ tð Þk þ

j
B jð Þ� jð Þ p5

Z t

0
t � nð Þj�1k�5 n�1ð Þ nð Þkdn;

k�6n tð Þk � 1� j
B jð Þ p6k�6 n�1ð Þ tð Þk þ

j
B jð Þ� jð Þ p6

Z t

0
t � nð Þj�1k�6 n�1ð Þ nð Þkdn: (23)

This completes the proof of the theorem.

Theorem 5.2 (Existence of the Solution). The system given by Eq. (14) has a solution under the
conditions that we can find tmax satisfying

pj
B jð Þ 1� jþ tjmax

� jð Þ
� 	

< 1; for j 2 1; 2;…6f g.

Proof: Let the functions S(t), E(t), I(t), Q(t), C(t) and R(t) are bounded. From Eq. (23) we get the
following relations.

k�1n tð Þk � kS 0ð Þk p1
B jð Þ 1� jþ tjmax

� jð Þ
� 	� �n

;

k�2n tð Þk � kE 0ð Þk p2
B jð Þ 1� jþ tjmax

� jð Þ
� 	� �n

;

k�3n tð Þk � kI 0ð Þk p3
B jð Þ 1� jþ tjmax

� jð Þ
� 	� �n

;

k�4n tð Þk � kQ 0ð Þk p4
B jð Þ 1� jþ tjmax

� jð Þ
� 	� �n

;

k�5n tð Þk � kC 0ð Þk p5
B jð Þ 1� jþ tjmax

� jð Þ
� 	� �n

;

k�6n tð Þk � kR 0ð Þk p6
B jð Þ 1� jþ tjmax

� jð Þ
� 	� �n

: (24)

Hence, the functions �1n tð Þ; �2n tð Þ; �3n tð Þ; �4n tð Þ; �5n tð Þ and �6n tð Þ given in Eq. (24) exist and
are smooth. Moreover, to show that the functions in Eq. (24) are the solutions of Eq. (14), we assume that

S tð Þ � S 0ð Þ ¼ Sn tð Þ � D1 nð Þ tð Þ;
E tð Þ � E 0ð Þ ¼ En tð Þ � D2 nð Þ tð Þ;
I tð Þ � I 0ð Þ ¼ In tð Þ � D3 nð Þ tð Þ;
Q tð Þ � Q 0ð Þ ¼ Qn tð Þ � D4 nð Þ tð Þ;
C tð Þ � C 0ð Þ ¼ Cn tð Þ � D5 nð Þ tð Þ;
R tð Þ � R 0ð Þ ¼ Rn tð Þ � D6 nð Þ tð Þ: (25)
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where D1 nð Þ tð Þ; D2 nð Þ tð Þ; D3 nð Þ tð Þ; D4 nð Þ tð Þ; D5 nð Þ tð Þ; and D6 nð Þ tð Þ; are reminder terms of series
solution. Then, we must show that these terms approach to zero at infinity, that is,

kD1 1ð Þ tð Þk ! 0, kD2 1ð Þ tð Þk ! 0; kD3 1ð Þ tð Þk ! 0; kD4 1ð Þ tð Þk ! 0; kD5 1ð Þ tð Þk ! 0

and kD6 1ð Þ tð Þk ! 0: Thus, for the term D1 nð Þ tð Þ

kD1 nð Þ tð Þk � 1� j
B jð Þ k�1 t; S tð Þð Þ � �1 t; Sn�1 tð Þð Þk

þ j
B jð Þ� jð Þ

Z t

0
t � nð Þj�1k�1 n; S nð Þð Þ � �1 n; Sn�1 nð Þð Þk dn

� p1
B jð Þ 1� jþ tjmax

� jð Þ
� 	

kS tð Þ � Sn�1 tð Þk : (26)

Continuing this way recursively, we get

kD1 nð Þ tð Þk � B p1
n 1

B jð Þ 1� jþ tjmax
� jð Þ

� 	� �nþ1

(27)

where B ¼ kS tð Þ � Sn�1 tð Þk .

When we take the limit of both sides as n tends to infinity, we get

kDj 1ð Þ tð Þk ! 0; j 2 1; 2; 3; 4; 5; 6f g:

6 The Approximation Technique and Numerical Simulation

6.1 Approximation Technique

Consider the coronavirus model Eq. (14) along with initial conditions Eq. (15). The terms SI in this
model is nonlinear. Implementing the Laplace transform on both sides of Eq. (14), we obtain,

B jð Þ
1� j

sj L S tð Þf g � sj�1S 0ð Þ
sj þ j

1� j

¼ L h� b1SI � lS þ aQf g;

B jð Þ
1� j

sj L E tð Þf g � sj�1E 0ð Þ
sj þ j

1� j

¼ L b1SI � lþ b2 þ eð ÞEf g ;

B jð Þ
1� j

sj L I tð Þf g � sj�1I 0ð Þ
sj þ j

1� j

¼ L eE � cþ lþ dð ÞIf g;

B jð Þ
1� j

sj L Q tð Þf g � sj�1Q 0ð Þ
sj þ j

1� j

¼ L cI þ b2E � aþ lþ dþ sð ÞQf g;

B jð Þ
1� j

sj L C tð Þf g � sj�1C 0ð Þ
sj þ j

1� j

¼ L sQ� lþ dþ ’ð ÞCf g;
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B jð Þ
1� j

sj L R tð Þf g � sj�1R 0ð Þ
sj þ j

1� j

¼ L ’C � lRf g: (28)

Rearranging, we get

L S tð Þf g ¼ S 0ð Þ
s

þ sj 1� jð Þ þ j
sj B jð Þð Þ L h� b1SI � lS þ aQf g;

L E tð Þf g ¼ E 0ð Þ
s

þ sj 1� jð Þ þ j
sj B jð Þð Þ L b1SI � lþ b2 þ eð ÞEf g;

L I tð Þf g ¼ I 0ð Þ
s

þ sj 1� jð Þ þ j
sj B jð Þð Þ L eE � cþ lþ dð ÞIf g;

L Q tð Þf g ¼ Q 0ð Þ
s

þ sj 1� jð Þ þ j
sj B jð Þð Þ L cI þ b2E � aþ lþ dþ sð ÞQf g;

L C tð Þf g ¼ C 0ð Þ
s

þ sj 1� jð Þ þ j
sj B jð Þð Þ L sQ� lþ dþ ’ð ÞCf g;

L R tð Þf g ¼ R 0ð Þ
s

þ sj 1� jð Þ þ j
sj B jð Þð Þ L ’C � lRf g: (29)

Further, the inverse Laplace transform on Eq. (29), yields

S tð Þ ¼ S 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L h� b1SI � lS þ aQf g

� �
;

E tð Þ ¼ E 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L b1SI � lþ b2 þ eð ÞEf g

� �
;

I tð Þ ¼ I 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L eE � cþ lþ dð ÞIf g

� �
;

Q tð Þ ¼ Q 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L cI þ b2E � aþ lþ dþ sð ÞQf g

� �
;

C tð Þ ¼ C 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L sQ� lþ dþ ’ð ÞCf g

� �
;

R tð Þ ¼ R 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L ’C � lRf g

� �
: (30)

The series solutions achieved by the method are given by,

S ¼
X1
n¼0

Sn; E ¼
X1
n¼0

En; I ¼
X1
n¼0

In; Q ¼
X1
n¼0

Qn; C ¼
X1
n¼0

Cn; R ¼
X1
n¼0

Rn:
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The nonlinearity of SI is written as SI ¼ P1
n¼0

Gn; whereas Gn is further decomposed as follows [23]

Gn ¼
Xn
j¼0

Sj
Xn
j¼0

Ij �
Xn�1

j¼0

Sj
Xn�1

j¼0

Ij:

Using initial conditions, we get the recursive formula given by

Snþ1 tð Þ ¼ Sn 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L h� b1SnIn � lSn þ aQnf g

� �
;

Enþ1 tð Þ ¼ En 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L b1SnIn � lþ b2 þ eð ÞEnf g

� �
;

Inþ1 tð Þ ¼ In 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L eEn � cþ lþ dð ÞInf gf g

� �
;

Qnþ1 tð Þ ¼ Qn 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L cIn þ b2En � aþ lþ dþ sð ÞQnf g

� �
;

Cnþ1 tð Þ ¼ Cn 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L sQn � lþ dþ ’ð ÞCnf g

� �
;

Rnþ1 tð Þ ¼ Rn 0ð Þ þ L�1 sj 1� jð Þ þ j
sj B jð Þð Þ

� 	
L ’Cn � lRnf g

� �
: (31)

where

S0 tð Þ ¼ S 0ð Þ; E0 tð Þ ¼ E 0ð Þ; I0 tð Þ ¼ I 0ð Þ; Q0 tð Þ ¼ Q 0ð Þ; C0 tð Þ ¼ C 0ð Þ; R0 tð Þ ¼ R 0ð Þ:
The approximate solution is assumed to obtain as a limit when n tends to infinity.

S tð Þ ¼ lim
n ! 1 Sn tð Þ; E tð Þ ¼ lim

n ! 1En tð Þ; I tð Þ ¼ lim
n ! 1 In tð Þ; Q tð Þ ¼ lim

n ! 1Qn tð Þ;

C tð Þ ¼ lim
n ! 1Cn tð Þ; R tð Þ ¼ lim

n ! 1Rn tð Þ:

6.2 Numerical Simulations

In this section, we have presented data fitting, numerical simulations and graphical demonstration of the
Atangana Baleanu COVID-19 model Eq. (14) for the population of Nigeria. We consider the available
cumulative infection cases for April 1, 2020, till April 30, 2020 and parameterized the model [36]. The
parameters were estimated based on the some assumptions and facts given in Tab. 1 which plays
significant role in estimating R0 (basic reproductive number). R0 is expected number of cases directly
generated by one individual in a population. When R0 > 1 the infection will be able to start spreading in
a population, but if R0 < 1 the disease will die out.

Next, we evaluate and present the number of cumulative infectious cases in different compartments with
respect to time in days using various plots for population of Nigeria. We begin estimation of our model from
initial time (t = t0) as per data reported on April 1, 2020 [6]. Hence, the required initial values are
S(0) = 205773342; E(0) = 15,000; I(0) = 100; Q(0) = 100; C(0) =175; R(0) = 31.

By applying iterative Laplace transform using Eq. (31) successively up to four terms we get series form
approximate solution of the fractional COVID-19 model Eq. (14) as given below

CMC, 2021, vol.66, no.2 1837



SðtÞ ¼ 205773342� 0:0000382421

ð1� jþ j
Gamma½j�Þ

2 þ
0:0000764842j

ð1� jþ j
Gamma½j�Þ

2 �
0:0000382421j2

ð1� jþ j
Gamma½j�Þ

2

þ 2:6

1� jþ j
Gamma½j�

� 2:6j

1� jþ j
Gamma½j�

þ 0:000012912814395020359tj

ð1� jþ j
Gamma½j�Þ

3ð�jþ ð�1þ jÞGamma½j�Þ
þ . . .

EðtÞ ¼ 15000þ 0:000032630000000000004

ð1� jþ j
Gamma½j�Þ

2 � 0:00006526j

ð1� jþ j
Gamma½j�Þ

2 þ
0:000032630000000000004j2

ð1� jþ j
Gamma½j�Þ

2

� 0:000012912814395020362tj

ð1� jþ j
Gamma½j�Þ

3ð�jþ ð�1þ jÞGamma½j�Þ
þ 0:00003873844318506108tjj

ð1� jþ j
Gamma½j�Þ

3ð�jþ ð�1þ jÞGamma½j�Þ
�…::

IðtÞ ¼ 100þ 0:28430815806309984tj

ð1� jþ j
Gamma½j�Þ

2ð�jþ ð�1þ jÞGamma½j�Þ

� 0:5686163161261999tjj

ð1� jþ j
Gamma½j�Þ

2ð�jþ ð�1þ jÞGamma½j�Þ
þ 0:28430815806309984tjj2

ð1� jþ j
Gamma½j�Þ

2ð�jþ ð�1þ jÞGamma½j�Þ

� 39:573442828747645tj

ð1� jþ j
Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

þ…:

Table 1: Details Defination of Variables and Parameters

Parameter Description Value Source

h recruitment rate into susceptible class 1.3 [37]

l natural death rate 4.317 × 10−5 [15]

d covid-19 infection death rate 0:00618 Fitted

b1 force of infection 2:51� 10�7 Fitted

b2 proportion of people identified as suspected cases 0.04 Fitted

E progression rate from exposed class to highly infected class 0.00916 Fitted

a Rate of returning to susceptible class after diagnosis 0.068 [38]

c Progression rate from highly infectious class to quarantine class 0.001 Fitted

s progression rate from quarantine to confirm case after diagnosis 0.002 [38]

’ rate of recovery from infection 0.0714 Fitted
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QðtÞ ¼ 100þ 10:024125186027561tj

ð1� jþ j
Gamma½j�Þ

2ð�jþ ð�1þ jÞGamma½j�Þ

� 20:04825037205514tjj

ð1� jþ j
Gamma½j�Þ

2ð�jþ ð�1þ jÞGamma½j�Þ
þ 10:024125186027561tjj2

ð1� jþ j
Gamma½j�Þ

2ð�jþ ð�1þ jÞGamma½j�Þ

� 132:0967231202757tj

ð1� jþ j
Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

þ . . .

CðtÞ ¼ 175� 2:222828365962386tj

ð1� jþ j
Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

þ 2:2228283659623855tjj

ð1� jþ j
Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

� 2:222828365962386Gamma½j�
ð1� jþ j

Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

þ 4:445656731924771jGamma½j�
ð1� jþ j

Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ
�…:

RðtÞ ¼ 31þ 0:9551899812522688tj

ð1� jþ j
Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

� 0:9551899812522688tjj

ð1� jþ j
Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

þ 0:9551899812522688Gamma½j�
ð1� jþ j

Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ

� 1:9103799625045377jGamma½j�
ð1� jþ j

Gamma½j�Þð�jþ ð�1þ jÞGamma½j�Þ
þ…:

In Tab. 1, we have estimated some needed biological parameter values related with basic reproduction
number R0 corresponds to model (1) like, covid-19 infection death rate (d), force of infection (b1), proportion
of people identified as suspected cases (b2), progression rate from exposed class to highly infected class (e)
and other parameters are fitted from previous literature. Estimating these parameters to suitable values
decreases rate of infection meaningfully. It is examined and noted that if R0 is near to 2 the number of
cumulative infected population rises very quickly. Also reducing the value of R0 near to one lowers the
number of infected cases rapidly.

Figs. 2a–7b shows the dynamical behaviour of various classes of mathematical model like susceptible
population S(t), symptomatic and undetected population E(t), highly infectious but not yet quarantined or
isolated I(t), individuals who are infected or suspected and quarantined Q(t), confirmed and quarantine
population C(t), recovered population R(t) with R0 = 1.96 and R0 = 1.16 respectively for various values
of k = 1, 0.9, 0.8, 0.7 verses time in days. It is observed that as the value of k decreases from 1 the effect
of the fractional derivative order becomes prominent. We clearly observe the significant variance in both
type of plots (a) and (b) in each figure when value of fractional parameter k changes. From Figs. 3a and
3b, it is noticed that as the time increase with respect to time the symptomatic and undetected population
E(t) also increases due to spread of infection in the population and their interaction with infected people.
It is clear that reducing the value of fractional parameter k significantly affect COVID-19 dynamics and
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greatly decrease the fraction of asymptomatic carriers with level of infection in the population. Hence, the
number of cumulative cases of infections in every class is continuously depends upon the values of
fractional order.

Also, Fig. 8a shows the comparison between estimated and actual number of cumulative cases of
confirmed and quarantine population C(t) for data of available infection cases from April 1, 2020, till
April 30, 2020 of Nigeria. This clearly shows that estimated and actual cases of infections are very near
to each other. Fig. 8b shows the plots of total infected population in various compartments of model Eq.
(1) versus time (days).

Figure 2: Plots of susceptible population for various values of j with respect to time t in days and different
R0 [Fig. 2(a): R0 = 1.96, Fig. 2(b): R0 = 1.16]
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Figure 3: Plots of asymptotic and undected population for various values of j with respect to time t in days
and different R0 [Fig. 3(a): R0 = 1.96, Fig. 3(b): R0 = 1.16]
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Figure 4: Plots of highly infectitious population for various values of j with respect to time t in days and
different R0 [Fig. 4(a): R0 = 1.96, Fig. 4(b): R0 = 1.16]
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Figure 5: Plots of symptomatics population for various values of j with respect to time t in days and
different R0 [Fig. 5(a): R0 = 1.96, Fig. 5(b): R0 = 1.16]
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Figure 6: Plots of confirmed infected population for various values of j with respect to time t in days and
different R0 [Fig. 6(a): R0 = 1.96, Fig. 6(b): R0 = 1.16]
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Figure 7: Plots of recovered population for various values of jwith respect to time t in days and different R0

[Fig. 7(a): R0 = 1.96, Fig. 7(b): R0 = 1.16]
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7 Conclusions

In this manuscript, we have analysed and examined transmission dynamics of COVID-19 infection
formulated in terms of mathematical model based on fractional differential system. We have used
Atangana–Baleanu fractional derivative operator to obtain existence criteria of solution of mathematical
model for the operator. The numerical simulations are carried out using iterative Laplace transform
method. The essential axioms of the proposed model have been studied to observe the biological and
mathematical feasibility. Further, we have examined the sensitivity analysis by finding the basic
reproductive number R0 which explains the significant of every biological parameter involved in the

Figure 8: (a) Cumulative number of cases of infected population C(t) with respect to time(days) (b) Plot of
total population in various classes of model versus time (days)
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proposed model. Moreover, the local and global asymptotic stability conditions for the disease-free and
endemic equilibrium are obtained which determines the conditions to stabilize the exponential spread of
the disease. It is noted from this analysis, that parameters b1 and e strengthen the outbreak of the
infection at large extent and needs notable consideration to implement some control strategies to keep this
under control. Towards the end all the hypothetical results are supported with the assistance of graphical
portrayal by numerical investigation which would be beneficial for researchers to contemplate the
dynamics of the COVID-19.
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