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Abstract: Low back pain (LBP) is a morbid condition that has afflicted several
citizens in Europe. It has negatively impacted the European economy due to sev-
eral man-days lost, with bed rest and forced inactivity being the usual LBP care
and management steps. Direct models, which incorporate various regression ana-
lyses, have been executed for the investigation of this premise due to the simpli-
city of translation. However, such straight models fail to completely consider the
impact of association brought about by a mix of nonlinear connections and auton-
omous factors.In this paper, we discuss a system that aids decision-making
regarding the best-suited support system for LBP, allowing the individual to avail
of reinforcement and improvement in its self-management. These activities are
monitored with the help of a wearable sensor that helps in their detection and their
classification as those that soothe or aggravate LBP and hence, should or should
not be performed. This system helps the patients set their own boundaries and
milestones with respect to suitable activities. This system also does windowing
and feature extraction. The present study is an empirical and comparative analysis
of the most suitable activities that patients suffering from low back pain can
select. The evaluation shows that the system can distinguish between nine com-
mon daily activities effectively and helps self-monitor these activities for the effi-
cient management of LBP.
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1 Introduction

Low back pain [LBP] [1] is the most common health problem in all age groups. At one point or the other,
as many as 90% people have suffered from this disorder. LBP is more pervasive in European nations as
compared to other countries. The foremost condition in nonspecific LBP is seen in primary care. Mostly,
general practitioners observe the muscular-skeletal situation and advise bed rest, resulting in man-days
lost and loss to the economy. The cost to economies due to low back pain has been estimated in different
studies. As per one study, the cost is around 1.65–3.22% of all health expenditures [2], and as per
another, it is 0.4–1.2% of GDP in the European Union [3]. The cost, which is indirect due to substantial
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absence from work, has been approximately $50 billion in the USA and around $11 billion in the U.K. With
bed rest and forced inactivity observed at the individual level, LBP is largely managed within the comforts of
one’s home. A carefully selected list of dos and don’ts, including stretching exercises for strengthening, are
recommended to avoid long time inactivity.

This model allows users to be aware of their activities [4], and helps manage them [5] by consulting with
a specialist doctor so that proper action can be taken once the analysis is done. The data is recorded with a
wearable sensor, which helps in the detection of the actions performed by the individual. The activities are
recognized in real-time and the model shows how the system records information about the events. The
patients are also advised not to be sedentary for an extended period. The notification regarding the
activities is sent to alert the user.

The routine activities are recorded and summarized at the end of the day. In these records, the duration of
operations and the counts of steps are included. Then these recorded activities are compared to the
recommended exercises. Finally, feedback is generated to inform the user about his activities.

2 Activity Recognition Exploration

Recognition of sensor-based activities is gaining heightened interest in the area of fitness. Sensor data
can help in computing various physical activities [6–9] of an individual. A sensor is worn around a person’s
wrist, and the input is received from the tri-axial accelerometer. These technologies are designed to motivate
people about physical health. It can be a creative way to encourage physical activities [10] and make
individuals more aware of their everyday physical actions, with the aim of health improvement. The
system provides guidelines based on the analysis of a person’s daily activities according to his back pain
situation. It helps by alerting the individuals with respect to activities that should or should not be
performed. Tri-axial features of the accelerometer sensor measure the changes in acceleration in 3D space.

For accurate activity recognition, some of the sensors include accelerometers, magnetometers, and
gyroscopes. While the gyroscope and accelerometer are quite efficacious for the recognition of activities
when used individually, the magnetometer is not quite. Other sensors are used to measure heart rate, light
and temperature. Hence, all these are used in conjugation with the accelerometer rather than independently.

The combination of accelerometer and sensor types is placed at different points. Some of the studies
have also proposed the use of accelerometer multiplicity. Outside the laboratory, settings have a minimal
practical use. Some improvements have been reported by the use of multiple sensors for activity
recognition [11], which have not justified the inconvenience yet. The use of an accelerometer is
explicable because of the point where it is placed [12]. Thigh, hip, back, wrist, and ankle are examples of
these body points. The wrist is considered to be the position where the highest accuracy has been
reported for ambulation and upper body activities. Hence, this location was chosen for our system. There
are several approaches for extracting data, including extraction statistics like mean, standard deviation,
and percentiles. The frequency feature, which is derived by applying the fast fourier transforms (FFT) to
the raw data, is transformed into information.

Further steps are required after the results of FFT coefficients to ensure reliable results. Application of
discrete cosine transform (DCT) to the raw accelerometer data as a feature has been reported.

3 Data Collection

The Selfback [13] dataset is an activity recognition [14,15] system that allows 9 activity sets, which have
been recorded by the accelerometer, including 6 ambulatory and 3 sedentary activities. These were performed
by 33 participants who volunteered from Sadiq Sani, Nirmalie Wiratunga, Kay Cooper Robert Gordon
University, Aberdeen, U.K., the data donated on 2020-06-15.
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Data were recorded with two tri-axial accelerometers sampling at 100 Hz, mounted on the dominant side
wrist, and the thigh of the participants. Activity AX3 3-Axis Logging Accelerometer Sensors were used with
a sampling frequency of 100 Hz range. Each participant performed an activity for approximately 3 min. The
dataset had a sensor modality named “w” for wrist and “t” for thigh, with an additional one where two sensor
modalities were merged using timestamp named “wt” for wrist and thigh. Data collection concentrated on the
activities provided in Tab. 1.

It is represented as the range of healthy activities performed by most people. The measurements of
strolling, normal or fast, were recorded for the accurate estimation of the intensity of the activities
performed by the user. The intensity of the activities was essential to measure because it helps to provide
the necessary guidelines. The participant was guided for activities like sitting and lying. The study
suggested the duration of each activity for the individual. It also detailed the position of hands, either on
the desk or not.

4 Activity Monitoring Using Feedforward Artificial Neural Network

The model of the artificial neuron was proposed by McCulloch and Pitts, generalized later in
several ways [16]. The most popular approach is: the neuron computes the weighted sum of n inputs,
adds a threshold value, and then applies an activation function to the result to compute the output, as
shown in Fig. 1.

Table 1: Details of activities used in the data collection script

Description Activity name

Downstairs walking down 4–6 feet of stairs Downstairs

Treadmill for jogging (self-selected pace) Jogging

Lying down, with hands-on desk Lying

Sitting still with the specific position of their hands Sitting

Standing relatively still Standing

Upstairs walking up 4–6 flights of stairs Upstairs

Fast walk (self-selected pace) Walk_Fast

Normal walk (self-selected pace) Walk_Mod

Walk with the pace (self-selected pace) Walk_Slow

Figure 1: Artificial neuron
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The neuron computes the weighted sum of n inputs, adds a threshold value, and then applies an
activation function to the result to compute the output as per Eq. (1).

S ¼
Xn

i¼1

xiwi þ wo; y ¼ f sð Þ (1)

The most commonly used activation function is the sigmoid function, defined as Eq. (2).

Sigmoid xð Þ ¼ 1

1þ e�x
(2)

The nonlinearity of this function is essential for the robustness of the neural networks model. Also, the
function scales the output within the 0–1 range.

The previously described perceptron can classify only linear separable input vectors (XOR being the
classic counterexample). It has been proven since 1969 by Minsky and Papert, with declining research
interest in the field of neural networks. In order to solve the problem, a multilayer perceptron was used,
but it was not known how to update the weights of hidden (intermediate) layers. The updating rule for
the weights (briefly described below) was discovered in the late 80s, forming the basis of the boom in the
field of neural networks.

The majorly used architecture for neural networks is the multilayer perceptron, where each neuron is
connected to all the neurons from the previous layer. The only exception is the first layer, whose units
only repeat their inputs. In Fig. 2, we exemplify the most common approach, with one single hidden
layer (proven theoretically to be enough).

In the forward step, Eq. (1) is applied for each neuron, first for the hidden layer [17] and then for the
output layer (therefore, the name “feedforward”) to obtain the output value. In the case of supervised
learning, we also have the desired output for each input vector. Therefore, the representation error E that
appears can also be computed (defined as standard Euclidian distance between obtained output and
desired output vectors). The learning rule falls in the category of “error-correction rules”. The most
general rule to update a weight w (from any layer) is given in Eq. (3).

Dw ¼ �g
@E

@w
(3)

where E is the error (as a function of w), and η is the learning rate. The evolution is opposite to the gradient of
the error, thereby decreasing the error. Even if not plausible from the biological point of view, it looks like the
error propagates back through the network (in the backward step) and updates the weights, hence the name

Figure 2: Architecture for neural networks is the multilayer perceptron
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“backpropagation” for the learning algorithm. The forward and backward steps are repeated until the error is
reduced sufficiently. Sometimes, to increase the chance of finding the global minima, a (selectable) fraction
of Δw from the previous step of the learning is added to the Δw for the current step (the added part known as
the momentum term) [18].

Results achieved through the multilayer perceptron are given in this section. The weights and the
threshold values for different sigmoid nodes are also given in Tabs. 2 and 3.

Table 2: Generated sigmoid node and threshold values

Sigmoid node (S-N) sequence and threshold
(T-Val)

Sigmoid node (S-N) sequence and threshold
(T-Val)

S-N 0
Inputs (I/P) Weights (wts)
Threshold (T-Val) −1.2366287474809585
N 9 3.234793146753946
N 10 −4.11583703851072
N 11 −3.115420425213125
N 12 −3.961676335233036
N 13 5.8285162153903665
N 14 2.8841629184308073
N 15 3.6154381392752137

S-N 1
I/P Wts
T-Val −19.145963492574886
N 9 −0.214590331191216
N 10 −28.02098053328689
N 11 14.96669119678795
N 12 16.29140001021708
N 13 −7.987828537863376
N 14 3.585591584995351
N 15 −9.908965718290062

S-N 2
I/P Wts
T-Val −8.981734269337569
N 9 −3.282867019660504
N 10 −3.609340464540511
N 11 −31.47301455650287
N 12 13.461597507228284
N 13 −16.386785801153845
N 14 −14.182815667101789
N 15 −0.19801210387136214

S-N 3
I/P Wts
T-Val −15.461470376095885
N 9 −6.26578476106072
N 10 −7.625207363756747
N 11 −11.975402687366646
N 12 5.392833442361768
N 13 −10.435828374713164
N 14 −5.9772979345115145
N 15 21.68448112935728

S-N 4
I/P Wts
T-Val −27.99318421527752
N 9 −31.34690693706472
N 10 13.11076871364566
N 11 23.967504232980456
N 12 −6.830281807033023
N 13 −21.799674812827277
N 14 −31.177764326098448
N 15 −36.35888631160318

S-N 5
I/P Wts
T-Val 0.15339648679564177
N 9 −3.1790909979369224
N 10 0.7104984047139186
N 11 −2.9000107944360507
N 12 −5.425072108412679
N 13 −1.0857424023485718
N 14 −2.2958171863395784
N 15 3.499702864226816

S-N 6
I/P Wts
T-Val −0.2694877495541809
N 9 2.1886563547173767
N 10 −0.7074895897119738

S-N 7
I/P Wts
T-Val −1.2155290890047712
N 9 0.4670956697993464
N 10 1.0559358682198767

(Continued)
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Table 2 (continued).

Sigmoid node (S-N) sequence and threshold
(T-Val)

Sigmoid node (S-N) sequence and threshold
(T-Val)

N 11 −1.4561922110146552
N 12 −18.78096489950652
N 13 −2.9191588951090046
N 14 1.78184151885978
N 15 −0.08521766723856897

N 11 −1.3436739564800178
N 12 −6.493538361124438
N 13 −2.9401355125416946
N 14 1.2708817589176264
N 15 −0.008487523838406794

S-N 8
I/P Wts
T-Val −2.280067316403469
N 9 −3.00694430443101
N 10 −5.630524700566642
N 11 6.120545311246614
N 12 −21.77102674682948
N 13 5.376857689397377
N 14 −5.4504376117556
N 15 −5.992858032642883

S-N 9
I/P Wts
T-Val −27.50949584354017
Attrib wx 27.824156487013685
Attrib wy −16.74963345106254
Attrib wz −9.625501893706762
Attrib tx 27.593407326118513
Attrib ty −1.8724429134899527
Attrib tz 4.9366154643637135

S-N 10
I/P Wts
T-Val 27.87864439848664
Attrib wx −25.857197174213802
Attrib wy −24.768250120960065
Attrib wz −37.00897772120666
Attrib tx −9.713736604963287
Attrib ty 7.5389281669280495
Attrib tz 3.354351987092661

S-N 11
I/P Wts
T-Val 10.879232571083461
Attrib wx −15.796837792855493
Attrib wy −10.130153972943651
Attrib wz 11.45771252876167
Attrib tx −0.34741485418887375
Attrib ty 4.799025768096919
Attrib tz 2.536084639149846

S-N 12
I/P Wts
T-Val −17.586427062920226
Attrib wx 5.236026830914749
Attrib wy 19.5929319547359
Attrib wz 13.012599400423708
Attrib tx 4.700606965848229
Attrib ty 2.1231907088192217
Attrib tz −0.748942302544866

S-N 13
I/P Wts
T-Val 6.854179912026374
Attrib wx −14.674138680184198
Attrib wy 3.2816039534582555
Attrib wz −16.157352183942315
Attrib tx −3.8835280205637757
Attrib ty 2.3696756210131125
Attrib tz −1.6135802856667423

S-N 14
I/P Wts
T-Val 18.50521733494853
Attrib wx −13.272652491852877
Attrib wy −1.6669852816897677
Attrib wz 12.20246514966949
Attrib tx −28.571971576327414
Attrib ty −7.798505842578719
Attrib tz 3.96607061473986

S-N 15
I/P Wts
T-Val −9.301346344012737
Attrib wx −10.611612051247352
Attrib wy −6.041422454318928
Attrib wz 2.821496492368933
Attrib tx 15.292478795727945
Attrib ty 15.746323743844673
Attrib tz −12.918838986016103
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@attribute wx real [−1.203125, 0.109375]

@attribute wy real [−1.84375, −0.140625]

@attribute wz real [−0.0625, 1.03125]

@attribute tx real [−3.1875, −0.109375]

@attribute ty real [−1.828125, 0.796875]

@attribute tz real [−1.46875, 0.96875]

@attribute Class

The critical thought is to assemble a partial decision tree rather than an entirely investigated one [19,20].
An incomplete choice tree is a standard choice tree that contains branches to indistinct sub-trees. In order to
create such a tree, the development and pruning activities are coordinated to locate a “steady” sub-tree that
can be rearranged no further [21]. Once the sub-tree is discovered, tree-building stops and a solitary standard
is perused off.

Some partial rules [15,16] generated by the model with respect to different classes are listed below:

wy > −0.203125 AND wy > −0.078125: sitting (1002.0)

wx > 0.03125: lying (1001.0)

wz > 0.53125 AND wy > −0.734375 AND wx > −0.90625 AND wy > −0.65625: jogging (894.0)

tz > 0.21875 AND tx <= −0.9375 AND tx > −1 AND ty > −0.140625 AND ty <= 0 AND wy <=
−0.765625 AND wx > −0.59375 AND wz > 0.234375 AND wy <= −0.796875: standing (938.0/1.0)

wy > −0.609375 AND wz <= 0.3125 AND tx > −0.9375 AND wx > −0.359375 AND wy > −0.546875:
downstairs (37.0)

wy > −0.609375 ANDwz <= 0.3125 AND tx > −0.953125 ANDwx > −0.359375 AND tz > −0.203125:
downstairs (10.0/1.0)

wy > −0.609375 AND wz <= 0.3125 AND tx > −0.9375 AND ty <= −0.28125 AND wx <= −0.375:
downstairs (33.0/1.0)

wy > −0.609375 AND wz <= 0.3125 AND tx > −0.953125 AND wz <= −0.078125 AND tz <=
0.203125: downstairs (19.0)

wy > −0.609375 AND wz <= 0.3125 AND tx > −0.953125 AND tx <= −0.65625 AND wx <=
−0.34375 AND ty <= 0.375 AND ï»¿wx > −0.8125 AND tz > −0.25 AND wy <= −0.53125: upstairs (35.0)

Table 3: Class input node details

Class downstairs
input
N 0

Class jogging
input
N 1

Class lying
input
N 2

Class sitting
input
N 3

Class standing
Input
N 4

Class upstairs
Input
N 5

Class walk_fast
input
N 6

Class walk_mod
input
N 7

Class walk_slow
Input
N 8
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wy > −0.625 AND wz <= 0.296875 AND tx > −0.953125 AND wx > −0.359375 AND tx <= −0.5625:
walk_fast (3.0)

5 Monitoring Evaluation

To evaluate the performance of the model, self-back dataset utilized the data of 33 participants and when
we combined the wrist and thigh modalities together, every object was found to contain approximately
7000 transactions. Thus, total transactions were 33 * 7000 = 231000 per activity, with total 9 activities
available. Therefore, the total transactions came out to be 231000 * 9 = 2079000. A sample of this
dataset was used to evaluate the performance.

The monitoring model evaluated on different types of parameters and the measurement [22] are
as follows

5.1 Monitoring Accuracy by Class

Kappa statistic 0.802

Mean absolute error 0.0427

Root mean squared error 0.1864

Relative absolute error 21.6042%

Root relative squared error 59.3007%

Coverage of cases (0.95 level) 87.9982%

Mean rel. region size (0.95 level) 14.2531%

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.745 0.026 0.783 0.745 0.763 0.894 downstairs

0.976 0.002 0.981 0.976 0.978 0.989 jogging

1 0 0.999 1 1 1 lying

1 0 0.999 1 1 1 sitting

0.987 0.003 0.976 0.987 0.982 0.995 standing

0.732 0.035 0.722 0.732 0.727 0.882 upstairs

0.608 0.049 0.607 0.608 0.608 0.841 walk_fast

0.605 0.049 0.607 0.605 0.606 0.842 walk_mod

0.762 0.033 0.742 0.762 0.752 0.886 walk_slow

Weighted Avg. 0.824 0.022 0.824 0.824 0.824 0.925
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5.2 Confusion Matrix

a b c d e f G h i <– classified as

744 13 0 1 0 111 61 39 30 | a = downstairs

9 976 1 0 0 4 3 1 6 | b = jogging

0 0 1001 0 0 0 0 0 0 | c = lying

0 0 0 1002 0 0 0 0 0 | d = sitting

0 0 0 0 988 0 2 1 10 | e = standing

100 2 0 0 1 733 55 63 47 | f = upstairs

46 1 0 0 4 63 609 202 76 | g = walk_fast

23 1 0 0 8 56 211 606 96 | h = walk_mod

28 2 0 0 11 48 62 87 763 | i = walk_slow

Figure 3: Class distribution in 3-axis accelerometer logging wrist x value
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Figure 4: Class distribution in 3-axis accelerometer logging wrist y value

Figure 5: Class distribution in 3-axis accelerometer logging wrist z value
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Figure 6: Class distribution in 3-axis accelerometer logging thigh x value

Figure 7: Class distribution in 3-axis accelerometer logging thigh y value
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Figure 8: Class distribution in 3-axis accelerometer logging thigh z value

Figure 9: Class distribution in a dataset of a participant
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Figure 10: Class distribution with respect to 3-axis accelerometer logging wrist x value

Figure 11: Class distribution concerning 3-axis accelerometer logging wrist y value
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Figure 12: Class distribution concerning 3-axis accelerometer logging wrist z value

Figure 13: Class distribution concerning 3-axis accelerometer logging thigh x value
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Figure 14: Class distribution concerning 3-axis accelerometer logging thigh y value

Figure 15: Class distribution concerning 3-Axis Accelerometer Logging thigh z value
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6 Conclusion

This paper focuses on activity monitoring and recognition in the self-management of low back pain
using artificial neural networks. This system helps in providing guidelines about the activities to be
performed. It also helps to monitor these activities. The input is sent to the model through the wrist and
thigh sensors. Activity is monitored from the parameter values achieved using a feedforward Artificial
Neural Network. Different sigmoid nodes have been generated for accurately classifying the activity
modalities. Partial classification rules have also been generated for productive activity classification. More
than 250 rules have been generated, few of which have been included in this paper. Monitoring
evaluation shows different evaluation parameters and the system performance, including Kappa statistic,
mean absolute error, and root mean squared error. Class-wise accuracy is also monitored, and results
show improved efficiency of the system.

7 Future Work

Future research needs to investigate procedures for perceiving a more significant arrangement of
dynamic exercises utilizing continuous learning and semi-managed approaches. More number of sensors
need to be used to measure movement activities accurately. A fine balance needs to be struck between the
quantity and quality of sensors, and their impacts on the human body in detail, given the sensitivity of
employing human subjects directly in such examinations.

8 Class Distribution and Analysis of 3-Axis Accelerometer Logging

The analysis of the dataset has been represented in this section through Figs. 3–15 to get efficient results
and class distribution in the wrist and thigh accelerometer sensors.
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