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Abstract: The narrowing deformation of reservoir valley during the initial opera-
tion period threatens the long-term safety of the dam, and an accurate prediction
of valley deformation (VD) remains a challenging part of risk mitigation. In order
to enhance the accuracy of VD prediction, a novel hybrid model combining
Ensemble empirical mode decomposition based interval threshold denoising
(EEMD-ITD), Differential evolutions—Shuffled frog leaping algorithm
(DE-SFLA) and Least squares support vector machine (LSSVM) is proposed.
The non-stationary VD series is firstly decomposed into several stationary sub-
series by EEMD; then, ITD is applied for redundant information denoising on
special sub-series, and the denoised deformation is divided into the trend and per-
iodic deformation components. Meanwhile, several relevant triggering factors
affecting the VD are considered, from which the input features are extracted by
Grey relational analysis (GRA). After that, DE-SFLA-LSSVM is separately per-
formed to predict the trend and periodic deformation with the optimal inputs. Ulti-
mately, the two individual forecast components are reconstructed to obtain the final
predicted values. Two VD series monitored in Xiluodu reservoir region are utilized
to verify the proposed model. The results demonstrate that: (1) Compared with Dis-
crete wavelet transform (DWT), better denoising performance can be achieved by
EEMD-ITD; (2) Using GRA to screen the optimal input features can effectively
quantify the deformation response relationship to the triggering factors, and reduce
the model complexity; (3) The proposed hybrid model in this study displays super-
ior performance on some compared models (e.g., LSSVM, Backward Propagation
neural network (BPNN), and DE-SFLA-BPNN) in terms of forecast accuracy.
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1 Introduction

With a number of high arch dams that have been constructed for the development of hydropower
resources in Southwest China [1], the reservoir slope failure and dam safety issues related to massive
casualties and property have received extensive attention [2]. Valley narrowing deformation, which
represents the reduction of reservoir valley width, has been observed in several arch dam projects during
the operation period. Such as the Zeuzier arch dam in Switzerland [3], Jinping I arch dam, Lijiaxia arch
dam, Xiaowan arch dam, and Xiluodu arch dam in China [4–7]. Moreover, a drastic valley narrowing
deformation of 89.54 mm was recorded at the Xiluodu project by October 2018 and does not yet
converge. The reservoir slope stability and long-term safety of a dam are seriously threatened by the
continued VD [8]. Therefore, a reliable and accurate prediction model for VD is vital for hazard management.

The evolution of slope deformation is a nonlinear dynamic process triggered by various factors (e.g.,
geological conditions, external hydraulic environment, and earthquakes) [9–11]. In recent years,
numerous studies have been carried out on the deformation mechanism and indicated the creep behavior,
precipitation, reservoir level fluctuation, and temperature are the main factors using physically-based
methods [12–14] and statistical models [15,16]. However, these models cannot always adequately handle
highly nonlinear evolution with the coupling effect of factors. Recently, a variety of machine learning
(ML) models, such as Artificial neural network (ANN) [17,18], Support vector machine (SVM) [19,20]
and Extreme learning machine (ELM) [21,22], have been successfully utilized for slope deformation
prediction due to their simplicity and low information requirements. The least-square SVM (LSSVM)
[23], which is characterized by high generalization ability, has been extensively developed for
deformation prediction [24,25]. Generally, the forecasting effectiveness of LSSVM is significantly
affected by the internal parameters. Therefore, various evolutionary algorithms, e.g., Genetic algorithm
(GA), Particle swarm optimization (PSO), and Artificial bee colony (ABC) algorithm [26–28], have been
developed for parameter optimization. In comparison with these optimizers, the Shuffled frog leaping
algorithm (SFLA) [29] presents an excellent performance in complex optimization [30]. Furthermore, to
overcome the slow convergence restriction of SFLA, the Differential evolutions (DE) algorithm is utilized
to improve SFLA, which has been verified as a global optimization technique [31]. Consequently, SFLA
coupled with DE (DE-SFLA) is applied to optimize the hyper-parameters of LSSVM.

Besides the model parameters optimization, suitable preprocessing of the non-stationary time series with
many noises is the other main foci. The commonly used Wavelet transform (WT) and Empirical mode
decomposition (EMD) methods have achieved good prediction performance in many research cases
combined with ML [32,33]. However, the decomposition performance of WT is highly dependent on the
wavelet basis selection, and the mode mixing and end effect deficiencies of EMD will lead to a signal
distortion [34]. Wu and Huang [35] proposed the Ensemble empirical mode decomposition (EEMD)
method, which inherits the advantages of EMD and white noise, to relieve the mode mixing
phenomenon. At present, the decomposition-based signal denoising method has not been sufficiently
studied in the slope deformation forecasting research area. Thus, an Interval threshold denoising (ITD)
[36] based on EEMD is applied to handle the non-stationary characteristics and filter the redundant signal
for prediction purposes.

In this study, we proposed a novel hybrid model that combines EEMD-ITD, Grey relational analysis
(GRA), and DE-SFLA-LSSVM for VD forecasting by considering triggering factors, including reservoir
level fluctuation, precipitation and temperature. EEMD is firstly exploited to decompose the raw sequence
into multiple Intrinsic mode functions (IMFs) and a residue. The special IMFs are denoised by ITD, and
the denoised series is divided into the trend and periodic components, which makes the periodic
characteristics distinct. Then, GRA is employed to extract the optimal features from potential triggering
factors, which can reduce the dimension of the inputs and accelerate the training rate. Finally, DE-SFLA-
LSSVM is applied to predict the trend and periodic deformation with optimal inputs separately, and the
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individual forecast results are reconstructed to obtain the final deformation prediction. Two VD series
monitored in Xiluodu reservoir region are utilized to take experiments. Furthermore, the forecasting
performance of the proposed approach is verified and evaluated by comparing with conventional
methods, including LSSVM, ABC-LSSVM, Backward propagation neural network (BPNN), and
DE-SFLA-BPNN.

2 Methodology

2.1 Ensemble Empirical Mode Decomposition Based Denoising

2.1.1 Basic Theories of EEMD
EEMD is a noise-assisted enhancement of EMD [35]. The core of EMD is to decompose the original

time series y tð Þ into a set of oscillatory components referred to as IMFs dk tð Þ and a monotonic residue
r tð Þ through a continuously shifting process. However, the mode-mixing phenomenon is the most
significant drawback of EMD, which means a single IMF that may consist of several signals with widely
varying scales or a specific scale that may occur in different IMFs. To overcome the drawback, EEMD
successfully solves the modal-aliasing problem by adding a certain proportion of white noise to the raw
series before decomposition. The shifting steps of EEMD are described as follows:

1. Given the amplitude of added white noise and the ensemble number of trials, add a group of white
noise series wi tð Þ to the raw time series y tð Þ:
yi tð Þ ¼ y tð Þ þ wi tð Þ (1)

where yi tð Þ is a new composite signal added i th white noise, wi tð Þ is the i th white noise sequence.

2. Decompose the series yi tð Þ into corresponding IMFs and residue ri tð Þ using EMD sifting procedure.

3. Repeat steps 1–2 with the different scales of white noise, and the root mean square of white noise in
each trial is equal.

Finally, ensemble means of the corresponding IMFs gives the decomposing result, the original time
series y tð Þ can be expressed as follows:

y tð Þ ¼
Xc

k¼1

dk tð Þ þ r tð Þ (2)

where dk tð Þ is the kth IMF, r tð Þ is the monotonic residue.

2.1.2 Interval Threshold Denoising Based on EEMD (EEMD-ITD)
Inspired by the wavelet threshold denoising principle, an alternative thresholding denoising procedure
termed EMD direct thresholding (EMD-DT) was applied to the decomposed IMFs to enhance the
denoising performance. However, EMD-DT can result in discontinuity consequence of the denoised
signal [37]. When the signal between the two adjacent zero-crossings within IMFs is defined as a
processing element, a novel IMF based interval threshold denoising (EMD-ITD) is proposed in [36].
Considering two adjacent zero-crossings Zs;k ¼ Zs;k ;Zsþ1;k

� �
in the k th IMF, the denoising for soft

thresholding translates to

~dk Zs;k

� � ¼ sgn dk Zs;k

� �� �
dk Zs;k

� ��� ��� Tk
� �

; dk rs;k
� ��� ��.Tk

0; dk rs;k
� ��� �� � Tk

�
(3)
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where dk rs;k
� �

is the single extremum of the zero-crossing interval; ~dk Zs;k

� �
and dk Zs;k

� �
denote the original

and denoised signals from Zs;k to Zsþ1;k , respectively; Tk is the threshold of the k th IMF. In this study,
EEMD was applied to improve the denoising performance of EMD-ITD, which termed EEMD-ITD.

Followed by the above procedures, the denoised signal ~y tð Þ is reconstructed as:

~y tð Þ ¼
Xm2

k¼m1

~dk tð Þ þ
Xc

k¼m2þ1

dk tð Þ þ r tð Þ (4)

wherem1 andm2 denote the low-order and high-order of IMFs to be denoised, respectively. The Mean square
error (MSE) and Signal-to-noise ratio (SNR) are employed to evaluate the efficiency of EEMD-ITD, which
are defined as:

MSE ¼ 1

n

Xn
t¼1

~y tð Þ � y tð Þð Þ2 (5)

SNR ¼ 10� log

Pn
t¼1 ~y tð Þ2Pn

t¼1 ~y tð Þ � y tð Þð Þ2
" #

(6)

where low MSE value indicates the denoised signal ~y tð Þ is close to the original sequence y tð Þ, and high SNR
represents the more efficient of the denoising procedure.

2.2 Hybrid Intelligent Model for Valley Deformation Forecasting

2.2.1 Least Square Support Vector Machine Model (LSSVM)
LSSVM is a nonlinear regression-forecasting algorithm proposed by Suykens et al. [23]. By applying

the criterion of least squares to the loss function in SVM, the convex quadratic programming problem
used for the classical SVM is converted to a set of linear equations.

In an LSSVMmodel, considering the given training dataset of n samples xl; ylf gnl¼1, where xl 2 Rd is the
input vector, yl 2 R is the corresponding output, and d is the dimension of xl. According to the principle of
structural risk minimization, the regression can be defined as follows:

min
w;b;e

J w; eð Þ ¼ 1

2
wTwþ 1

2
c
Xn
l¼1

el
2 (7)

subjected to the equality constraints:

yl ¼ wT’ xlð Þ þ bþ el l ¼ 1; 2; . . . ; nð Þ (8)

where ’ �ð Þ is the kernel function used to map the input space to a higher dimensional space; w is the weight
vector, b is bias term, c denotes the regularization parameter, and el refers to the random error. The
optimization problem can be solved based on the Lagrange method:

L w; b; e; að Þ ¼ 1

2
wTwþ 1

2
c
Xn
l¼1

el
2 �

Xn
l¼1

al w
T’ xlð Þ þ bþ el � yl

� �
(9)

where al is the Lagrange multiplier. Therefore, the regression function of LSSVM can be established as:

ŷ ¼ f xð Þ ¼
Xn
l¼1

alK x; xlð Þ þ b (10)

where K x; xlð Þ denotes the kernel function. In this study, the commonly used radial basis kernel function
(RBF) was selected due to its superior nonlinear mapping performance. It is given by:

1060 CMC, 2021, vol.66, no.1



K x; xlð Þ ¼ exp � k x� xl k2 =2r2
� �

(11)

where r denotes the bandwidth of RBF. The regularization parameter c and kernel parameter r, which can be
tuned by minimizing the errors between the predicted and actual values.

2.2.2 Differential Evolutions—Shuffled Frog Leaping Algorithm (DE-SFLA)
SFLA is a meta-heuristic optimization algorithm with excellent global search capability, which can be

integrated with LSSVM to improve computational efficiency and accuracy. SFLA starts from a randomly
generated initial population consisting of P hypothetical frogs in a multi-dimensional search space. All
the frogs are divided into several subsets referred to as memeplexes, and each memeplex can perform a
local search. The individual frogs encompass ideas inside each memeplex that can well be affected by the
other frogs, and ideas proceed betwixt memeplexes in the shuffling process. Moreover, DE is applied
within the local search of SFLA, which performs mutation, crossover, and selection operators at each
generation to improve the convergence speed and move its population toward the global optimum [31].

2.2.3 DE-SFLA-LSSVM
In this study, DE-SFLA is used to optimize the regularization parameter c and kernel parameter r in

LSSVM. The specific optimization steps are as follows:

1. Set parameters of the DE and SFLA algorithms. Then the initial population of P frogs is randomly
generated, in which each frog represents a set of c and r2.

2. All frogs are sorted in descending order according to the fitness values calculated using LSSVM and
partitioned into mf memeplexes, each of which holds nf frogs, i.e., P ¼ mf � nf .

3. In the memetic evolution, frog with the worst fitness value in a memeplex is updated with the new
frog, which is produced by DE with mutation, crossover, and selection operators, while the optimal
global solution is updated by SFLA.

4. The local evaluation and global shuffling continue until convergence criteria are satisfied, and the
best frog in the whole population is identified as the optimal solution.

5. Export the optimal solution to the LSSVM model for deformation forecasting.

2.3 Implementation of Valley Deformation Forecasting Based on Proposed Model

To improve model performance in the VD forecasting, we proposed a novel hybrid model based on the
idea of decomposition and integration. Fig. 1 shows the flowchart of VD prediction with the proposed model.
The specific steps are as follows:

Step 1 Decomposition and denoising. The original VD series is decomposed into several stationary
IMFs and a residue by EEMD, the noise is eliminated from special IMFs. Then, the residue is considered
as the trend component, and the remaining IMFs are reconstituted as the periodic deformation.

Step 2 Determination of the input variables. For the periodic deformation, the GRA method [38] is
applied to derive the optimal inputs with the relation degree index. For the trend deformation, the
previous evolution state is used as the input features.

Step 3 Model training. The input series can be divided into a training set and a testing set. Through
learning the training set, the c and r2 in the LSSVM model are optimized with DE-SFLA for a good
regression performance. Considering the different mechanisms of the trend and period deformation,
DE-SFLA-LSSVM is separately trained for each term to capture the nonlinear patterns.
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Step 4 Prediction and ensemble. Using the trained hybrid models to predict the two components with the
input features obtained by Step 2, respectively. Then, the final prediction is subsequently obtained by
aggregating the two individual forecast results.

3 Case Study

3.1 Engineering Overview

Xiluodu hydropower station is located at the Xiluodu canyon of Jinsha river, which is between
Yongshan County of the Yunnan Province and Leibo County of the Sichuan Province. The Xiluodu dam
is a concrete double curvature arch dam with a maximum height of 285.5 m and a dam crest elevation of
610.0 m. The normal impoundment water level and dead water level of Xiluodu reservoir are 600.0 m
and 540.0 m, respectively. As presented in Fig. 2, a total of nine valley survey lines (VD01-VD09) with
the elevation between 561.0 m and 749.0 m are configured to monitor the cumulative VD using laser
ranging technology. Moreover, there is a meteorological station of Leibo County, which is approximately
7.5 km away from the dam site, recording the daily precipitation and atmospheric temperature. Based on
the monitoring system, an approximately six-year record of accumulated VD series, reservoir level, and
meteorological data are available since December 2012.

Valley deformation seies

Decomposition with 
EEMD

Residue...

DE-SFLA-LSSVM DE-SFLA-LSSVM

IMF(m2+1)IMFm2IMF1

Total
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Periodic deformation 

Model testing
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Cumulative deformation
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Aggregating

Figure 1: Flowchart of VD prediction with the proposed hybrid model
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3.2 Monitoring Data Analysis

For simplicity and better understanding, the reservoir storage depth (RSD) is defined as the elevation
difference between the reservoir level and the riverbed foundation (at an elevation of 324.50 m) to
represent the reservoir level fluctuation. According to the field monitoring, the survey line VD03 at the
upstream contracted a maximal deformation of 89.54 mm, besides the arch dam structure is particularly
sensitive to shrinkage deformation at the abutment. Moreover, the survey line VD05, which is installed
downstream and located far away from the dam, can be less affected by the hydraulic structures.
Therefore, in this study, the recorded VD time series of VD03 and VD05, RSD, precipitation, and
atmospheric temperature from December 2012 to October 2018 are selected for model training
and testing. Fig. 3 shows the correlation curves among the cumulative narrowing deformation, RSD, and
meteorological data. The climate of the research region exhibits a typical valley and alpine meteorological
characteristics with an annual average temperature of 19.7°C, and annual precipitation between 547.3 mm
and 833.0 mm. The reservoir began to impound in December 2012 and first reached the maximum

Figure 2: Layout of the survey lines in the dam area
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reservoir level in October 2014. Since then, the RSD fluctuated between 220.5 m and 275.5 m during the
operation regulation of a hydrological year (from June to May in the following year).

As shown in Fig. 3, the evolution of VD exhibits the same tendency, but at different rates. The total
deformation of VD03 and VD05 is 89.54 mm and 76.62 mm, respectively. Two distinct phases can be
identified, with the demarcation point being the 32nd month for VD03 and VD05. In the first stage (from
the 1st month to the 31st month), the valley width has persistently narrowed with an average rate of
1.53–1.94 mm/month, and the maximum rate of 11.44 mm/month. In the second stage (from the 33rd
month to the 71st month), an obvious step-like evolution occurred in the curves of cumulative
deformation with an average rate of 0.51–0.86 mm/month. Three major “jumps” are observed in
the deformation curves around the 35th, 46th, and 58th months, which is characterized by accelerated
deformation over a relatively short period followed by a low rate over a long period. Sharp increases
of deformation follow the variation of RSD, especially the reservoir impoundment, and the heavy
precipitation in the rainy season from June to September every year, which indicates that the combined
effect of the RSD fluctuation and precipitation has significant impacts on the VD characters.

4 Results and Discussion

4.1 Raw Data Series Decomposition and Denoising Using EEMD-ITD

Since a lack of measured deformation values from December 2012 to May 2013, the dataset from May
2013 to October 2018 was used in this study. EEMD was first performed in MATLAB to decompose the
original deformation series of VD03 and VD05 into several IMFs and a residue, respectively. In EEMD,
an ensemble member of 100 was used, and the added Gaussian white noise in each ensemble member
had a standard deviation of 0.2. Fig. 4 shows the decomposed components from the highest frequency to
the residue of the original series. Each VD series was decomposed into five IMFs and one residue,
respectively. It can be seen that the residue term is smooth and increases monotonously. The high-
frequency IMFs are relatively random fluctuating, while the lower-frequency IMFs are showing periodic
fluctuation character.
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According to the ITD procedure, m1 and m2 of the two series were determined as 1 and 2 according to
[39], respectively, and the thresholds were calculated. After that, the selected IMFs were handled with ITD.
The thresholds were 0.742, 0.523 for VD03, and 0.668, 0.471 for VD05, respectively. After the denoising
process, two evaluation criteria MSE and SNR are 0.486, 86.821 for VD03, and 0.320, 86.048 for VD05,
respectively. In order to evaluate the effectiveness of EEMD-ITD, Discrete wavelet transform (DWT)
with the function of Daubechies 4 and the soft threshold method were performed with the wavelet
toolbox of MATLAB. After denoised with DWT, two evaluation criteria MSE and SNR are 0.773,
83.340 for VD03, and 0.515, 82.831 for VD05, respectively. It can be qualitatively concluded that: better
denoising performance can be achieved by EEMD-ITD compared with DWT, where the MSE is
decreased by 37.13% for VD03 and 37.86% for VD05, respectively, and the SNR are increased by 4.01%
for VD03 and 3.74% for VD05, respectively.

4.2 Forecast Results of Trend Deformation and Periodic Deformation

The denoised deformation series and the recorded external triggering factors datasets (precipitation,
temperature, and RSD) of 65-month were used for the prediction model establishing and validating. The
first 55-month dataset was adopted for model training, while the remaining 10-month dataset was
employed for model validation. The two denoised IMFs and the remaining three IMFs were reconstituted
as the periodic deformation component, and the residue is considered as the trend deformation. Therefore,
DE-SFLA-LSSVM models are separately applied to predict the two components with different optimal
inputs. It is noted that the validation data is not considered in establishing the forecasting model, and thus
the performance of the validation period can represent the real application effect. Therefore, we pay more

Figure 4: The decomposed IMFs and one residue for two raw time series (a) VD03. (b) VD05

CMC, 2021, vol.66, no.1 1065



attention to the forecast performance of the validation period, and just the forecast results of the validation
period are shown in the following sections.

4.2.1 Forecast Results of Trend Deformation Component
As shown in Fig. 4, the residue component, which represents the VD evolutionary trend, is a smooth

curve with large-scale fluctuations. Since the mechanism of long-term deformation is characterized by the
creep behavior of rock masses, which is affected by the internal geological conditions [40]. The DE-
SFLA-LSSVM model is applied to predict the trend component. The trend deformation over the past
30 days, 60 days, and 90 days were considered as the input features, while current trend deformation was
used as the output. Figs. 5a,5b presents the prediction result of VD03 and VD05 in the validation period,
respectively. According to Fig. 5, the DE-SFLA-LSSVM model can well predict the trend component
with high forecasting accuracy.

Three indicators to evaluate model accuracy and prediction ability in this study consist of the root mean
square error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (R). These
indicators are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
l¼1

ŷl � ylð Þ2
s

(12)

MAPE ¼ 1

n

Xn
l¼1

ŷl � yl
yl

����
���� (13)

R ¼
Pn

l¼1 yl � �yð Þ ŷl � ŷ
0
l

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

l¼1 yl � �yð Þ2Pn
l¼1 ŷl � ŷ

0
l

� �2q (14)

For VD03, the value of RMSE, MAPE and R is 0.104, 0.106, and 0.999, respectively. The optimal
parameters γ and σ2 in LSSVM are 993.493 and 21.508, respectively. For VD05, the value of RMSE,
MAPE and R in the validation period is 0.065, 0.076 and 0.999, respectively. The optimal parameters γ
and σ2 searched by DE-SFLA are 959.066 and 17.653, respectively.
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4.2.2 Forecast Results of Period Deformation Component
Triggering factors analysis and optimal features selection

In order to effectively reconstruct the evolution characters of VD, the mechanics and triggering factors
can be considered carefully. According to the analysis of the relationship between the deformation and the
external influencing factors in Section 3.2, a total of 13 initial triggering factors were considered [17,41], they
are presented as follows:

1. The fluctuation of RSD: in consideration of the lag period of the seepage field adjustment
corresponding to reservoir operation, the current RSD (J1) and the average fluctuation rate of RSD
over the past 15 days (J2), 30 days (J3), and 60 days (J4) were adopted as the RSD factors.

2. Precipitation: the cumulative antecedent precipitation during the last 15 days (J5), 30 days (J6), and
60 days (J7) were selected as the precipitation factors due to the slow process of precipitation
infiltration.

3. Water temperature: the atmospheric temperature in the reservoir region was used to represent the
effect of water temperature due to a lack of monitored temperature of river bedrock. The average
atmospheric temperature of anterior 15 days (J8), 30 days (J9), and 60 days (J10) were used as the
temperature factors.

4. Evolution state: the deformation over the past 15 days (J11), 30 days (J12), and 60 days (J13) are
considered.

GRA was employed to quantized the relation degree between the periodic deformation and triggering
factors. Datasets of factors were used as the input for GRA, and the optimal inputs were selected from
potential factors. The results of GRA are listed in Tab. 1.

The result indicates that the periodic deformation is significantly influenced by the rate of fluctuation of
RSD (J2, J3, and J4), whereas the current RSD (J1) and water temperature factors (J8, J9, and J10) have
relatively less influence. As a result, the eight optimal triggering factors were selected as the input
features of prediction models, which are highlighted in Tab. 1.

Model parameter settings

The optimal inputs and periodic deformation series were used as the input and output variables,
respectively. Datasets were divided into a training set and validation set as same as the modeling of trend
componence. To stabilize the learning process of ML models, all input data were normalized in the
interval [0,1] using the Minmax normalization.

All these models were developed in MATLAB environment. For the DE-SFLA-LSSVM model, DE-
SFLA was applied to optimize the hyper-parameters (γ, σ2) by minimizing the MSE generated in the
validation set, the value range of γ and σ2 were set to [0.1,1000]. The initial parameters of DE-SFLA
were set as a frog population of 200 (i.e., the size of memeplexes being 20, while each memeplex
containing ten frogs), the maximum number of iterations is 100. To study the comparison on the

Table 1: GRA results of each triggering factor for VD03 and VD05

Survey
Line

Triggering factors

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

VD03 0.638 0.750 0.701 0.721 0.664 0.638 0.621 0.605 0.622 0.619 0.780 0.735 0.718

VD05 0.627 0.759 0.712 0.719 0.674 0.640 0.609 0.602 0.618 0.612 0.810 0.783 0.731
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forecasting performance basis of the proposed model, four models including LSSVM, ABC-LSSVM,
BPNN, and DE-SFLA-BPNN were performed with the same input features and output vector.

For LSSVM, RBF was chosen as the kernel function, and the hyper-parameters were determined using
the grid-search with 5k cross-validation. For ABC-LSSVM, the colony size was 100, the maximum
evaluation number was set to 200, the range of γ and σ2 in RBF were set in [0.1,1000]. Moreover, a
three-layer BPNN was performed, the nodes of the hidden layer were set to 10, the number of input
nodes equaled to the number of optimal features, and the number of output nodes was set to 1.

Forecasting performance

The forecast results of the periodic deformation in the validation period for VD03 and VD05 are
shown in Fig. 6. The prediction performance comparison between the proposed model and other
LSSVM-based models (i.e., LSSVM and ABC-LSSVM) of VD03 and VD05 is illustrated in Fig. 6a
and 6c, respectively. The comparison between the proposed method and ANN-based models (i.e.,
BPNN and DE-SFLA-BPNN) of VD03 and VD05 is shown in Fig. 6b and 6d, respectively. According to
Fig. 6, it demonstrates that the all the predictions show a good agreement with the actual deformation
curve on the whole.

Figure 6: Comparison of the predicted and measured values of the periodic component. (a) prediction of the
LSSVM-based models for VD03. (b) prediction of the ANN-based models for VD03. (c) prediction of the
LSSVM based models for VD05. (d) prediction of the ANN-based models for VD05
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Tab. 2 summarizes forecast results and optimal parameters of the five investigative models. It appears
that the proposed model produces higher R values but smaller RMSE and MAPE values in the validation
period, whereas LSSVM and BPNN performed worst. More precisely, for VD03, the RMSE, MAPE and
R values of DE-SFLA-LSSVM are 0.198, 0.230 and 0.986, respectively, while the accuracy indicators for
VD05 are 0.222, 0.297 and 0.978, respectively. Furthermore, the RMSE, MAPE and R of DE-SFLA-
BPNN are 0.223, 0.258 and 0.988 for VD03, respectively, While the indicators for VD05 are 0.294,
0.406 and 0.964, respectively. Considering of the three evaluation indices, the performance of DE-SFLA-
LSSVM is slightly superior to that of DE-SFLA-BPNN, which suggests that the BPNN model optimized
with DE-SFLA has a quite competitive forecasting ability. Taking the period deformation of VD03 for
example, the model predictability of DE-SFLA-LSSVM compared with other contrast models.

1. Performance comparison between the original models (i.e., LSSVM and BPNN) and hybrid models
(i.e., DE-SFLA-LSSVM, ABC-LSSVM, and DE-SFLA-BPNN). It is depicted further from Fig. 6
and Tab. 2, the R value of hybrid models ranges in [0.954,0.988], while the corresponding values
of original models ranges in [0.935,0.939]. In addition, the RMSE and MAPE of hybrid models
are smaller than that of the two original models. Therefore, the forecasting effect of hybrid
models possesses significant promotion with the global searching ability of DE-SFLA and ABC
algorithms compared with the two original models. As shown in Fig. 6, it is clear that LSSVM
and BPNN cannot well simulate the turning points (e.g., the values of the 57th and 61th month),
while the hybrid models are able to maintain the shape of the original periodic deformation well,
which greatly helps to improve the prediction accuracy and decrease the forecasting errors. In
other words, it can be asserted that hybrid models possess better capabilities to adequately
excavate potential information within raw data based on the hyper-parameter optimization of DE-
SFLA and ABC algorithms.

2. Performance comparison between DE-SFLA-LSSVM and the LSSVM based models (i.e., LSSVM
and ABC-LSSVM). As illustrated in Fig. 6a and Tab. 2, the DE-SFLA-LSSVM models produce
better performance in all the LSSVM based models, whereas the ABC-LSSVM model performs
well only after the early warning period (the period deformation fluctuates fiercely from the 56th
to 59th month). It is clear that ABC-LSSVM shows a poor performance on the amplitudes and
appearance time simulating, whereas DE-SFLA-LSSVM has a better agreement with the observed

Table 2: Prediction performance of periodic deformation and optimal parameters

Survey Line Models RMSE MAPE R γ σ2

VD03 LSSVM 0.415 0.530 0.939 132.481 10.228

ABC-LSSVM 0.350 0.418 0.954 455.679 633.652

BPNN 0.385 0.598 0.935 – –

DE-SFLA-BPNN 0.223 0.258 0.988 – –

DE-SFLA-LSSVM 0.198 0.230 0.986 148.876 98.592

VD05 LSSVM 0.422 0.485 0.921 158.015 22.840

ABC-LSSVM 0.312 0.390 0.959 665.435 305.387

BPNN 0.451 0.411 0.936 – –

DE-SFLA-BPNN 0.294 0.406 0.964 – –

DE-SFLA-LSSVM 0.222 0.297 0.978 168.041 53.492
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values. In addition, the RMSE and MAPE of ABC-LSSVM are smaller than that of LSSVM, which
indicates that the optimization process of DE-SFLA and ABC algorithm has an enhancing effect to
the improperly searched ability of grid search method and can well solve the local optimization and
over-fitting problems, while DE-SFLA has a stronger global searching and generalization abilities
than ABC algorithm.

3. Performance comparison between DE-SFLA-LSSVM and the ANN based models (i.e., BPNN and
DE-SFLA-BPNN). Fig. 6b and Tab. 2 displays the comparison forecasting results and performance
indexes. Among these models, the fitting performance of DE-SFLA-LSSVM is slightly superior to
that of DE-SFLA-BPNN. Moreover, the RMSE and MAPE of DE-SFLA-BPNN are 0.223 and
0.258, while the values of BPNN are 0.385 and 0.598, respectively. The R value of the former
model is 0.988, which is greater than that of BPNN (i.e., 0.935). As shown in Fig. 6b, since
BPNN starts with a random generation of internal weights and adjusts the network weights and
deviations with the back-propagation algorithm, the result of BPNN always tends to fluctuate
around actual values, whereas DE-SFLA-BPNN can produce a relatively stable and accurate
deformation prediction. It also indicates that the DE-SFLA as an optimization algorithm of
LSSVM and BPNN can significantly improve prediction accuracy and generalization abilities.

For VD05, according to the forecast result shown in Fig. 6c and 6d and Tab. 2, the proposed model
produced the lowest RMSE and MAPE of 0.222 and 0.297, whereas BPNN has the highest RMSE and
MAPE of 0.451 and 0.411, respectively. Moreover, the prediction accuracy of ABC-LSSVM is greater
than LSSVM, while DE-SFLA-BPNN performs better than ABC-LSSVM, which indicates that the
optimization process of DE-SFLA has an enhancing effect on forecasting performance. Therefore, the
performance of the proposed model is further verified.

4.3 Forecast Results of Total Deformation

Finally, the forecast results of the cumulative VD were calculated by reconstructing the predicted trend
and periodic deformation results. The comparison between the predicted values and the denoised cumulative
deformation in the validation period is shown in Fig. 7 and Tab. 3. It indicates that the forecast results show
good agreement with the measured series, and the prediction errors are within an acceptable precision range.
Furthermore, the proposed DE-SFLA-LSSVM outperforms other models with better forecast accuracy for
VD03 and VD05.

As can be clearly seen in Figs. 7a and 7b and Tab. 3. For VD03, DE-SFLA-LSSVM achieved a higher
accuracy with RMSE and MAPE are 0.217 and 0.168, respectively, which are lower than that of other hybrid
models (i.e., ABC-LSSVM and DE-SFLA-BPNN). Whereas LSSVM is the worst-performing model with
the RMSE, MAPE, and R being 0.429, 0.385 and 0.873, respectively. The original LSSVM and BPNN
model provides unsatisfactory performance in the total deformation prediction due to the accumulation
prediction errors of the periodic deformation. When hybrid models are taken into consideration, the
proposed DE-SFLA-LSSVM, ABC-LSSVM and DE-SFLA-BPNN models outperform LSSVM and
BPNN all the time. It indicates that DE-SFLA and ABC are efficient algorithms for optimizing the
parameters in the LSSVM and BPNN models.

As illustrated in Figs. 7c and 7d and Tab. 3. For VD05, the RMSE, MAPE, and R of DE-SFLA-LSSVM
are 0.222, 0.238 and 0.929, respectively, which indicates that DE-SFLA-LSSVM method exhibits a better
performance in terms of accuracy and percentage error than those compact models. BPNN is the worst-
performing model with the RMSE, MAPE, and R being 0.428, 0.441 and 0.770, respectively. Note that
the higher R indicates that the proposed model results in a better agreement with the actual values, and
the lower RMSE and RMSE demonstrate lower average prediction errors.
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Figure 7: Comparison of the predicted and monitored cumulative deformation in the validation period. (a)
prediction of the LSSVM-based models for VD03. (b) prediction of the ANN-based models for VD03. (c)
prediction of the LSSVM based models for VD05. (d) prediction of the ANN-based models for VD05

Table 3: Prediction performance of different models for the cumulative deformation

Survey Line Models RMSE MAPE (%) R

VD03 LSSVM 0.429 0.385 0.873

ABC-LSSVM 0.349 0.272 0.924

BPNN 0.397 0.348 0.895

DE-SFLA-BPNN 0.266 0.254 0.945

DE-SFLA-LSSVM 0.217 0.168 0.973

VD05 LSSVM 0.415 0.449 0.708

ABC-LSSVM 0.307 0.312 0.863

BPNN 0.428 0.441 0.770

DE-SFLA-BPNN 0.300 0.323 0.884

DE-SFLA-LSSVM 0.222 0.238 0.929
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By comparison, it is indicated that using the proposed DE-SFLA-LSSVM model for trend and periodic
deformation prediction by considering the relevant triggering factors can provide better predictive
performance for cumulative VD prediction. Generally, the prediction performance of the DE-SFLA-
LSSVM model outperforms that of all the BPNN-based models and LSSVM-based models. The
deformation series cannot be perfectly predicted by LSSVM and BPNN due to the improperly searched
ability of the grid search method and the random generated internal weights and the simple structure of
BPNN. Nevertheless, the DE-SFLA-LSSVM model and DE-SFLA-BPNN model exhibit better
performance in terms of accuracy and percentage error in the validation period for VD prediction.

5 Conclusion

This paper studies the VD prediction by using a novel hybrid forecasting model that is made up of
EEMD-ITD and DE-SFLA-LSSVM. The performance of LSSVM has much to do with the preprocessing
of non-stationary and noisy series and optimizing the hyper-parameters. Two actual VD series monitored
in Xiluodu reservoir region are used for model testing, and the forecast performance of the proposed
model is validated and outperforms other common methods.

According to the corresponding comprehensive analysis, the EEMD-ITD denoising procedure can
adequately maintain the major evolution features of the original series, while the redundant noise is
eliminated. By comparing with WTD, EEMD-ITD achieved better performance with higher SNR and
lower MSE of 0.486, 86.821 for VD03, and 0.320, 86.048 forVD05, respectively. It reveals that the
introduced EEMD-ITD is an effective denoising method for signal preprocessing. The result of GRA
indicates that the periodic deformation is significantly influenced by the rate of fluctuation of RSD,
whereas the current RSD and temperature have less influence on VD. Moreover, GRA removes redundant
information and extracts the relevant factors, which can reduce the model complexity and improves
prediction performance. The performance of DE-SFLA-LSSVM and other conventional methods
including LSSVM, ABC-LSSVM, BPNN, and DE-SFLA-BPNN is validated and compared for the
periodic deformation forecasting. The result shows that the proposed hybrid model outperforms the other
methods with high precision. Therefore, the proposed hybrid model has the potential to be applied for the
early-warning in Xiluodu project.
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