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Abstract: As the agricultural internet of things (IoT) technology has evolved,
smart agricultural robots needs to have both flexibility and adaptability when
moving in complex field environments. In this paper, we propose the concept
of a vision-based navigation system for the agricultural IoT and a binocular vision
navigation algorithm for smart agricultural robots, which can fuse the edge con-
tour and the height information of rows of crop in images to extract the navigation
parameters. First, the speeded-up robust feature (SURF) extracting and matching
algorithm is used to obtain featuring point pairs from the green crop row images
observed by the binocular parallel vision system. Then the confidence density
image is constructed by integrating the enhanced elevation image and the corre-
sponding binarized crop row image, where the edge contour and the height infor-
mation of crop row are fused to extract the navigation parameters (θ, d) based on
the model of a smart agricultural robot. Finally, the five navigation network
instruction sets are designed based on the navigation angle θ and the lateral dis-
tance d, which represent the basic movements for a certain type of smart agricul-
tural robot working in a field. Simulated experimental results in the laboratory
show that the algorithm proposed in this study is effective with small turning
errors and low standard deviations, and can provide a valuable reference for
the further practical application of binocular vision navigation systems in smart
agricultural robots in the agricultural IoT system.

Keywords: Smart agriculture robot; 3D vision guidance; confidence density
image; guidance information extraction; agriculture IoT

1 Introduction

There are many vision-based technologies used in applications of autonomous robots [1–3] or other
applications such as the real-time visual tracking shape and colour feature of object in the literature [4].
Traditional agricultural robots based on vision technology have obtained great success [5,6], and can be
operated in several stages of a process to solve the demanding problems in agricultural production [7].
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Many researchers have studied robot navigation [8], mainly focusing on crop-row line detection. However,
the field environment is so complex that the navigation information extraction is not only affected by factors
such as weeds and variations in illumination, but is also influenced by the irregular growth of crops. The
irregularity of crop plant growth is particularly obvious in the late growth stage when the inter-row
spaces are narrow, making automatic navigation difficult for traditional agricultural robots guided by
vision technology. Thus, it is necessary to develop a smart agricultural robot that can automatically adjust
its posture in real-time to adaptively move along an irregular crop row, and can also be maneuvered by
the control instruction of the IoT node [9]. This will prevent unevenly growing crop plants from being
crushed during the automatic navigation process. Moreover, the smart agricultural robot can also
overcome the deficiencies of crop-row line detection due to dynamic and unpredictable situations such as
fixed obstacles [10], which create issues for traditional agricultural robots.

The line-detection vision navigation algorithms of traditional agricultural robots have been proposed using
different crop-row recognition methods for different field applications [11–13]. Searcy et al. [14] applied the
Hough transform to the extraction of navigation parameters of agricultural robots. In [15] the excess green
method was used to separate green crops from their soil background, and then vertical projection was used
to determine the candidate points of crop centerlines to extract the row line. The authors of [16] proposed a
vision approach for row recognition based on the grayscale Hough transform on intelligently merged
images, which was able to detect crop rows at the various growth stages. In [17] a novel automatic and
robust crop row detection method based on maize field images was proposed. Some navigation algorithms
based on stereo vision technology for crop row recognition have also been proposed. For instance, in [18],
after a three-dimensional (3D) crop-row structure map of an entire field was created using the acquired
images, a feature point tracking algorithm was used to extract a tractor motion indicated by the feature
points from continuous stereo images, and then feed the outcomes to a dynamic model of the tractor to
estimate its traveling speed and heading direction. In [19], a stereo vision-based 3D egomotion estimation
system was proposed to track the features in image sequences, in which those feature points were matched
to obtain the 3D point clouds for motion estimation. The authors of [20] proposed an unsupervised
algorithm for vineyard detection and evaluation of vine row features based on the processing of 3D point-
cloud maps, in which the information on local vine row orientations and local inter-row distances were
organized in geo-referenced maps to allow the automatic path planning along the inter-row spaces. In [21] a
branch detection method was developed, which used the depth features and a region-based convolutional
neural network (R-CNN) for detection and localization of branches.

However, the aforementioned research does not address the edge information of plant leaves when
agricultural robots are advancing along a crop row using two-dimensional (2D) or 3D row-line
recognition, and the methods did not employ IoT technology [22]. This paper proposes a vision
navigation algorithm based on the 3D morphological edge and height information of crop rows to guide a
smart agricultural robot to adapt to irregular crop rows to avoid crushing crops. Furthermore, the smart
agricultural robot advancing along crop rows can obtain essential real-time non-destructive crop growth
information. This information can then be transmitted to a cloud computing server in the smart
agriculture IoT system to predict the yield and evaluate the health status of crops. This study makes two
primary contributions: 1) We propose the concept of a smart agricultural robot vision navigation system
for use in the agricultural IoT; and 2) We propose an adaptive vision navigation algorithm for the smart
agricultural robot.

2 Smart Agricultural Robot Navigation IoT System

To enable the automatic navigation of a smart agricultural robot, we designed a smart agricultural robot
navigation IoT system according to the literature [23]. As shown in Fig. 1, in this system an image acquisition
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layer is used to collect information, a transmission layer is used to transmit data, and a cloud computing layer
provides complex computing services. After processing the data in the cloud computing layer, the results are
transmitted to the controller through the transmission layer.

The function modules of the smart agricultural robot are shown in Fig. 2.

Cloud computing layer
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Figure 1: Framework of the agricultural IoT system for the smart agricultural robot
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Figure 2: Function modules of the smart agriculture robot embedded in an agricultural IoT system
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In the data acquisition layer, the image data are acquired by using a Bumblebee2 binocular stereoscopic
camera installed on the agricultural robot to observe green crops in real time. In the transmission layer, the
collected image data are transmitted in real time to the cloud computing layer through 4G/5G protocols. In
the cloud computing layer, we propose an adaptive vision navigation algorithm for the agricultural robot,
which fuses the 2D and 3D information of the green crop feature points to obtain the navigation
parameters of the smart agricultural robot. The robot’s control center can also receive the control
instructions of the cloud computing services in order to complete autonomous navigation tasks. These
IoT capabilities can improve the robustness, flexibility, and reliability of the smart agricultural robot.

3 Adaptive Vision Navigation Implementation

3.1 Elevation Image

Stereo matching is the process of constructing the corresponding pairs in the left and right images from
different perspectives of an object. When these points are matched, their 3D information can be obtained by
using Eq. (1), where Zc is the camera coordinate; Xw, Yw, and Zw are the world coordinates; and xr and yr are
the image coordinates. The relationships of the coordinates are shown in Fig. 3. We use the right image as the
reference image.
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In Eq. (1), the rotation matrix R and the translation vector T contain the pose parameters of a camera
relative to the world coordinate system [24], which are called external parameters; hx and hy represent the
physical scale of each pixel in the image coordinates, together with the focal length of camera lens f,
which are called internal parameters. The origin of the image coordinate is (u0, v0), with 0T = (0, 0, 0).
Internal and external parameters can be obtained by the camera calibration process [25]. Based on the
parallel binocular vision model, in this study the speeded-up robust feature (SURF) extracting and
matching algorithm [26] is used to obtain the 3D spatial information of corresponding pairs of green crop
rows. The matched features are shown in Fig. 4. Then, the elevation image of the crop row can be
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Figure 3: Diagram of relationships between the world coordinate, camera coordinate, and image coordinate
systems
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obtained. As shown in Fig. 5a, the brighter the feature point region in the elevation image, the higher its
representing crop row height, according to Eq. (2).

f ðYwÞ ¼ Yw � minðYwÞ½ � � 255

maxðYwÞ � minðYwÞ (2)

In Eq. (2), the signs max and min denote taking a maximum and minimum from Yw, respectively. The
function f(Yw) represents a grayscale value at a certain point about Yw, denoting the height of the crops in
the elevation image. Considering the 3D morphological and structural characteristics of the crop rows
are roughly consistent relative to weeds or other plants in the field, we aim to preserve certain heights of
the crop plants according to Eq. (3) to improve the robustness of detecting crop rows, where hc is a
threshold value (hc = 16 in the experiments); Yw ∈ (0, 25) cm, f(Yw) ∈ (0, 255). The processed result is
shown in Fig. 5b.

Yw ¼
0 f ðYw Þ, hc=2
Yw
0 f ðYwÞ. 3hc=2

8<
: (3)

From Fig. 5b, we see that the points that do not meet the height requirement are completely removed.
However, the available feature points are relatively sparse, resulting in poor functionality in the elevation
image. To eliminate the impact of sparse feature points in elevation images, we dilate the feature points in
the adjacent regions by using the morphological dilatation operator with a template size of 4 × 4. A

Figure 4: Results of SURF feature extracting and matching

Figure 5: Process of producing enhanced elevation images (a) Elevation image (b) Filtered image (c)
Enhanced image
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typical resulting image is shown in Fig. 5c. In this way, the regions of feature points will be extended to
some extent in the elevation image to increase the stability and reliability of the process of extracting
navigation parameters.

3.2 Image Edge Extraction

The elevation image emphasizes only the height information of the crop row, but the crop row edge
information is also important for the navigation system of the agricultural robot, particularly for uneven
crop rows in the late growth stage under relatively complex field environmental conditions. Therefore, the
crop row edge information is extracted to ensure that the crop is not crushed during automatic navigation.
First, the excess green method [27] is used to extract green crop rows from field images. The green crop
and its soil background are represented by the black and the white pixel points, respectively, as shown in
Fig. 6b. Second, the noise points in the corresponding binary image are filtered by using the median filter
with a template size of 5 × 5. Some isolated noise points and weeds patches (less than five pixels) can be
removed completely, as shown in Fig. 6c. Then the LoG operator [28] is used to extract crop edges, and
a typical resulting image is shown in Fig. 6d. Obviously, we could not directly obtain the entire outer
contour of the row. Therefore, the dilation method with a template size of 5 × 5 is first used to link the
edge curve segments detected by LoG, as shown as in Fig. 6e. If the template is too small, it will affect
the contour connectivity; conversely, it may introduce noise points into crop row edges. Next, we fill the
connected regions inside the row by using a hole-filling method, as shown in Fig. 6f. Then the erosion
method is used to remove the isolated points on the outer edges of the row using the same template size
as the dilation operator used above, as shown in Fig. 6g. Finally, we extract the complete edge contours
from the rows, as shown in Fig. 6h. These edge contours are overlaid on the original image, as shown in
Fig. 6i, and it can be seen that they are consistent with the edge boundaries of the real rows.

Figure 6: Extracting process of edge contours of crop rows (a) Original image (b) Binarized image (c)
Filtered result (d) Edge extraction (e) Dilated image (f) Filled image (g) Eroded image (h) Edge contour
image (i) Edges detected
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3.3 Confidence-Based Dense Image

To make sufficient use of the crop row growth information, in this paper, we fuse the height and the edge
information to produce the adaptive navigation parameters for an agricultural robot by using Eq. (4) (the
fused image is called a confidence dense image), as shown in Fig. 7d. During the fusion, if the grayscale
value of a point in the fused image exceeds 255, it will be set to 255. In Eq. (4), I1 ið Þ is the ith pixel
grayscale value of the binarized edge image (corresponding to a 2D image); I2 ið Þ is the value of the
elevation image (corresponding to a 3D image), ranging from 0 to 255; w is defined as a fusing factor
that can integrate the grayscale value of the fusing image.

IðiÞ ¼ I1ðiÞ þ w � I2ðiÞ

¼ I2ðiÞ if I1ðiÞ ¼ 0;w ¼ 1

I1ðiÞ if I1 ðiÞ ¼ 255; w ¼ 0
i ¼ 1; 2; …

�
(4)

The confidence dense image proposed in this paper can be considered as the probability of a crop plant
occurring in the corresponding position in a row image. If the grayscale value of a certain pixel point in the
crop row image is bigger than the other, the probability of this point regarded as the crop row point is
relatively higher. However, if the grayscale value of the point is smaller than the other, it will have a
relatively smaller probability as a crop row point (the threshold value set is hc=2, as shown in Eq. (3). At
the same time, the black pixels inside the crop may be weeds, or crops that do not reach the set threshold
height. In this case, the binarized edge image can be used to obtain navigation information and the
elevation image can be used to improve the robustness of the recognition of the irregular crop rows.
Therefore, the confidence-based dense image can be used to reliably extract the parameters needed for the
navigation system of the smart agricultural robot.

3.4 Navigation Instructions

In the experiments the agricultural robot used a four-wheel differential steering method. The steering
model is shown in Fig. 8a. The parameters W and L represent the width and the length of the agricultural
robot, respectively. The σ represents the steering angle. This is a typical structure model of a smart
agricultural robot.

In field environments, the edge contours of crop rows show different morphological features. This
characteristic is not considered by existing conventional navigation algorithms that focus on extracting
green crop-row lines. Moreover, when the crop plant is in its late growth stage, its edge contour
information is more important than an extracted row line for guiding the smart agricultural robot to avoid
crushing crop plant leaves. In this case, we have designed five basic adaptive navigation control network
instructions, which are sent by the smart agricultural IoT system in this study and are based on the edge

Figure 7: Process of producing Confidence-based dense image (a) Original image (b) Elevation image (c)
Crop edge image (d) Confidence dense image
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contour tangent lines to extract navigation parameters. This allows the smart agricultural robot to make
adaptive posture adjustments during the automatic navigation process. In some green fields in particular,
such as kale and cabbage, in the late growth stages, there is a need to consider the boundaries of crop
leaves in the navigation information of the smart agricultural robot. Otherwise, the crushed crop leaves
will affect the crop yield prediction and health status analysis when the robot works in the field to
transmit the spectral image data to the cloud computing server [29].

Our navigation parameter extraction model is shown in Fig. 8b, in which we assume that the rectangle
formed by the dotted line is a frame crop image in the computer buffer taken by a camera. The point O
is regarded as a reference point marked red with the high density in x-coordinate direction, and is
calculated by the white points from elevation images. Ll and Lr are tangent lines passing the two edges
points A and B, respectively.

In Fig. 8b, the sign α denotes an angle between Ll and the x-axis, and b denotes an angle between Lr
and the x-axis. The sign h is a navigation control angle, being obtained by Eq. (5). The d1 and d2
represent the distances from the reference point to the corresponding two edge points of a crop row,
respectively. The sign d denotes a lateral distance of the agricultural robot relative to the reference point,
as expressed by Eq. (6).

h ¼ a� b

a ¼ tan�1 y1 � y2
x1 � x2

; b ¼ tan�1 y3 � y4
x3 � x4

(5)

In Eq. (5), (x1,y1), (x2,y2) belong to Ll; (x3,y3), (x4,y4) belong to Lr.

d ¼ jd1j � jd2j (6)

Generally, the working status of a smart agricultural robot can be either straight moving status or turning
status. Straight moving status is easy to steer; the turning statuses are relatively complex. Thus, the turning
statuses are divided into four cases: Left turning, right turning, right turn with straight moving, and left turn
with straight moving. The corresponding statuses’ network instruction sets sent by the smart agricultural IoT
system are expressed in Eq. (7–11), where ht and dt are the thresholds corresponding to the navigation angle h
and the lateral distance d. The threshold ht and dt are set to 35° and 15 cm, respectively.

(a) (b)

α β

L

W

σ

σ x

y

O

L1

d1 d2

A

B

Lr

Figure 8: Steering model and diagram of navigation parameters (a) Steering model (b) Diagram of
navigation parameters
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The moving instructions are determined by the moving statuses of a smart agricultural robot in the field,
which represent its basic moving steps as follows.

1) Instruction set of straight moving status

In this case, the distance between the left crop boundary and the wheel is roughly the same as that of the
right boundary and the corresponding wheel. When the parameter d satisfies Eq. (7), the smart agricultural
robot will enter the straight moving status.

fdjjdj, dtg (7)

2) Instruction set of right turning status

When Eq. (8) is satisfied, the agricultural robot will enter right turning status. This usually occurs in a
situation in which the angle difference h between two tangent lines is relatively large. Therefore, the
possibility of crops on the right of a frame image is higher.

fðh; dÞjjhj > ht \ jdj, � dtg (8)

3) Instruction set of right turn with straight moving status

When Eq. (9) is satisfied, the agricultural robot will turn right and go straight. In this case, the angle
difference h between two tangent lines is relatively small, but the possibility of crops on the right is
higher. Therefore, the agricultural robot needs to make a slight adjustment to the right, and then advances
in a straight line.

fðh; dÞjjhj, ht \ jdj, � dtg (9)

4) Instruction set of left turning status

When Eq. (10) is satisfied, the agricultural robot will turn left. This usually occurs in a situation in which
the angle difference h between two tangent lines is relatively large. Therefore, the possibility of crops on the
left of a frame image is higher.

fðh; dÞjjhj. ht \ jdj. dtg (10)

5) Instruction set of left turn with straight moving status

When Eq. (11) is satisfied, the agricultural robot will turn left and move in a straight line. In this case, the
angle difference h between two tangent lines is relatively small, but the possibility of crops on the left of a
frame image is high. Therefore, the agricultural robot needs to make a slight adjustment to the left and then
advances in a straight line.

fðh; dÞjjhj, ht \ jdj. dtg (11)

When the serial image data from the binocular cameras in the data acquisition layer are processed in real
time in the cloud computing layer, the instruction sets obtained can be transmitted in real time to the
controller through the transmission layer to control the corresponding actual movements of the smart
agricultural robot.

4 Experimental Results and Discussions

In the experiments, we used the Bumblebee2 binocular vision system (Model BB2-03S2C-60, Canada)
and a smart agricultural robot (manufactured in Shanghai, China). The agricultural robot is 107 cm long and
82.3 cm wide, with a tire width of 15 cm. These specifications are designed according to the field operation
requirements for smart agricultural robots in North China. All program codes of image data processed were
run in the C++ environment on a computer with an Intel Core2 Duo CPU and 1.96 GB of RAM to test the
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adaptive navigation algorithm proposed in this study, which can only meet the low-speed requirements of
less than 0.5 m/s of the smart agricultural robot. These specifications will need to be extended further to
the cloud computing layer of the smart agricultural robot navigation IoT system designed in this study to
speed up the image data processing and accomplish more intelligent operations in fields. The navigation
parameter extraction and motion instruction sets designed were validated in the simulation experiments
by designing O and S type of moving paths, as shown in Fig. 9a and 9b. The moving trails of the smart
agricultural robot were recorded by putting black toner on the middle of its tires. Then we manually
recorded the data of the moving trails and the planning paths. In Fig. 9c and d, the black curves represent
actual moving trails of the smart agricultural robot; the red curves represent the edge contours of the
simulated row.

In the experiments, the smart agricultural robot did not crush the simulated crop plant leaves when the
navigation parameter d satisfied d 2 �15:6; 15:6½ � cm, according to the crop row space and its width. The
results from running the experiment six times are shown in Fig. 10a and 10b, in which the actual measuring
value of d ranges from −10 cm to 10 cm. This means that the values of the parameter d in the experiments all
fell into the required range, indicating that the smart agricultural robot could normally move along a
simulated crop row edge contour without crushing its leaves.

To highlight the edge-based navigation method proposed in this study, the contrast experiments based on
the maximum density row-line detection without edge information proposed in the literature [30] (the speed
of the agricultural robot is also less than 0.5 m/s) were conducted in the same experimental path of O-type

Figure 9: Display of planning path and moving trails (a) O-type path (b) S-type path (c) O-type moving trail
(d) S-type moving trail

Figure 10: Measured d of the two moving trails (a) d values of O-type trail (b) d values of S-type trail

1052 CMC, 2021, vol.66, no.1



and S-type. The motion trails of the smart agricultural robot are shown in Fig. 11a and 11b. The black lines
are the robot’s actual paths. The values of dwere obtained by conducting the experiments six times, as shown
in Fig. 11c and 11d.

In the experimental results, some d values located above the red line or below the blue line exceed the
required range, indicating that the simulated crop leaves in these points’ positions were crushed by the smart
agricultural robot. Their means are 7.18 cm and 8.00 cm, with standard deviations of 4.67 cm and 5.82 cm.
However, the experimental results from running our algorithm, as shown in Fig. 10, show that these
situations of crushed crops never occur, with the means being only 3.85 cm and 3.00 cm, with
corresponding standard deviations of only 2.44 cm and 1.92 cm.

Furthermore, we fit a curve equation of the steering angle σ and the navigation angle θ of the agricultural
robot by using Matlab14 function Fourier, shown in Eq. (12), where the edge contour points parameters
s; uð Þ are taken every 4 cm in an O-type planning path, the parameter r is obtained by implementing our
algorithm procedure, and the parameter h is obtained manually.

rh ¼ a1e

b1
a1

Ah
þ a2e

2
b2
a2

Ah
� a3e

�3
b3
a3

Ah
� a4e

�4
b4
a4

Ah
� a5e

5
b5
a5

Ah
þ a6e

�6
b6
a6

Ah
þ C (12)

In this experiment, the coefficients of the equation are shown in Tab. 1.

Figure 11: Comparison of experimental results of different methods proposed in [30] (a) O-type path (b)
S-type path (c) d values of O-type trail (d) d values of S-type trail
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To further validate the above function, the testing process was performed in an S-type planning path. The
results are shown in Fig. 12.

Due to the irregularity of crop rows in their late growth stages, the smart agricultural robot needs to
adjust its moving posture during navigation. Therefore, the fitting equation is nonlinear, with R2 of 0.96.
The absolute mean of turning angle error is 0.7° with an absolute standard deviation of 1.5°, indicating
that our navigation algorithm for the agricultural robot has good turning performance. Although the
experimental results are obtained in simulated environments, without loss of generality, our proposed
algorithm has fully fused the edge and height information of real crop rows. It can then be embedded into

Table 1: Function parameter values

Coefficient Value

a1 7.611

a2 5.183

a3 −23.45

a4 −17.96

a5 −25.64

a6 15.33

b1 32.96

b2 21.45

b3 20.88

b4 16.55

b5 −11.96

b6 −33.49

A 0.06212

C 23.81

Figure 12: Comparison of the manually measured σ and σ, as calculated by Eq. (12)
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the smart agricultural IoT, and it will lay down a foundation in the vision navigation application field of smart
agricultural robots.

5 Conclusions

To achieve automatic navigation in a smart agricultural robot, we proposed an adaptive vision navigation
algorithm, which can be embedded into the smart agricultural robot IoT system we designed. The adaptive
visual navigation algorithm can fuse the edge contour and height information of crops to extract the
navigation parameters of the smart agricultural robot. The navigation network instruction sets designed
for this study were successfully validated according to the moving statuses of the smart agricultural robot
in the field. The simulated experimental results show that the smart agricultural robot can autonomously
advance along S-type and O-type planning paths without crushing the leaves of the crop plant when its
speed is less than 0.5 m/s, with an absolute mean of turning angle error of 0.7° and an absolute standard
deviation of 1.5°. Our work provides a valuable reference for further practical application of the smart
agricultural robot in responding to green crops in different growth periods.
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