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Abstract: The patients with brain diseases (e.g., Stroke and Amyotrophic Lateral
Sclerosis (ALS)) are often affected by the injury of motor cortex, which causes a
muscular weakness. For this reason, they require rehabilitation with continuous
physiotherapy as these diseases can be eased within the initial stages of the symp-
toms. So far, the popular control system for robot-assisted rehabilitation devices is
only of two types which consist of passive and active devices. However, if there is
a control system that can directly detect the motor functions, it will induce neu-
roplasticity to facilitate early motor recovery. In this paper, the control system,
which is a motor recovery system with the intent of rehabilitation, focuses on
the hand organs and utilizes a brain-computer interface (BCI) technology. The
final results depict that the brainwave detection for controlling pneumatic glove
in real-time has an accuracy up to 82%. Moreover, the motor recovery system
enables the feasibility of brainwave classification from the motor cortex with Arti-
ficial Neural Networks (ANN). The overall model performance reveals an accu-
racy up to 96.56% with sensitivity of 94.22% and specificity of 98.8%.
Therefore, the proposed system increases the efficiency of the traditional device
control system and tends to provide a better rehabilitation than the traditional phy-
siotherapy alone.

Keywords: Rehabilitation; control system; Brain-Computer Interface (BCI);
Artificial Neural Networks (ANN)

1 Introduction

The patients with brain diseases (e.g., Stroke and Amyotrophic Lateral Sclerosis (ALS)) are often
affected by the injury of motor cortex, which causes a muscular weakness. This is the major cause of
disability and affects the Activities of Daily Living (ADL) [1,2]. In addition, the report of World Health
Organization (WHO) has shown that the stroke is the second leading cause of death worldwide.This is
associated with the deaths of approximately 6 million people around the world each year [3–5]. Until
now, the number of stroke patients has increased as the world population is entering an aging society [6].
The most common effect of stroke survivors is muscle weakness or partial paralysis, which is confined to
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one side of the body and is known as hemiparesis. Likewise, ALS is one of the neurological diseases that
affect nerve cells in the brain. When motor function is degraded, the patients may not be able to move
some of his muscles. In no time, nerve cells begin to die, which eventually leads to a loss of motion
control and then the patient becomes paralyzed [7]. However, these diseases can be alleviated in the early
stages of symptoms [8–10].

Therefore, post-stroke motor recovery and ALS during the first few months are very important to initiate
continued motor regeneration. Repetitive rehabilitation can stimulate motor activity to help the patient in
terms of learning to regulate movement again [11,12]. However, patients can undergo physical
rehabilitation in minimal time as there are no physical therapists and early rehabilitation equipment
available. In addition, patients often refuse to go to rehab at hospital. As a result, the patient does not
receive physical therapy continuously. Hence, robotic rehabilitation can help solve the problem, as it can
record patients’ real-time data for clinical follow-up to improve remote rehabilitation, alongside
customizing their own in-house therapies [13–16]. Recently, researchers have come up with ideas for
developing rehabilitation-assisted robots to improve the effectiveness of physical therapy [17–21]. In
general, robotic rehabilitation focuses on restoring the upper and lower limbs rather than hand/finger
rehabilitation, but the hands are one of the most important parts of the body as they play a fundamental
role in the work. Recovering hand function can help patients in terms of ADL.

In addition, the control system of restoring robots is an important type of research. Popular control
systems for restoration robots include Continuous Passive Motion (CPM), Active-Assisted Movement
(AAM) and Surface electromyography (sEMG) sensors [22–25]. CPM is an automated rehabilitation
system in which The patient was continually rehabilitated according to the design without any effort.
CPM is used during the early stages of rehabilitation as the patient is unable to exert himself. AAM and
sEMG are the rehabilitation systems in which the patient must first exert himself, and then use motion
aids. Both methods are suitable for the second stage patients, allowing them to move some muscles. In
addition, both passive and active control systems can be enhanced in regeneration using brain wave
detection. Therefore, if there is a control system that can directly detect motor activity and increase the
participation of the patient during the rehabilitation process, it can induce neural resilience to facilitate the
early recovery of motor.

In this article, we present a control system named motor recovery system with the intent of rehabilitation
utilizing Brain-Computer Interface (BCI) technology. The BCI is a technology that uses brainwaves to
analyze and translates them into commands, and then relay to output devices for desired actions [26,27].
In BCI at non-invasive stage, the brainwaves that acquire the movement intention of users (e.g., motor
imagery or execution) are decoded in real-time with the help of feature extraction. Then, the neuro-
feedback system is utilized to increase the user performance by linking the intent to execute a movement
[28–30]. The neuro-feedback is the measurement of brain activities to produce data for teaching self-
regulation of brain function and present it with a positive or negative response to closed-loop control
[31]. The active motor is intentionally trained and reproduced to stimulate the first cortical motor cortex,
providing a better rehabilitation results compared to automatic (passive) movements or limb-only (active)
stimulation [32–34]. In addition, physical therapy in conjunction with mindfulness is more interesting
[35–37]. The experience of brain disease negatively impacts patients' mental health. Recently, researchers
have revealed that meditation, along with physical therapy, is more effective than conventional physical
therapy alone [38]. Therefore, the motor recovery system has two steps: The first step is to detect brain
wave while the user deliberately meditates to perform robotic-assisted regenerative control. In the second
step, the patient can generate some of brain waves from the motions to form a norm. Hence, the motor
recovery system detects brain waves in the motor cortex area while the user is controlling the robot-
assisted rehabilitation.
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2 Methodology

In this paper, motor recovery systems focus on affordable, agile, and easy-to-wear solutions for
rehabilitation. A commercial low-cost EEG headset was named NeuroskyMindwave and OpenBCI used
in the experiment. Both headsets include dry-type electrodes that must be placed on specific scalp
locations according to the 10–20 international systems as shown in Fig. 1. The EEG headset can measure
different brainwave voltage fluctuations due to ionic current in brain neurons. The EEG sensor converts
these voltage fluctuations into digital outputs to be sent to the device’s microcontroller using wireless
technology. Most observed brain waves range from 1–40 Hz. These waves are categorized into delta,
theta, alpha, beta, and gamma. Delta waves (<4 Hz) are most likely to be observed during sleep. Theta
wave (5–7 Hz) can be seen during meditation. Alpha waves (8–13 Hz) are the result of the brain's
relaxed state. The Mu wave (8–13 Hz) is found above the motor cortex, which tends to be suppressed as
each part performs voluntary muscle movement or creates the intention to perform the movement. Beta
waves (14–30 Hz) are involved in the brain and active concentration. Low frequency (<22 Hz) beta
waves indicate an active and focused brain, while high frequencies (>22Hz) indicate anxiety. The
importance of gamma waves (>32) cannot be clearly identified [39]. The robot-assisted rehabilitation was
developed for the pneumatic system, which uses soft material safely to distribute force along finger
length according to the Harvard Glove [40]. Besides, the pneumatic glove provides haptic feedback to
volunteers as shown in Fig. 2.

2.1 Data Acquisition

The Neurosky Mindwave device’s dry electrode is approximately positioned at Fp1 and has a sampling
rate of 512 samples per second. In the first stage, the motor recovery system is focused on the purpose of
controlling the pneumatic gloves. Usually, the intention to do something can generate brain waves
involved in meditation. Therefore, the development of the system of early motor recovery uses real-time
detection of meditation. The volunteers participating in the trial were 21 ± 2 years old and in good health.
EEG data collection was performed in a closed room, while the volunteers sat comfortably in their chair.
Volunteers put their hands on the table and watched the computer screen showing the countdown video.
When the computer screen shows “Start”, the volunteer rests their hands in their normal state for about

Figure 1: The international 10–20 systems for electrodes placement
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10 seconds. The volunteer then imagines closing his/her hand for approximately 10 seconds. The measured
EEG data set is analyzed offline.

In second stage, the motor recovery system focuses on actuation for pneumatic right-hand glove control. The
EEG is recorded by OpenBCI devices with five electrodes comprising C3, Cz, CP1, P3 and Pz positions. These
electrode locations are related to motor activity in functional areas of the brain [41]. The sampling rate of the
OpenBCI device is 250 samples per second. Healthy volunteers, right-handed and aged 21 ± 2 years
participated in the experimental procedure. The EEG data retrieval was performed in a closed room, while the
volunteers sat in a chair and rested their arms comfortably on the table. The volunteer is asked to meditate and
watch the computer screen showing the countdown video. When the computer screen shows “Start”, the
volunteer turns their hands on for about 3 seconds and then turns their hands off for about 3 seconds as shown
in Fig. 3. In this experiment, all EEG data sets were collected from motion and contained approximately
100 data sets. The measured EEG data sets were later used to train Artificial Neural Networks (ANN) learning.

Figure 2: The pneumatic hand glove according to Harvard Glove 2.0

Figure 3: The EEG data acquisition on 5 channels from volunteer
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2.2 First Stage EEG Analysis

The EEG data set, measured in the first stage, is used to develop an algorithm for detecting motion-
intent, which has the following processes. Detecting intentional meditation requires knowing the Baseline
Parameter of Meditation (BPM) during normal conditions and can be calculated as follows:

BPM ¼
XN
i¼1

Meditation ið Þ
N

(1)

where the meditation is a value of meditation from EEG headset. N is the number of meditation parameters
obtained in normal conditions (N = 10). Finding the Peak Value of Meditation (PVM) parameter can be
calculated as follows:

PVM ¼ max Meditation 1; 2; 3 . . . ;M½ �ð Þ (2)

where M is the number of meditation parameters obtained during the imagination of slowly closing hands
(M = 10). The Threshold Value of Meditation (TVM) is used as a decision-making criterion in meditation
detection, which can be calculated as follows:

TVM ¼ BPM þ PVMð Þ
2

(3)

If Meditation > TVM, Decision is “The pneumatic glove starts to fist”

If Meditation < TVM, Decision is “No action”

The development for brainwave detection algorithm of a similar BCI system is named as the assistive
communication device in persons with severe disability [42].

2.3 Second Stage EEG Analysis

In the second stage, the signal processing of EEG dataset is digitally filtered using a Butterworth filter
between the corresponding Mu and Beta bands, 8 to 30 Hz, as this band contains the highest data related to
hand movement. Butterworth filters have a flat response to zero pulsation, which is ideal for brain wave
analysis. So we filtered the frequency below 8 Hz using the high pass filter and the low pass filter to
subtract the frequencies above 30 Hz using the 4th-order Butterworth Digital filters as shown in Eqs. (4)
and (5) respectively.

HPF ¼ s4

s2 þ 0:7654sþ 1ð Þ s2 þ 1:8478sþ 1ð Þ (4)

LPF ¼ 1

s2 þ 0:7654sþ 1ð Þ s2 þ 1:8478sþ 1ð Þ (5)

In this study, ANNwas used to classify EEG signals to identify hand movement patterns (Open hand and
close hand) from the given dataset. The learning process in ANN can be done using a training algorithm
named Levenberg-Marquardt. The training phase is to provide the network with sample data and adjust
the weights to estimate the activation function in a better way.

In the architecture of ANN, each neuron (j) in the hidden layer sums its input feature vectors (X̂i) after
multiplying by the respective connection weight strengths (wji), and computes its output (yj) as a function of
the sum:
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yj ¼ f
X

wjiX̂ i

� �
(6)

where f is the activation function that is significant to transform the weighted sum of all signals impinging
onto a neuron. The activation function f can be a simple threshold function, a sigmoidal, hyperbolic tangent,
or radial basis function. In this paper, for the hidden layer and the output layer, the activation function f is the
tangent-sigmoid (tansig) function. The sum of squared differences between the desired and actual values of
the output neurons E is defined as:

E ¼ 1

2

X
j

ydj � yj
� �2

(7)

where ydj is the desired value of output neuron j and yj is the actual output of that neuron. Each weight (wji) is
adjusted to reduce E as rapid as possible. The adjustment of weight wji is dependent on the training
algorithm. The Mean Square Error (MSE) algorithm is the defined criterion for the network performance.
When the MSE value between the network output and the target is less than or equal to the set value, the
learning process stops.

To evaluate the performance of the ANN model, the response can be tested through a confusion matrix,
Validation performance and Receiver Operating Characteristic (ROC) curves as shown in Fig. 4. A confusion
matrix was computed to define the accuracy of the classification outcome as shown in Fig. 4a. By considering
the results of the trained networks compared to the expected results (targets), output network, which are
correctly classified according to appropriate reactions, are shown as green squares and red squares. It
indicates an incorrect classification by off-base reactions. The gray squares in the lower right show the
general accuracy, which can be calculated from true positives (TP), false positives (FP), false negatives
(FN) and true negatives (TN) as shown in Eqs. (8)–(10).

Accuracy %ð Þ ¼ TP þ TNð Þ
TP þ FN þ FP þ TNð Þ � 100 (8)

Sensitivity %ð Þ ¼ TP

TP þ FNð Þ � 100 (9)

Specificity %ð Þ ¼ TNð Þ
TN þ FPð Þ � 100 (10)

The validation performance is used to find the lowest MSE value for every iteration in the training
process as shown in Fig. 4b. At the point of lowest MSE value, the training should be stopped, and no
further iteration should be proceeded. It means that no further training is required, and we could get the
wrong results if we perform the training. The ROC curve is another metrics for determining the
assessment accuracy via Area Under the Curve (AUC) scores (AUC scores range between 0 and 1.0) as
shown in Fig. 4c. The AUC scores of discriminations indicate the capability of the ANN to properly
categorize samples. This threshold metric of segregation between both classes determines scores of AUC
below 0.5 (no classification) and 1 (perfect classification). Hence, the upper left corner of the ROC figure
depicts the perfect curve, which indicates the high accuracy of classification. The following scales are
employed to determine the classifier accuracy: excellent = 0.9–1, good = 0.8–0.9, fair = 0.7–0.8,
poor = 0.6–0.7, and fail 0.5–0.6.

2.4 Motor Recovery System

The aim of this research is to design an embedded system that can be used to classify and control
pneumatic glove using the acquired EEG signals. The “STM32” is the embedded system used to fulfill
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the aim of this research. The EEG data is processed through a program that we develop with the help of C+
+/C# programming. The result is given as an input to STM32, which is programmed to process the input data
for controlling the pneumatic glove. The data processing procedure considers the conditions of Meditation
>TVM or Meditation <TVM. The result of the condition generates a signal that controls the air solenoid
valve connected to each finger. The system stages from the data input to device control are shown in
Fig. 5. Fig. 6 shows the hardware composition which consists of 1 microcontroller, 5 air solenoid valves,
1 air pump, 8 tubes, 6 MOSFETs, 1 AC to DC power converter and 5 Pressure sensors.

Figure 4: The performance of ANN response model: (a) Confusion matrix, (b) Validation performance, (c)
Receiver Operating Characteristic (ROC) curves
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2.5 Software Development

The software of the developed motor recovery system consists of several sections which are shown in
the red box in Fig. 7. The red box with number 1 on the top shows the real-time EEG signal as the user
imagines it is working to close the right hand. Besides, the level of meditation is also shown in this
section. The red box with number 2 on the top shows the command settings including the TVM level
device connection, the air pump timing and the constant air pump waiting time. The red box with number
3 on the top shows the working status of the motor recovery system. A red circle means that the system
is working. A green circle means that the system is waiting for the command. Additionally, the user can
choose to inflate the air to the desired finger by clicking on the small square on the hand image.

3 Results

The pneumatic glove test with control systems developed in our study was performed on 10 normal
people (mean age 21 ± 2 years), divided into 5 people to find the suitable TVMs and test the appropriate
TVM pneumatic glove control. This test is based on the satisfaction score of the Likert scale technique as
shown in Tab. 1. The score consists of 5 levels as follows: the range from 4.50 to 5.00, the range from 3.5 to
4.49, the range from 2.5 to 3.49, the range from 1.50 to 2.49 and the range from 1.00 to 1.49. They are
referred as Very Good, Good, OK, Poor and Very Poor, respectively. The TVM calculation results show

Figure 5: Block diagram of the motor recovery system

Figure 6: The control hardware composition
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values between 60 and 80. Hence, each volunteer performs 5 trials to find an average satisfaction score and
perform 4 trials by changing the TVM from the lowest to the highest value as shown in Tabs. 2–6.

The best satisfaction score of TVM is used as a condition for device operation. In experiments, a
volunteer controls a pneumatic glove to successfully grab and release the ball. There are 10 trials in total,
with a time limit of 10 seconds for each trial. The results are shown in Tab. 7.

Figure 7: The software display of the motor recovery system

Table 1: The satisfaction score of the Likert scale technique

Very good Good OK Poor Very poor

5 4 3 2 1

Table 2: The satisfaction score from volunteer 1 experimenting with the pneumatic glove control by changing
the threshold value of meditation (TVM)

Trials Threshold value of meditation

60 65 70 80

1 3 4 4 2

2 4 3 5 3

3 3 3 5 2

4 4 4 5 2

5 3 4 4 3

Average 3.4 3.6 4.6 2.4
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Table 3: The satisfaction score from volunteer 2 experimenting with the pneumatic glove control by changing
the threshold value of meditation (TVM)

Trials Threshold value of meditation

60 65 70 80

1 4 3 5 2

2 4 3 5 2

3 3 3 5 2

4 3 4 5 2

5 3 4 4 2

Average 3.4 3.4 4.8 2.0

Table 4: The satisfaction score from volunteer 3 experimenting with the pneumatic glove control by changing
the threshold value of meditation (TVM)

Trials Threshold value of meditation

60 65 70 80

1 4 3 4 2

2 3 3 5 2

3 3 3 5 2

4 3 4 5 2

5 3 4 5 2

Average 3.2 3.4 4.8 2.0

Table 5: The satisfaction score from volunteer 4 that trials the pneumatic glove control by changing the
threshold value of meditation (TVM)

Trials Threshold value of meditation

60 65 70 80

1 4 3 5 3

2 3 4 5 3

3 3 3 5 2

4 3 4 4 2

5 3 3 4 3

Average 3.2 3.4 4.6 2.6
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Additionally, our study considers the pneumatic glove control through the brain motor cortex. The EEG
data of acquisition from 5 channels (C3, Cz, CP1, P3 and Pz channel) is used to find the classification
performance between open and closed hand. We divided the datasets into 70% as training set, 15% as
validation set and 15% as testing set. Tab. 8 shows the ANN results of 5 channels with overall indicators
including Accuracy, Sensitivity, and Specificity.

Table 6: The satisfaction score from volunteer 5 that trials the pneumatic glove control by changing the
threshold value of meditation (TVM)

Trials Threshold value of meditation

60 65 70 80

1 3 3 5 2

2 4 4 5 2

3 3 4 5 3

4 4 3 4 2

5 4 4 5 3

Average 3.6 3.6 4.8 2.4

Table 7: The pneumatic glove control test with suitable Threshold Value of Meditation (TVM)

Volunteers Trials
(S = Successful, F = Fail)

1 2 3 4 5 6 7 8 9 10

6 S S S S F S S S S S

7 F F S S S S S S S S

8 S F S S S S S S F S

9 S S S S F S S S S F

10 F S F S S S S S S S

Table 8: The ANN results of 5 channels with the overall indicators

Channels Accuracy (%) Sensitivity (%) Specificity (%)

C3 96.2 93 99.3

Cz 96.7 93.7 99.7

CP1 95.3 91.4 99.2

P3 96.7 93.7 99.7

Pz 97.9 99.3 96.4
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At around 413 epochs of the C3 channel, the MSE validation is stable and the MSE is very low at
0.058982. It means that the training should be stopped because of receiving the best training for pattern
recognition. Similarly, for other 4 channels (Cz, CP1, P3 and Pz channels) at different epochs, the best
MSE validation performance is 0.05853, 0.044409, 0.049121 and 0.030337, respectively. Fig. 8 shows
the ROC results of 5 channels when the AUC score is close to 1. This means that the network has given
higher accuracy in hand movement classification.

Figure 8: The ROC results of the 5 channels: (a) C3 channel; (b) Cz channel; (c) CP1 channel; (d)
P3 channel; (e) Pz channel
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4 Discussion

The results showed that the mean satisfaction score of TVMs at 60 and 65 were 3.36, 3.48, respectively,
meaning that pneumatic glove control was at an OK level. Although both TVMs can be controlled at an OK
level, they can be easily performed using some basic concentration in meditation, which creates a sense of
control instability. The average satisfaction score of TVM at 70 is 4.72, which means that the control is a Very
Good level. Due to Very Good level, a higher concentration of meditation is required to control the pneumatic
gloves as they provide stability in control. Considering the average satisfaction score of TVM at 80, the result
shows a score of just 2.28. This means that controlling the pneumatic glove is at a Poor level. Since the value
of TVM is high, it requires a very high concentration of intentions in meditation. Although the volunteers can
successfully control the pneumatic glove, the intent of practicing a consistent high concentration is very
difficult. Therefore, the satisfaction score of 5 volunteers can be concluded that the effectiveness of TVM
is 70. This conclusion is used in pneumatic glove control experiments where conditions for catching and
placing the ball were successful. The results showed that 82% of the volunteers were able to successfully
control the pneumatic gloves. In general, the experience of brain disease negatively affects the mental
health of the patient. Therefore, this success shows that meditation, along with physiotherapy, can be
performed at the same time and is more effective than conventional physiotherapy alone, which is
consistent with the work presented in [38].

Moreover, we have found the feasibility of the brainwave classification in the motor cortex area. Based
on the results, the five-channel ANN model had an average accuracy of 96.56%, with an average sensitivity
of 94.22% and a mean specificity of 98.8% in terms of Open or Close hand. The result is a possible hand
movement in patients with second-stage brain disease. The ANN model then detects the corresponding
brain waves as the user moves by hand. The classification results are then translated into commands and
sent to the pneumatic glove control system to assist the patient in rehab. Physiotherapy with active and
repetitive motor intent can stimulate the activity of the primary cortex. This approach is likely to provide
better recovery results than conventional physiotherapy alone [32–34]. Although the method of the
second stage works. But it is not suitable for real life use as the device is time consuming which can
inconvenience the user.

5 Conclusions

In this research, we have discovered the feasibility of a motor recovery system through the aim of
rehabilitation using BCI technology. In the first stage of brain disease, the patients cannot generate brain
waves related to voluntary movements. Thus, the motor recovery system uses real-time brainwave
detection while the user is intending to execute the movement of pneumatic glove. The results show that
the volunteers were able to successfully control the pneumatic glove with 82% accuracy. Furthermore, we
have found the feasibility of the motor recovery system in the second stage through the brainwave
classification in the motor cortex area. Due to the second stage of brain disease, the patients can generate
some brain waves related to voluntary movements. Based on the results, the five-channel ANN model
had an average accuracy of 96.56% with an average sensitivity of 94.22% and a mean specificity of
98.8% in terms of Open or Close hand. Although the method of the second stage works. But it is not
suitable for use in real life as the installation of the device takes time which can inconvenience the user.
In the future, we will develop the motor recovery system in the second stage by reducing the number of
channels for faster installations to facilitate the users.
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