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Abstract:Multiple ocular region segmentation plays an important role in different
applications such as biometrics, liveness detection, healthcare, and gaze estima-
tion. Typically, segmentation techniques focus on a single region of the eye at
a time. Despite the number of obvious advantages, very limited research has
focused on multiple regions of the eye. Similarly, accurate segmentation of multi-
ple eye regions is necessary in challenging scenarios involving blur, ghost effects
low resolution, off-angles, and unusual glints. Currently, the available segmenta-
tion methods cannot address these constraints. In this paper, to address the accu-
rate segmentation of multiple eye regions in unconstrainted scenarios, a
lightweight outer residual encoder-decoder network suitable for various sensor
images is proposed. The proposed method can determine the true boundaries of
the eye regions from inferior-quality images using the high-frequency information
flow from the outer residual encoder-decoder deep convolutional neural network
(called ORED-Net). Moreover, the proposed ORED-Net model does not improve
the performance based on the complexity, number of parameters or network
depth. The proposed network is considerably lighter than previous state-of-the-
art models. Comprehensive experiments were performed, and optimal perfor-
mance was achieved using SBVPI and UBIRIS.v2 datasets containing images
of the eye region. The simulation results obtained using the proposed ORED-
Net, with the mean intersection over union score (mIoU) of 89.25 and
85.12 on the challenging SBVPI and UBIRIS.v2 datasets, respectively.

Keywords: Semantic segmentation; ocular regions; biometric for healthcare;
sensors; deep learning

1 Introduction

In the last few decades, researchers have made significant contributions to biometrics, liveness detection,
and gaze estimation systems that rely on traits such as the iris, sclera, pupil, or other periocular regions [1].
Interest in these traits is increasing each day because of the considerable importance of ocular region
applications and their significant market potential. Biometric technology has become a vital part of our
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daily life, as unlike conventional methods, these approaches do not require an individual to memorize or
carry any information, such as pins, passwords, or IDs [2]. Iris segmentation has drawn significant
attention from the research community owing to the rich and unique textures of the iris, such as: rings,
crypts, furrows, freckles, and ridges [3]. While ocular traits other than the iris are less frequently studied,
researchers have been actively investigating other periocular regions, such as the sclera and retina, to
collect identity cues that might be useful for stand-alone recognition systems or to supplement the
information generally used for iris recognition [4].

A majority of previous research studies on eye region segmentation were restricted to a single ocular
region at a time, for e.g., focusing only on the iris, pupil, sclera, or retina. In multi-class segmentation,
more than one eye region is segmented from the given input image using a single segmentation network.
Inexplicably, very few researchers have developed multi-class segmentation techniques for the eye
regions, despite several advantages in different applications. Namely, under challenging conditions, the
segmentation performance can be maintained or sometimes be even enhanced when using multiple region
segmentation, as the targeted region can provide useful contextual information about other neighboring
regions [5]. For example, boundary of iris region can provide useful information about the boundary of
the sclera and pupil region. Similarly, the eyelash area presents a constraint for the sclera region [6].
Another potential advantage is that multi-biometric systems can be introduced without cost and
computation overheads, which can work efficiently work for the segmentation of multiple target classes
using a single approach [7].

In this work, we attempt to address the research gaps in the segmentation of multiple eye regions using a
single network, as shown in Fig. 1. The proposed network can segment the input eye image into four main
classes corresponding to the iris, sclera, pupil, and background region using a single model. Over the last few
years, deep learning convolutional neural network (CNN) models witnessed rapid development, to be an
influential method for image processing tasks. CNNs have outperformed conventional methods in a wide
range of applications, such as in medical and satellite image analysis. The proposed method is based on
deep learning models for semantic segmentation in images, specifically on convolutional encoder-decoder
networks. This design approach is based on the recently introduced SegNet architecture [8]. ORED-Net
was developed based on the outer residual encoder-decoder network. The proposed network achieves a
higher accuracy with reduced network depth and fewer number of parameters and layers by implementing
only non-identity outer residual paths from the encoder to the decoder.

Figure 1: Sample images of multi-class eye segmentation, illustrating the input eye image (left), ground
truth image (right). Each color shade represents a different eye region
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ORED-Net is novel in the following four ways:

•ORED-Net is a semantic segmentation network without a preprocessing overhead and does not employ
conventional image processing schemes.

• ORED-Net is a standalone network for the multi-class segmentation of ocular regions.

• ORED-Net uses residual skip connections from the encoder to the decoder to reduce information loss,
which allows the flow of high-frequency information through the model, thus achieving higher
accuracy with a few layers.

• The performance of the proposed ORED-Net model was tested on public datasets collected under
various environments.

In this study, the results obtained with the SBVPI [9] and UBIRIS.v2 [10] datasets for the iris, sclera,
pupil, and background classes are reported. In addition, the proposed model is compared with state-of-
the-art techniques from the literature. The results demonstrate that the proposed method is the most
suitable technique for ocular segmentation, which can be incorporated in recognition procedures.

The rest of the paper is structured as follows. In Section 2, a brief overview of related literature
is provided. In Section 3, the proposed approach and working procedure are described. The results of
the evaluation and analysis are discussed in Section 4. Finally, conclusion and future work are
presented in Section 5.

2 Literature Review

Very few studies have focused on multi-class eye segmentation, particularly for segmenting multiple eye
regions from the given images using a single segmentation model. Recently, Rot et al. [7] reported the
segmentation of multi-class eye regions based on the well-known convolutional encoder-decoder network
SegNet. They studied the segmentation of multiple eye regions such as the iris, sclera, pupil, eyelashes,
medial canthus, and periocular region. This study required post-processing through thresholding strategy
on probability maps and an atrous CNN with the conditional random field detailed in Luo et al. [11]. The
results were extracted using the Multi-Angle Sclera Database (MASD). Naqvi et al. proposed the Ocular-
Net CNN for the segmentation of multiple eye regions, including the iris and sclera. This network
consists of non-identity residual paths in a lighter version of both the encoder and decoder. Residual
shortcut connections were employed with increasing network depth to enhance the performance of the
model [12]. In addition, the iris and sclera were evaluated on different databases. Hassan et al. proposed
the SIP-SegNet CNN for joint semantic segmentation of the iris, sclera, and pupil. A denoising CNN
(DnCNN) was used to denoise the original image. In SIP-SegNet, after denoising with DnCNN, reflection
removal and image enhancement were performed based on contrast limited adaptive histogram
equalization (CLAHE). Then, the periocular information was extracted using adaptive thresholding, and
this information was suppressed using the fuzzy filtering technique. Finally, a densely connected fully
convolutional encoder-decoder network was used for semantic segmentation of multiple eye regions [13].
Various metrics were used to evaluate the proposed method that was tested on the CASIA sub-datasets.

The Eye Segmentation challenge for the segmentation of key eye regions was organized by Facebook
Research with the purpose to developing a generalized model with the condition of least complexity in terms
of the model parameters. Experiments were conducted on the OpenEDS dataset which is a large-scale dataset
of eye images captured by a head-mounted display with two synchronized eye facing cameras [14]. To
address the challenge concerning the semantic segmentation of eye regions, Kansal et al. [15] proposed
Eyenet, Attention-based Convolutional Encoder-Decoder Network for accurate segmentation of four
different eye regions, namely the iris, sclera, pupil and background. Eyenet is based on non-identity
mapping based residual connections in both the encoder and decoder. Two types of attention units and
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multiscale supervision were proposed to obtain accurate and sharp boundary eye regions. Eye segmentation
using a lightweight model was demonstrated by Huynh et al. Their approach involved the conversion of the
input image to grayscale, segmentation of the eye regions with a deep network model, and removal of the
incorrect areas using heuristic filters. A heuristic filter was used to reduce the false positive in the output
of the model [16].

Tab. 1 presents a comparison of the proposed method with other methods for the multi-class
segmentation of ocular regions along with their strengths and weaknesses.

3 Proposed Method for Eye Region Segmentation

3.1 Overview of the Proposed Model

The flowchart of the proposed ORED-Net for semantic segmentation of multiple eye regions is shown in
Fig. 2. The proposed network is a fully convolutional network based on non-identity residual connections
from the encoder network to the decoder network. The input image is fed into the convolutional network
without an initial preprocessing overhead. An encoder and decoder are incorporated in the proposed
ORED-Net for multi-class segmentation of the full input eye images. The functionality of the encoder is
to downsample the given input image until it can be represented in terms of very small features, whereas
the decoder performs the reverse operation. The decoder upsamples the image back to its original
dimensions using the small features produced by the encoder. In addition to the reverse process of

Table 1: Comparison of the proposed method with other multi-class segmentation methods

Methods Strengths Weaknesses

Deep multi-class eye
segmentation based on the
SegNet architecture [7]

—A single model is used for the
segmentation of multiple eye
regions

—A major part of the training
data is artificially created.
—Considerable post-
processing is involved.

Lighter residual encoder-decoder
network, Ocular-Net [12]

—Residual connectivity between
adjacent convolutional layers is
involved

—The method is trained
separately for each region
—Only one ocular region is
addressed at a time

Joint semantic segmentation of
eye regions, SIP-SegNet [13]

—DnCNN is used for denoising
the original images

—Considerable preprocessing
of the original image is
involved.
—Periocular region
suppression is required.

Encoder-decoder structure
based on
A depthwise convolution
operation [16]

—Can be run on any hardware for
real-time implementation with low
computational cost

—Post-processing is performed
via heuristic filtering
—The method was trained and
tested only on the OpenEDS
dataset.

Outer residual encoder-decoder
network, termed as ORED-Net
(Proposed Method)

—Information loss is reduced by
using outer residual skip paths
from the encoder to the decoder.
—The training time is also reduced
because of the outer residual paths.

—Rigorous training is
required.

718 CMC, 2021, vol.66, no.1



downsampling, the decoder plays another very important role of predicting multiple classes, namely the iris,
sclera, pupil, and background. The prediction task is performed using the Softmax loss function and a pixel
classification layer. The class of each pixel in the image is predicted by the pixel classification layer, and the
designated label is assigned.

3.2 Segmentation of Multiple Eye Regions Using ORED-Net

The image in typical encoder-decoder networks is downsampled and represented by very small features,
which basically degrades the high-frequency contextual information. This results in the vanishing gradient
problem for the classification of image pixels as the image is broken down into 7 × 7 sized patches [17]. The
vanishing gradient problem was addressed by introducing identity and non-identity mapping residual blocks.
When a residual block is introduced in a CNN, the accuracy achieved is higher than that of simple CNNs
such as VGGNet [18]. Typically, residual building blocks (RBBs) are based on identity and non-identity
mapping. In identity mapping, the features are directly provided for element-wise addition to perform the
residual operation. In contrast, in the case of non-identity mapping, a 1 × 1 convolution is performed in
each RBB before the features are subject to the element-wise addition. Identity mapping is not considered
in the proposed network. Instead, non-identity mapping is performed by a 1 × 1 convolution layer
through outer residual paths from the encoder to the decoder, as shown in Fig. 3.

Figure 2: Flowchart of the proposed method for eye regions segmentation

Figure 3: Residual building block (RBB) used in the proposed method
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The proposed ORED-Net is executed via different developmental stages to perform the multi-class
segmentation task with good accuracy, as compared with the basic encoder-decoder networks. In the first
stage, a well-known network for segmentation i.e., SegNet-Basic is employed [8]. SegNet-Basic consists
of 13 convolutional layers in both the encoder and decoder parts. This network is reduced to its simplest
possible form by removing 5 convolutional layers from both the encoder and decoder parts of the
network. Hence, the proposed network has only 8 convolutional layers in the encoder and decoder parts.
In addition, each group in the encoder and decoder architectures consists of two convolutional layers,
resulting in a lightweight encoder and decoder convolutional network. ORED-Net ensures the
empowerment of the high-frequency features. In the next preparation stage of the proposed ORED-
Network, non-identity residual connections are introduced from the layers on the encoder side to the
corresponding layers on the decoder side through the outer residual paths, as schematically shown in
Fig. 4. Hence, the residual connectivity introduced in ORED-Net is different from that of the original
ResNet [19] and previously proposed residual-based networks such as Sclera-Net [4]. Tab. 2 highlights
the main differences between the proposed network and previously reported networks such as ResNet
[19] and Sclera-Net [4].

The overall structure of ORED-Net is shown in Fig. 4. Here, four non-identity outer residual paths
(Outer-Residual-Path-1, ORED-P-1 to Outer-Residual-Path-4, ORED-P-4) from the encoder to the
decoder are illustrated. The group containing a convolutional layer of size 3 × 3 and batch normalization
layers is represented as Conv + BN, the activation layer, i.e., rectified linear unit is represented as ReLU,

Table 2: Key architectural differences between ORED-Net and other residual based methods

ResNet [19] Sclera-Net [4] ORED-Net

ResNet uses a large number of
identity mapping and a small
number of non-identity mapping
residual connections.

Convolutional layers in the
encoder and decoder have
identity and non-identity based
residual connectivity.

Convolutional layers in the
encoder and decoder do not have
internal residual connectivity.

ResNet uses the skip path
connection only between adjacent
layers.

There are no outer skip path
connections from the encoder to
the decoder.

The outer skip path connections
from the encoder to the decoder
are non-identity residual
connections.

Different variants of ResNet such as
ResNet-50/101/152 have a
1×1 convolutional layer in each
block.

There are 6 identity and 8 non-
identity residual connections in
the overall encoder-decoder
network.

There are 4 non-identity residual
paths from the encoder to the
decoder.

Different variants of ResNet, such
as ResNet-18/34/50/101, are based
on post activation as a ReLU is used
after the elementwise addition.

In the overall network, a ReLU
is used after the elementwise
addition. Hence, Sclera-Net uses
post activation.

On the decoder side, a ReLU is
used before the elementwise
addition. Hence, ORED-Net uses
pre-activation.

At the end of all the convolutional
layers, average pooling is involved.

Residual connections are
introduced immediately after
max pooling and unpooling in
the encoder and decoder
networks, respectively.

The max-pooling layer is used in
all the convolutional blocks to
provide index information to the
decoder
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the combination of a convolution layer of size 1 × 1 and batch normalization layers is represented as
1 × 1 Conv + BN, the max pooling layer is represented as Max-pool, and the reverse of the max pooling
layer, i.e., the max unpooling layer, is represented as Max-unpool. There are four convolutional groups in
the encoder, with each group consisting of two convolutional layers before each Max-pool, i.e., E-Conv-X
and E-Conv-Y. Similarly, in the decoder, there are four convolutional groups, with each decoder group
also consisting of two convolutional layers after each Max-unpool layer, i.e., D-Conv-X and D-Conv-Y.
Therefore, the 1st convolutional layer of the i-th encoder of the convolutional group is represented as
E-Conv-Xi, and the 2nd convolutional layer of the i-th encoder of the convolutional group is represented
as E-Conv-Yi. Similarly, the 1st convolutional layer of the j-th decoder of the convolutional group is
represented as D-Conv-Xj, and the 2nd convolutional layer of the j-th decoder of the convolutional group
is represented as D-Conv-Yj. Here, the values of i and j are in the range of 1–4. The 1st encoder-decoder
convolutional groups located at the extreme left and right sides of the network are connected through
ORED-Path-1. Similarly, the 2nd convolutional groups located 2nd from the left and right sides of the
convolutional group are connected through ORED-Path-2, as shown in Fig. 4.

Based on Fig. 4, it can be observed that at the decoder part, the 2nd convolutional layer in the 1st
convolutional group receives the element-to-element addition of the residual features RE1 and RD1 ,
wherein these features are from the 1st convolutional layer in the encoder convolutional-group-1
(E-Conv-X1) after the ReLU and the 1st convolution layer in the 1st decoder convolutional group-1
(D-Conv-X1) after the ReLU, respectively, via ORED-Path-1. This can be described by the
following equation:

Figure 4: Deep learning-based eye region segmentation system with light-residual encoder and decoder
network
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A1 ¼ RE1 þ RD1 (1)

Here, A1 is the residual feature with element-to-element addition input to D-Conv-Y1 through ORED-
Path-1. Typically, the outer residual block shown in Fig. 3 can be represented by the following equation:

Ai ¼ REi þ RDj (2)

where Ai is the sum of the features presented to D-Conv-Yj by the outer residual connection, REi represents
the residual features from the 1st convolutional layer of the i-th convolutional group (E-Conv-Xi) after the
ReLU at the encoder part, and RDj represents the residual features obtained from the 1st convolutional layer
of the j-th convolutional group (D-Conv-Xj) after the ReLU on the decoder side. Furthermore, the values of i
and j are between 1 and 4. Thus, to enhance the ability of the network for robust segmentation, each of the
four outer residual paths (ORED-P-1 to ORED-P-4) provides the residual features REi from each of the
convolutional groups from the encoder side to the decoder side. This direct path of the spatial edge
information from the encoder side empowers the residual features of the decoder side, i.e., the RDj features.

3.2.1 ORED-Net Encoder
It can be seen from Fig. 4 that the encoder consists of 4 convolutional groups, with each group

containing two convolutional layers along with the batch normalization and ReLU activation layers. The
core and exclusive characteristic of the ORED-Net encoder is that the spatial information is input to the
subsequent decoder group by the residual paths. These outer residual paths originate after each ReLU
layer on the encoder side. Due to the outer residual connections, better results can be achieved with a
lighter network compared with other networks used for a similar purpose. In ORED-Net, the important
features are downsampled through the Max-pool layers, which also provide pooling indices to the
decoder side. The pooling indices contain the index information and feature map size, which are required
on the decoder side.

The encoder structure of ORED-Net is presented in Tab. 3. It can be observed that there are 4 outer
residual encoder-decoder paths that connect the encoder with the decoder through the non-identity
residual connection shown in Fig. 4. These outer residual encoder-decoder non-identity residual
connections achieve feature empowerment through the spatial information of the preceding layers. The
outer residual encoder-decoder connections originate after the ReLU activation layer on the encoder side
and end next to the ReLU activation layer on the decoder side. The proposed network uses pre-activation
because summation is performed after each ReLU layer on the decoder side. In every convolutional
group on the encoder and decoder sides, an equal number of convolutional layers are present i.e., two
convolutional layers, which makes ORED-Net a balanced network.

Table 3: The ORED-Net encoder based on outer residual encoder decoder paths

Group Size/Name No. of filters Output (w × h × ch)

EC-G-1 3 × 3 × 3/E-Conv-1_1†† 64 224 × 224 × 64

To decoder
1 × 1 × 64/ORED-P-1†

64

3 × 3 × 64/E-Conv-1_2†† 64

Pool-1 2 × 2/Pool-1 – 112 × 112 × 64

EC-G-2 3 × 3 × 64/E-Conv-2_1†† 128 112 × 112 × 128

722 CMC, 2021, vol.66, no.1



Tab. 3 presents the ORED-Net encoder with outer residual paths based on an image with size 224 × 224
× 3. Here, E-Conv, ORED-P, and Pool represents the encoder convolution layers, outer residual encoder-
decoder paths, and pooling layers, respectively. The convolutional layers in the encoder, represented by
the symbol “††”, include both the ReLU activation and batch normalization (BN) layers, while the
convolution layers represented by “†” include only the BN layer. The outer residual encoder-decoder skip
paths, denoted by ORED-P-1 to ORED-P-4, start from the encoder and carry edge information to the
decoder. As the proposed model includes pre-activation, the ReLU activation layer is used prior to the
element-wise addition.

3.2.2 ORED-Net Decoder
The architecture of the ORED-Net decoder shown in Fig. 4 is such that it mirrors the encoder and

performs a similar convolutional operation as that performed by the encoder. The pooling layers of the
encoder provide the size information and indices to the decoder, which are used to maintain the size of
the feature map. In addition, the decoder features are upsampled to ensure that the size of the network
output is the same as that of the input image. Furthermore, the outer residual paths input the features to
the ORED-Net decoder. All the 4 outer residual encoder-decoder paths, i.e., ORED-P-1 to ORED-P-4,
originate from the encoder side and end on the decoder side. Element-to-element addition between the
ORED-P and previous convolution is performed in the addition layers (Add-4 to Add-1), resulting in
features that are useful to the convolutional layers in the next group, as shown in Fig. 4. In this work, as
four classes namely the iris, sclera, pupil, and background, are evaluated for segmentation task, the
decoder produces four masks corresponding to these classes, i.e., the number of filters for the last
convolutional layer in the decoder. The pixel classification and Softmax layers facilitate the pixel-wise
prediction of the network. To implement post activation in the decoder, the outer residual path is
terminated immediately after each ReLU activation layer. For each class, the output of ORED-Net is a
mask, which outputs “0” for the BG class, “100” for the sclera class, “180” for the iris class, “250” for
the pupil class.

Table 3 (continued).

Group Size/Name No. of filters Output (w × h × ch)

To decoder
1 × 1 × 128/ORED-P-2†

128

3 × 3 × 128/E-Conv-2_2† 128

Pool-2 2 × 2/Pool-2 – 64 × 64 × 128

EC-G-3 3 × 3 × 128/E-Conv-3_1†† 256 64 × 64 × 256

To decoder
1 × 1 × 256/ORED-P-3†

256

3 × 3 × 256/E-Conv-3_2† 256

Pool-3 2 × 2/Pool-3 – 32 × 32 × 256

EC-G-4 3 × 3 × 256/E-Conv-4_1†† 512 32 × 32 × 512

To decoder
1 × 1 × 512/ORED-P-4†

512

3 × 3 × 512/E-Conv-4_2†† 512

Pool-4 Pool-4/2 × 2 – 16 × 16 × 512
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4 Results and Discussion

In this work, two-fold cross-validation was performed for training and testing the proposed model. To
this end, two subsets were created from the available images by randomly dividing the collected database.
From the images of 55 participants, two subsets were created, where the data from 28 participants were
used for training and that from 27 participants were used for testing. To avoid overfitting issues, data
augmentation of the training data was performed. To train and test ORED-Net, a desktop computer with
an Intel® Core™ (Santa Clara, CA, USA) i7-8700 CPU @3.20 GHz, 16 GB memory, and an NVIDIA
GeForce RTX 2060 Super (2176 CUDA cores and 8 GB GDDR6 memory) graphics card were
employed. The above-mentioned experiments were conducted using MATLAB R2019b.

4.1 Training of ORED-Net

ORED-Net is based on outer residual paths from the encoder to the decoder for transferring spatial
information from the encoder side to the decoder side. Therefore, high frequency information travels
through the convolutional network that empowers training of this information without a preprocessing
overhead. To train ORED-Net, original images without any enhancement or preprocessing were
employed, and a classical stochastic gradient descent (SGD) method was used as an optimizer. SGD
minimizes the difference between the actual and predicted outputs. During network training, the proposed
model executed the entire dataset 25 times, i.e., 25 epochs, and a mini-batch size of 5 was selected for
the ORED-Net design owing to its low memory requirement. The mini-batch size was determined by the
size of the database. Once training was performed with the entire dataset, one epoch was counted, as
shown in Eqs. (3) and (4).

uiþ1 :¼ mui � xgvi � g
@Si vð Þ
@v

� ����vi > Ti (3)

viþ1 :¼ vi þ uiþ1 (4)

In Eqs. (3) and (4), ui is the momentum variable, vi is the learnt weight at the ith iteration, m is the
momentum, g is the learning rate and x is the weight decay. The average over the ith batch Ti of the

derivative of the object with respect to v, evaluated at vi, is given by
@Si vð Þ
@v

� ����vi > Ti. Using the SGD

method, the optimal training parameters m, g, and x defined in Eqs. 3 and 4 were set to 0.9, 0.001, and
0.0005, respectively.

The ORED-Net model converges very quickly because of the outer residual connections from the
encoder to the decoder. Therefore, the ORED-Net model was only trained for 25 epochs. The mini-batch
size was kept to 5 images during 25 epochs of training with shuffling after each epoch. Here, the training
loss was calculated based on the image pixels in the mini-batch using the cross-entropy loss reported [8].
The loss calculation was based on the cross-entropy loss over all the pixels accessible in the candidate
mini-batch based on the iris, sclera, pupil, or background classes. Moreover, the network convergence
and accuracy were affected due to a higher difference between the number of pixels in different classes
and bias of the network towards learning the dominant class, as described in Arsalan et al. [20]. During
class training, the imbalance among the classes can be removed by assigning an inverse frequency
weighting approach, as defined in Eqs. (5) and (6).

Freq: ¼ Pixels ið Þ
Total Pixels

(5)
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Class Weights ¼ 1

Freq:
(6)

Here, Pixels(i) is the total number of pixels belonging to class ð in the training data. In this study,
ð = 4 represents the four classes namely the iris, sclera, pupil, and background.

4.2 Testing of ORED-Net

4.2.1 Evaluation Metrics
To validate and compare ORED-Net with previous models, the average segmentation error (Erravg),

mean Intersection over Union (mIoU), Precision (P), Recall (R), and F1-score (F) were adopted as
evaluation protocols.

Erravg ¼ 1

MxNxT

XT

k¼1

X
i;j2 M ;Nð Þ

G i; jð Þ � O i; jð Þ
2
4

3
5 (7)

Here, T represents the total number of images with a M � N spatial resolution. G(i, j) and O(i, j) are the
pixels of the mask or ground truth and the predicted labels, respectively.

mIoU ¼ 1

Nc

XNc

i¼1

Nxx ið Þ
Nxx ið Þ þ Nxy ið Þ þ Nyx ið Þ

� �� �
(8)

P ¼ Nxx

Nxx þ Nxy
(9)

R ¼ Nxx

Nxx þ Nyx
(10)

F ¼ 2RP

Rþ P
(11)

Here Nc represents the total number of classes, and Nxx is defined as the true positive where the number
of pixels predicted as x also belong to class x. Similarly, the other terms are defined as the true negatives Nyy,
false positives Nxy, and false negatives Nyx.

4.2.2 Eye Regions Segmentation Results Obtained with ORED-Net
In Figs. 5 and 6, the correct and incorrect results of multi-class eye region segmentation of eye images

obtained with ORED-Net for the SBVPI dataset are illustrated. These pictorial representations follow the
convention of FP (shown in black for each class), FN (shown in yellow for each class), and TP (shown
in green, blue, and red for the iris, sclera, and pupil classes respectively).

4.2.3 Comparison of ORED-Net with Other Methods
The segmentation performance of ORED-Net was compared with previous methods in terms of the

Erravg, mIoU, P, R, and F described in Section 4.4.1. Tab. 4 presents a comparison of the segmentation
performance of existing methods with that achieved by ORED-Net for the SBVPI dataset. The results
demonstrate the superior performance of ORED-Net for eye region segmentation compared with the
current methods, based on the values of Erravg, mIoU, P, R, and F. Comparisons are presented for the iris,
sclera, pupil, and background regions with the current state-of-the-art methods in Tab. 4. Additionally, the
results of mIoU, P, R, and F in Tab. 4 are presented through bar graphs in Fig. 7.
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4.2.4 Eye Region Segmentation with Other Open Datasets Using ORED-Net
To evaluate the segmentation performance of ORED-Net under different image acquisition conditions,

experiments with another publicly available datasets for eye region segmentation, i.e., UBIRIS.v2 dataset,
were included in this study [10]. In previous studies, masks for the iris and sclera were provided for only
300 images [21]. The ground truth images of the iris and sclera were merged and the ground truths for
the pupil were designed to evaluate the proposed ORED-Net model on the iris, sclera and pupil using the
UBIRIS.v2 dataset. Of the 300 images considered in the UBIRIS.v2 dataset, 50% of the images
(150) were used for training, while the remaining 50% (150) were used for testing with two-fold

Figure 5: Examples of good eye region segmentation by ORED-Net for the SBVPI dataset: (a) Original
image, (b) Ground-truth mask, and (c) Predicted mask result obtained with ORED-Net

Figure 6: Examples of bad eye region segmentation by ORED-Net for the SBVPI dataset: (a) Original
image, (b) Ground-truth mask, and (c) Predicted mask result obtained with ORED-Net
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cross-validation. To train ORED-Net with the UBIRIS.v2 dataset, similar data augmentation as that used for
the SBVPI dataset was employed.

In Figs. 8 and 9, the correct and incorrect results of multi-class eye region segmentation of eye images
obtained with ORED-Net for the UBIRIS.v2 dataset are illustrated. This pictorial representation follows the
convention of FP (shown in black for each class), FN (shown in yellow for each class), and TP (shown in
green, blue, and red for the iris, sclera, and pupil classes, respectively). As ORED-Net is powered by outer
residual paths, there are no significant errors in the segmentation of multiple eye region from a challenging
dataset like UBIRIS.v2.

Table 4: Comparison of the proposed method with existing methods for the SBVPI dataset (unit: %)

Evaluation
Metrics

Classes SegNet [8] ScleraNet [4] ORED-Net

Fold 1 Fold 2 Average Fold 1 Fold 2 Average Fold 1 Fold 2 Average

Erravg Background 3.34 1.84 2.59 3.15 1.57 2.36 2.16 1.40 1.78

Iris 1.54 0.89 1.22 1.90 0.68 1.29 1.12 0.62 0.87

Sclera 2.69 1.79 2.24 1.93 1.51 1.72 1.67 1.34 1.51

Pupil 0.19 0.20 0.20 0.31 0.18 0.25 0.33 0.14 0.24

All classes 1.94 1.18 1.56 1.82 0.99 1.40 1.32 0.88 1.10

mIoU Background 95.84 97.67 96.76 96.07 98.12 97.10 97.30 98.24 97.77

Iris 82.99 86.15 84.57 82.59 88.62 85.61 86.80 89.65 88.23

Sclera 81.05 86.44 83.75 85.37 88.58 86.98 87.39 89.49 88.44

Pupil 79.89 79.92 79.91 79.9 84.48 82.19 78.74 86.35 82.55

All classes 84.94 87.55 86.24 85.98 89.95 87.97 87.56 90.93 89.25

P Background 99.72 99.79 99.76 99.73 99.78 99.76 99.70 99.75 99.73

Iris 85.27 89.85 87.56 85.62 92.43 89.03 90.97 93.52 92.25

Sclera 83.53 88.52 86.03 88.35 90.49 89.42 89.95 91.52 90.74

Pupil 92.83 85.16 89.00 80.15 88.57 84.36 79.25 87.87 83.56

All classes 90.34 90.83 90.58 88.46 92.82 90.64 89.97 93.17 91.57

R Background 96.09 97.88 96.99 96.31 98.23 97.27 97.59 98.48 98.04

Iris 96.90 95.44 96.17 95.85 95.24 95.55 94.93 95.28 95.11

Sclera 96.20 97.34 96.77 96.04 97.68 96.86 96.81 97.61 97.21

Pupil 85.51 94.01 89.76 99.66 95.49 97.58 99.19 98.24 98.72

All classes 93.68 96.17 94.92 96.97 96.66 96.81 97.13 97.40 97.27

F Background 97.82 98.80 98.31 97.92 98.99 98.46 98.59 99.11 98.85

Iris 90.05 92.13 91.09 89.19 93.58 91.39 92.39 94.25 93.32

Sclera 89.05 92.66 90.86 91.88 93.88 92.88 93.03 94.41 93.72

Pupil 88.27 87.55 87.91 88.62 90.79 89.71 88.08 92.05 90.07

All classes 91.30 92.79 92.04 91.90 94.31 93.11 93.02 94.96 93.99
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Figure 7: Mean and standard deviation of the proposed method and existing alternatives in terms of mean
intersection over union, precision, recall and F1-score based on SBVPI database

Figure 8: Examples of good eye region segmentation by ORED-Net for the UBIRIS.v2 dataset: (a) Original
image, (b) Ground-truth mask, and (c) Predicted mask result obtained with ORED-Net
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Tab. 5 presents a comparison of the segmentation performance of existing methods with that of ORED-
Net for the UBIRIS.v2 dataset. Additionally, the results of mIoU, P, R, and F in Tab. 5 are presented through
bar graphs in Fig. 10.

Based on the results presented in Tabs. 4 and 5 (Figs. 7 and 10), it can be concluded that the performance
of the proposed ORED-Net framework is consistent with that of state-of-the-art algorithms. A noteworthy
point is that ORED-Net is a novel method that performs multi-class semantic segmentation of different
eye regions such as iris, sclera, and pupil simultaneously, unlike all other existing algorithms that only
address one or two eye region at a time. In addition, the performance of the ORED-Net model was
evaluated on different publicly available datasets for comparisons with other methods, as shown in
Tabs. 4 and 5 (Figs. 7 and 10).

Figure 9: Examples of bad eye region segmentation by ORED-Net for the UBIRIS.v2 dataset: (a) Original
image, (b) Ground-truth mask, and (c) Predicted mask result obtained with ORED-Net

Table 5: Comparison of the proposed ORED-Net method with existing methods for the UBIRIS.v2 dataset
(unit: %)

Evaluation
Metrics

Classes SegNet [8] ScleraNet [4] ORED-Net

Fold 1 Fold 2 Average Fold 1 Fold 2 Average Fold 1 Fold 2 Average

Erravg Background 2.73 1.28 2.01 2.47 1.47 1.97 2.36 1.30 1.83

Iris 1.38 0.69 1.04 1.36 0.87 1.12 1.61 0.77 1.19

Sclera 2.19 1.03 1.61 1.42 1.10 1.26 1.16 0.92 1.04

Pupil 0.42 0.21 0.32 0.30 0.24 0.27 0.27 0.18 0.23

All classes 1.68 0.80 1.24 1.39 0.92 1.15 1.35 0.79 1.07

mIoU Background 96.79 98.46 97.63 97.03 98.23 97.63 97.29 98.44 97.87

Iris 78.43 89.02 83.73 77.99 87.14 82.57 79.98 88.42 84.20

Sclera 64.01 81.06 72.54 73.43 79.76 76.60 77.54 82.54 80.04
(Continued)
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Table 5 (continued).

Evaluation
Metrics

Classes SegNet [8] ScleraNet [4] ORED-Net

Fold 1 Fold 2 Average Fold 1 Fold 2 Average Fold 1 Fold 2 Average

Pupil 63.45 78.62 71.04 71.69 78.29 74.99 74.92 81.86 78.39

All classes 75.67 86.79 81.23 80.04 85.86 82.95 82.43 87.82 85.12

P Background 99.65 99.88 99.77 99.59 99.89 99.74 97.99 99.86 98.93

Iris 87.02 92.92 89.97 84.59 91.64 88.12 87.20 92.21 89.71

Sclera 66.63 83.03 74.83 76.27 81.49 78.88 79.98 84.40 82.19

Pupil 68.43 81.89 75.16 73.76 82.09 77.93 77.90 85.42 81.66

All classes 80.43 89.43 84.93 83.55 88.78 86.17 85.77 90.47 88.12

R Background 97.12 98.56 97.84 97.42 98.34 97.88 99.22 98.58 98.90

Iris 88.60 95.48 92.04 90.95 94.74 92.85 89.14 95.55 92.35

Sclera 94.36 97.24 95.80 95.07 97.48 96.28 95.90 97.45 96.68

Pupil 92.43 95.81 94.12 96.12 95.41 95.77 92.54 95.50 94.02

All classes 93.13 96.77 94.95 94.89 96.49 95.69 94.20 96.77 95.49

F Background 98.36 99.22 98.79 98.49 99.10 98.80 98.60 99.21 98.91

Iris 87.97 94.12 91.05 87.01 92.99 90.00 87.33 93.52 90.43

Sclera 77.45 89.47 83.46 84.08 88.59 86.34 86.77 90.32 88.55

Pupil 76.39 87.61 82.00 82.77 87.44 85.11 84.23 89.46 86.85

All classes 85.04 92.61 88.82 88.09 92.03 90.06 89.23 93.13 91.18

Figure 10: Mean and standard deviation of the proposed method and existing alternatives in terms of mean
intersection over union, precision, recall and F1-score based on UBIRIS.v2 database
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5 Conclusions

In this paper, a novel multi-class semantic segmentation network called ORED-Net was proposed for the
segmentation of eye regions such as the iris, sclera, pupil, and background. ORED-Net is based on the
concept of outer residual connections for transferring spatial edge information directly from the initial
layers of the encoder to the decoder layers. This framework enhances the performance of the network in
the case of bad quality images. ORED-Net has fewer layers, which reduces the number parameters along
with the computation time. The most notable aspects of the proposed ORED-Network are that it achieves
a high accuracy with a lighter network and converges in considerably fewer number of epochs with direct
flow of edge information, resulting in faster training. In ORED-Net, the original image is used for both
training and testing, as no extra overhead is required in the form of preprocessing. ORED-Net is the first
network of its kind that simultaneously segments three important eye regions, namely iris, sclera, and
pupil, without any preprocessing overhead. The robustness and effectiveness of the proposed method
were tested on various publicly available databases for eye region segmentation, including the SBVPI and
UBIRIS.v2 datasets. In future studies, this work will be extended to a robust multimodal biometric
identification system based on multiple eye regions.
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