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Abstract: This paper analyses the effect of surface treatment on fretting fatigue
specimen by numerical simulations using Finite Element Analysis. The processed
specimen refers to artificially adding a cylindrical pit to its contact surface. Then,
the contact radius between the pad and the specimen is controlled by adjusting the
radius of the pit. The stress distribution and slip amplitude of the contact surface
under different contact geometries are compared. The critical plane approach is
used to predict the crack initiation life and to evaluate the effect of processed spe-
cimen on its fretting fatigue performance. Both crack initiation life and angle can
be predicted by the critical plane approach. Ruiz parameter is used to consider the
effect of contact slip. It is shown that the crack initial position is dependent on the
tensile stress. For same type of model, three kinds of critical plane parameters and
Ruiz method provide very similar position of crack initiation. Moreover, the
improved sample is much safer than the flat-specimen.

Keywords: Finite element analysis; surface pit; stress distribution; fretting fatigue;
critical plane approach

1 Introduction

When there are a compression force and a periodic lateral slip between contact bodies, the components
are prone to fretting fatigue. Moreover, fretting fatigue is always accompanied by fretting wear. Compared to
uniaxial fatigue, fretting fatigue has more complex stress concentration and shorter life [1]. For homogeneous
materials, the fretting fatigue performance mainly depends on the surface stress and strain distributions [2].
Previous researchers have divided fretting fatigue damage into two main stages: crack initiation and crack
propagation [3–6]. In addition to load, material, temperature and microstructure, the shape of the contact
surface also has a significant impact on fretting fatigue crack initiation. Previous researchers have
compared the stress profiles of the two most common fretting fatigue contact types: flat-on-flat and
cylinder-on-flat [7]. The experimental crack initiation life prediction studies for these two contact
geometries were also reported in [8]. The difference between the sphere and the cylinder contact was
presented in [9]. In addition to experimental methods, machine learning [10] and phase field methods [11]
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were also used to study fracture problems. And in order to predict the crack initiation life, scholars have
established many empirical theoretical formulas. The critical plane approach is a widely used and
validated method [3,12]. In fact, under cyclic loading, the stresses are continuously changing, and during
the deformation process, the energy is also continuously transforming. When these parameters reach a
critical value, cracks are generated. The critical plane approach is divided into three main categories
based on stress, strain, and energy [3]. For the critical plane approach based on stress, the plane subjected
to the maximum stress amplitude is defined as the critical plane. The strain and energy based critical
plane methods have a similar definition, which will be discussed in a later section. In addition to
experimental research, recent numerical methods are increasingly used by researchers because they can
help to understand the distribution of stress and strain at the contact surface, which is difficult to be
measured by experiments [13,14].

In this study, we propose improvements to the standard experimental geometry (flat-specimen) by
adding artificial cylindrical pits to the specimen [6]. In addition, a finite element model is established to
study the contact stress and strain distributions under different contact configurations. The FE model is
combined with three types of critical plane methods, and the crack initiation life is predicted. The results
show that the specimen after the treatment greatly increases the fretting fatigue crack initiation life, and it
seems that the ratio of the contact stress peak to the contact radius is reciprocal. It is worth noting that the
new designed specimen increases the surface slip amplitude, while it increases the fatigue life, which may
cause more pronounced fretting wear. When the artificial pit diameter changes continuously, the
magnitude of the stress amplitude and the slip amplitude may make the specimen having the best
performance.

2 Theoretical Background

Fretting fatigue is a complex multi-axis fatigue problem. The critical plane method is widely used as a
recognized fatigue crack initiation theory for fretting fatigue problems. In such a method, the crack will
initiate along some special plane having the maximum critical plane parameter or shear strain amplitude.
In this paper, three kinds of critical plane parameters are used, namely stress based Findley FP [15], strain
based Fatemi-Socie FS [16], and energy based Smith–Watson–Topper SWT [17] parameters. The critical
plane parameter of Findley is defined as:

FP ¼ Dsmax

2
þ k1r

max
n (1)

where
Dsmax
2

is the maximum shear stress amplitude of whole cycle on any plane for a point, and rmaxn is the
maximum normal stress on any plane for the same point. k1 is the material fatigue constant and can be
obtained using Eq. (2) as:

rf�1

sf�1
¼ 2

1þ k1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k21

p
(2)

where rf�1 ¼ 114:9 MPa is the fatigue limit under tension and sf�1 ¼ 66:34 MPa is the fatigue limit under
torsion [6,18]. At first, Findley did not propose the equation to predict the initiation life, however later on,
Park et al. [19] proposed the expression shown in Eq. (3):

FP ¼ sf
0ð2NiÞb (3)
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where s0f is the fatigue strength coefficient in shear and b is the fatigue strength exponent in torsion, which are
equal to 482.08 MPa and −0.096, respectively. When the FP parameter reaches the maximum value, the plan,
at which the crack initiates, is the critical plane.

Fatemi and Socie proposed a model that can be applied to materials and load conditions producing shear
mode failures [16]. This model depends on the strain. The maximum shear strain amplitude defines the
critical plane. The Ni can be determined using Eqs. (4) and (5) as:

FS ¼ Dcmax

2
1þ k2

rmax
n

ry

� �
¼ sf 0

G
ð2NiÞb

0 þ c0f ð2NiÞc
0

(4)

k2 ¼ ry
rf

0 (5)

where Dcmax is the maximum shear strain amplitude. b0 ¼ b ¼ �0:096 and c0 ¼ �0:644 are the shear fatigue
strength and shear fatigue ductility exponent, respectively. G is the shear modulus of elasticity. c0f

¼0:2944 is
the shear fatigue ductility coefficient. ry ¼ 383 MPa is the tensile yield strength and r0f ¼ 835 MPa is the
tensile fatigue strength coefficient.

The SWT parameter is energy based critical plane criterion. It is very suitable for tensile fatigue
problems [20]. Later, Socie [17] proposed the final form of SWT parameter as shown in Eq. (6):

SWT ¼ rmax
n

DEn
2

¼ rf
02

E
ð2NiÞ2b þ rf

0
Ef

0 ð2NiÞ bþcð Þ (6)

where DEn is the normal strain amplitude, and E0f ¼ 0:17 is the tensile fatigue ductility coefficient. Through
the formulas of the above three criteria, it can be found that the stress and strain histories in the periodic load
will determine the fatigue of the specimen.

From the above description, it can be found that the critical plane parameters do not consider the
influence of slip between the contact surfaces on the crack initiation. Finally, this paper will use the Ruiz
parameter [21] to evaluate the influence of slip as show in Eq. (7).

F2 ¼ rxxsdx (7)

where rxx is the tensile stress, s is the shear stress and dx is the slip amplitude.

3 Numerical Model

As shown in Fig. 1, a schematic of the classical fretting fatigue specimen is illustrated. The specimen is
flat, which is the general case. This paper aims to study the effect of surface pit treatment on fretting fatigue
crack initiation behavior. Three models are used for comparative studies depending on the degree of surface
pit treatment. Due to the symmetry of the structure in Fig. 1 and in order to save calculation time in the
numerical simulation, usually only half of the structure is considered. The geometry and loading
conditions of the finite element model of the flat specimen, named as type 1, is shown in Fig. 2. The
movement of cylinder pad is fixed horizontally and free vertically. The vertical degrees of freedoms of
the specimen centerline are fixed, and the horizontal ones are free.

The thickness of the pad and specimen are t ¼ 4 mm and the radius of cylinder pad is Rpad ¼ 50 mm.
Next, artificially processed specimen, i.e. adding pits to the surface of the contact area, is also studied. The
size of the pit is selected based on the contact radius between the pad and the specimen under normal
compression contact load. In this study, the material of cylinder pad and specimen is aluminum 2024-T3,
whose elastic modulus and Poisson's ratio are 72.1 GPa and 0.33, respectively.
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As shown in Fig. 2, only the normal force F = 540 N acts at the top of the pad, which is a Hertzian
contact problem [22]. When the pit radius is Rpit, the contact radius R and contact stress distribution on
the contact surface p xð Þ are given by Eqs. (8) and (9), respectively [22].

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F

1� v21
E1

þ 1� v22
E2

� �

pt
1

Rpad
þ 1

Rpit

� �

vuuuuuut (8)

p xð Þ ¼ � 2F

pRt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx� RÞ2

q
(9)

where E1 ¼ E2 ¼ 72:1 Gpa is the elastic modulus of the cylinder pad and the specimen, and v1 ¼ v2 ¼ 0:33
is the Poisson’s ratio.
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Figure 1: The schematic of fretting fatigue problem

F

40 mm

5
m

m

10 m
m

10 mm

Figure 2: Geometry and loading conditions of the fretting fatigue numerical model (flat-specimen)

662 CMC, 2021, vol.66, no.1



Therefore, as shown in Fig. 3, the contact radius of the two components will change with different pit
radius according to the Hertzian contact theory. It is worth noting that for the case where the cylinder is in
contact with the pit, the pit radius Rpit should be taken as a negative value in Eq. (8). In Fig. 3, the relationship
between the true pit radius and the contact radius is shown for the sake of clarity. If the pit radius tends to
infinity the Hertzian contact radius is 0.474 mm. This is the type 1 model, shown as red point in Fig. 3. When
the pit radius is slightly larger than 50 mm, the theoretical contact radius changes drastically, and the
maximum value can reach 5 mm. The main idea of surface processing is to increase the contact area and
reduce the surface stress and strain amplitudes. Thus, adding a pit to the specimen with a radius of
50 mm (same as the pad) is considered first. However, this produces a complete slip, and the calculation
could not converge. Therefore, 50.5 mm (blue point) is selected as the pit radius to facilitate convergence
(in the remaining part of this article, it is named type 3). Its Hertzian contact radius is 4.645 mm. In order
to consider the intermediate state, the 52 mm is used as pit radius for type 2 model, whose theoretical
contact radius is 2.36 mm (green point).

Based on the Hertz contact theory; i.e., Eq. (9), the normal stress on the contact surface is shown in
Fig. 4. The maximum normal stress of each model are -186.965 MPa, -36.66 MPa and -18.6 MPa,
respectively. The contact radius of type 3 is almost 10 times higher than that of type 1, and the maximum
normal stress is one-tenth of the maximum value of type 1.

The artificially processed specimen and FE model of type 2 are shown in Fig. 5b as an example. The FE
model in Fig. 5 is built in Abaqus using plane strain 2D four nodes element (CPE4R). Considering the
computational efficiency and accuracy, the finite element model uses different partitions for discretization.
On the contact surface, the size of the element is 0.002 mm, which allows the mesh to converge and
obtain sufficiently accurate results [2]. The discretization method of type 1 model is similar to that of
type 2 as shown in Fig. 5a. However, for type 3 model, too large contact area will cause too many
elements that affect the calculation convergence. According to our previous convergence study, the mesh
size of the contact area mainly affects the stress accuracy at the contact edge [2]. So for the type 3 model,
this study mainly refines the elements near the contact edge, and the size is equal to 0.002 mm as shown
in Fig. 5c. The contact interaction behavior is defined as a general contact algorithm. The friction
formulation of tangential behavior uses Lagrange multiplier and the coefficient of friction equals to 0.65.
And the normal behavior is defined as hard contact formulation.

Figure 3: The theoretical contact radius change with the pit radius
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Figure 5: (a) The elements near the contact surface for type 1 model. (b) Finite element model of type 2.
(c) The elements near the contact surface for type 3 model
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After the simulation, Python codes were used to do the post-processing in order to determine the stress
and strain history for each node on the contact surface. Matlab codes were used to calculate the critical plane
parameters. The codes would go through every node on the contact surface of the specimen. For every node,
every angle plane would be checked, in order to find out the critical plane. In addition, an angle increment of
1° was used for each iteration.

4 Experimental Validation

In our group at Ghent University, Hojjati-Talemi et al. [6] performed the experimental research on fretting
contact between pad and flat specimen. Fig. 1 shows the schematic of experimental set up. The specimen is
under periodic stretch stress raxial on the righthand side. The top and bottom sides of the specimen are
subjected to compression load from two cylinderical pads. The contact coefficient of friction between pads
and specimen is 0.65 and a normal force F = 540 N acts on the pad. The tangential force Q exerted on the
side face of pad is also a periodic load. The ratios of raxial and Q are 0.1 and −1, respectively. The material
of cylinder pad and specimen is aluminum 2024-T3, which is the same as the one used for the FE model in
Section 3. This kind of material is widely used in the aviation industry because of its good fatigue
characteristics. The specific chemical composition of the material is listed in Tab. 1.

The test was carried out by a servo-hydraulic load frame in order to apply the periodic stretch load on the
specimen with a loading frequency of 10 Hz. All the load conditions of the fatigue experiments and failure
life results are listed in Tab. 2.

Table 1: Chemical composition of the Al2024-T3 [6]

Al 2024-T3 Al Si Fe Cu Mn Mg Cr Zn Ti Others

Max Base 0.5 0.5 4.9 0.9 1.8 0.1 0.25 0.15 0.05

Min 3.8 0.3 1.2

Table 2: Fretting fatigue experimental loading conditions and lives [6]

Test number raxial(MPa) Qmax(N) Nfailure

1 100 155.165 1 407 257

2 115 186.25 1 105 245

3 135 223.7 358 082

4 135 195.55 419 919

5 160 193.7 245 690

6 190 330.15 141 890

7 205 322.1 114 645

8 220 267.15 99 607

9 220 317.845 86 647
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In order to verify the rationality of the critical plane method for predicting crack initiation life, the Nfailure

of all tests is used to validate the numerical model and the prediction methods. However, to study the effects
of the surface pit treatment on fretting fatigue, the load of test 1 is used along with all kind of critical plane
methods for all proposed models.

Firstly, the above method, described in Section 3, is used to predict the crack initiation life of type 1 model
under 9 kinds of tests. Then, combined with the crack propagation part [23], the total fretting fatigue life
prediction for all tests can be compared with the total failure life from experiments as shown in Fig. 6.

From the results, it is shown that the FS parameter gives the best prediction. Although the prediction of
all cases has a certain degree of conservation, all the results are within the factor of ±2 N. Therefore, it can be
concluded that the critical plane method can be used to predict crack initiation life under multiaxial stress
field. Furthermore, it is reasonable to use the critical plane method to estimate the crack initiation lifetime
for the other two types of models.

5 Results and Discussion

Because the stress distribution has a great influence on the fretting fatigue life of the structure, after
applying the cyclic load to the model, the stress distribution in the specimen can be calculated over the
entire period. Moreover, by extracting the results, the fatigue characteristics of the specimen can be
evaluated by three different critical plane parameters. In addition to the contact surface, the stress field
below the surface is also calculated and presented, which allows a more comprehensive comparison of
the two models considered in this paper. In order to compare the effects of three different contact surface
cases on the fretting fatigue initiation, the loading condition of experimental test 1 as listed in Tab. 2 is
used for the three types of model.

5.1 Stress Distribution in the Three Models

The biggest difference between each model is the contact radius. From the resulting stress distribution
shown in Fig. 7, the difference in stress concentration is very obvious. The high stress concentration of type
1 model is near the edge and takes place over a very small contact area. Therefore, it leads to a higher peak
value of stress, not only shear stress but also normal and tensile stresses. However, for the other two models,
the stress distribution takes place in a relatively large contact area. The absolute peak value of the shear stress
is also much smaller than type 1.
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Figure 6: Comparison between prediction and experimental failure life
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Although Fig. 7 shows a macro comparison of three models, it is more important to consider about the
stress on the contact surface. Because it is known from previous experiments and numerical studies that crack

(a)

(b)

(c)

Figure 7: von-Mises stress distribution in the whole model when peak loading (a) type 1, (b) type 2 and
(c) type 3
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usually appears first at the contact edge for type 1 model. This is similar for type 2 and 3 models because the
stress at the contact surface is higher than below the surface.

A comparison of contact surface stress distribution between each model is shown in Fig. 8. From the
results shown in Fig. 8a, we can see that the tensile stress varies greatly along the contact surface. It
reaches a maximum of 290.089 MPa at x = 0.45986 mm for type 1. This point is very close to the
theoretical contact radius (0.462 mm) of the type 1 model. This can also explain to some extent why
cracks always initiate at contact edges.

For the type 2 model, the maximum tensile stress is 157.992 MPa and is located at x = −2.0402 mm, and
the theoretically contact radius is 2.36 mm. This difference is high when it is compared with the type 1. This
means that the initial position of the crack may change greatly when the surface of the sample is treated by a
pit. Moreover, for type 3 model, the maximum tensile stress (133.098 MPa) on the contact surface appears at
x = 3.162 mm, which is smaller than the theoretical contact radius (4.645 mm). The peak value is just a little
higher than the applied stress (100 MPa) on the right-hand side of the specimen. This shows that there is no
particularly significant stress concentration in type 3 model. It also means that for type 3, the crack initiation
position will be closer to the contact center. Moreover, the peak value is less than half of type 1. The slope of
tensile stress on the surface is also smaller than type 1. This indicates that type 3 model will have better
fretting fatigue performance. From the result shown in Fig. 8b, the maximum shear stress of type 1 model
is −98.596 MPa at x = 0.25 mm. This point is close to the boundary between the stick zone and the slip
zone calculated by the analytical solution [2]. In addition, the shear stress changes very sharply around
this point. For type 3 model, both positive and negative shear stresses appear at the contact surface, but
because the contact area is relatively large, the resulting lateral friction is equal to that of type 1. This will
inevitably lead to an absolute peak shear stress that will be much smaller than type 1. The value and
position of peak point are −16.651 MPa and x = −0.78795 mm, respectively. This is likely to produce
lower critical plane parameters.

In general, specimens treated with pits (type 2 and type 3) have larger contact areas and smaller contact
stress peaks. The stress distribution is completely different for the three models.

5.2 Critical Plane Parameter

The stress distribution is important in fretting fatigue analysis, but it just considers the peak load value.
However, the critical plane criteria can take the stress and strain history of the specimen into account [3].
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As shown in Fig. 9, the three critical plane parameters are completely different at the surface of the three
types of models. For the convenience of comparison, all three parameters are presented in dimensionless
form by dividing them by their maximum values. The maximum values of each critical plane parameter
are listed in Tab. 3, including position, critical plane angle and the estimated initial life.
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Figure 9: Dimensionless critical plane parameter distribution along the contact surface: (a) type 1, (b) type
2 and (c) type 3

Table 3: Maximum critical plane parameters

Model CP type x (mm) y (mm) Peak CP value CP angle (�) Ni

Type 1 FP 0.454 0 125.2543 34 625348

SWT 0.454 0 0.67332 −3 552358

FS 0.452 0 0.00437 39 919638

Type 2 FP −2.0362 −0.21512 56.7591 −35 2.382 × 109

SWT −2.0362 −0.21496 0.16708 0 7.568 × 108

FS −2.0342 −0.2152 0.00168 −42 8.972 × 109

Type 3 FP 3.1426 −0.15798 45.0121 35 2.66655 × 1010

SWT 3.1426 −0.15678 0.10838 1 7.20784 × 109

FS 3.1426 −0.15798 0.00127 43 1.42019 × 1011
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Although by comparing the three models, there is a large difference between each other, but for the same
model, the peak positions of the three parameters are very close. It is around x = 0.453 mm, x = −2.0363 mm
and x = 3.1426 mm for type 1, type 2 and type 3 models, respectively. As mentioned in the previous section,
the position of peak tensile stress on the contact surface is x = 0.45986 mm, x = −2.04 mm and
x = 3.1684 mm, respectively. It is clear that for all types of models, all damage parameters are dominated
by tensile stress. In addition, because of the large difference in the stress and strain distribution in the
three models, the maximum value of the critical plane parameter also has a large difference. The peak
value of type 1 is more than two times larger than that of type 3. Therefore, the crack initiation lifetime
also has a huge difference.

Regarding the critical plane angle, SWT parameter is mainly used for crack propagation under tensile
load, so that the starting direction will be perpendicular to the direction of maximum tensile stress.
However, the prediction of the other two kinds of parameters is reasonable compared with the previous
experimental study [4]. When the specimen has been changed by adding pit on its surface, the predicted
crack initiation life of type 2 and type 3 models will change a lot. These results mean that it will never
fracture because the number of cycles to failure is more than 107 cycles (the endurance limit) [24].

5.3 Discussion

Type 2 and type 3 models have contact radii, which are several times larger than that of type 1. From the
results above, it is clear that type 2 and type 3 models will be safer in accordance with the stress distribution
and critical plane methods. On the other hand, it should be noted that the slip range of three models also has a
huge difference as shown in Fig. 10.
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Figure 10: Slip range along the contact surface of both models: (a) type 1, (b) type 2 and (c) type 3
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Even although, the amount of wear debris is not too much obvious in the partial slip regime [25], the
effect of slip range also needs to be checked, because there are ten times differences between type 1 and
type 3. Here, Ruiz parameter that can take contact slip into account is adopted [21]. As shown in Fig. 11,
the maximum absolute Ruiz parameter value indicates the starting position of the crack. It can be seen
that the critical plane method and the Ruiz approach have obtained very consistent predictions. However
although type 3 model has the smallest stress peak and the largest predicted crack initiation life, its
absolute peak of Ruiz parameters is also the largest. Unfortunately, Ruiz’s approach cannot predict fatigue
life, but larger damage parameter values still indicate shorter life. It is worth noting that type 2 model has
much less contact stress than type 1, and its Ruiz parameter is also smaller than type 1. Following this
idea, it will be possible to find a situation between those models to achieve the best performance of
fretting fatigue and fretting wear. This will be the topic of our next study.

6 Conclusions

Based on the above results and discussion, we can draw the following conclusions:

1. Adding pits to the surface of the specimen can seriously affect the stress distribution of the specimen
under fretting fatigue loading condition and significantly reduce the stress concentration. Moreover,
this effect is not linear, and different stress distributions can be obtained with different pit radii.

2. Although the three critical plane parameters have a large difference in the prediction of fretting
fatigue life, the prediction of the crack initiation position is very consistent. The position of the
peak point of CP parameter is very close to the location of peak tensile stress. For type 1 model
(flat-specimen), the crack will initiate from the contact edge. However, for type 2 and type
3 model (pit- specimens), the crack position will shift inside contact area.

3. The critical plane method is acceptable for type 1 model (flat-specimen) compared with the
experimental results. Moreover, FS parameter has the best prediction. The gradient of the SWT
parameter is the largest. Furthermore, Ruiz parameter has similar prediction of initiation location
compared with the critical plane methods.
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Figure 11: Ruiz F2 parameter along the contact surface
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