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Abstract: The estimation of image resampling factors is an important problem in
image forensics. Among all the resampling factor estimation methods, spectrum-
based methods are one of the most widely used methods and have attracted a lot
of research interest. However, because of inherent ambiguity, spectrum-based
methods fail to discriminate upscale and downscale operations without any prior
information. In general, the application of resampling leaves detectable traces in
both spatial domain and frequency domain of a resampled image. Firstly, the
resampling process will introduce correlations between neighboring pixels. In this
case, a set of periodic pixels that are correlated to their neighbors can be found in
a resampled image. Secondly, the resampled image has distinct and strong peaks
on spectrum while the spectrum of original image has no clear peaks. Hence, in
this paper, we propose a dual-stream convolutional neural network for image
resampling factors estimation. One of the two streams is gray stream whose pur-
pose is to extract resampling traces features directly from the rescaled images. The
other is frequency stream that discovers the differences of spectrum between
rescaled and original images. The features from two streams are then fused to con-
struct a feature representation including the resampling traces left in spatial and
frequency domain, which is later fed into softmax layer for resampling factor esti-
mation. Experimental results show that the proposed method is effective on
resampling factor estimation and outperforms some CNN-based methods.

Keywords: Image forensics; image resampling detection; parameter estimation;
convolutional neural network

1 Introduction

Nowadays, with the emergence of convenient and easy-to-use image processing software, non-experts
can easily edit and manipulate digital images without leaving obvious perceptible artifacts, which degrades
the authority of digital images as an evidence for criminal investigation and legal proceedings. Besides the
changes of the image content, some illegal information could be embedded in a digital image [1,2]. Although

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computers, Materials & Continua
DOI:10.32604/cmc.2020.012869

Article

echT PressScience

mailto:luwei3@mail.sysu.edu.cn
http://dx.doi.org/10.32604/cmc.2020.012869
http://dx.doi.org/10.32604/cmc.2020.012869


tampered images usually maintain high visual quality, image manipulation generally destroys inherent
statistical consistency of tampered images and leaves unique traces. In last two decades, digital image
forensics techniques have attracted substantial research interest including image information security [3],
image forensics [4,5], image deblurring [6] and image steganalysis [7].

As a common post-processing part of many manipulations, geometric transformations such as scaling
are widely used to make forgers more realistic, introducing notable resampling traces. Therefore,
resampling detection has drawn more and more attention. A great deal of analysis about resampling
detection and parameter estimation have been proposed in the last two decades. Despite the diversity of
approaches, most of the existing detectors share a common processing framework, which can be
summarized in two steps. First of all, a residual signal from the observed image is extracted for detecting
resampling artifacts. Depending on different foundation of each method, this residual signal can be
obtained by calculating the variance of the difference of the observed image [8], by filtering the image
with a linear filter [9] or by calculating the normalized energy density for different window sizes of
images [10]. Secondly, by exposing the traces hiding in the residual signal, a decision on whether
resampling operation has been applied on the observed image can be rendered. Some approaches apply a
post-processing in the frequency domain to detect the spectral peaks induced by resampling process [11].
On the contrary, some methods avoid the post-processing part and check if the pixel and its neighbors
satisfy the underlying linear structure [12]. Besides, some methods make good use of Support Vector
Machine (SVM) to make the final decision instead of analyzing the traces in frequency or space domain.
For example, Wang et al. [13] calculate the singular value decomposition of the observed image as the
features to train the SVM. More related works can be found in [14–17]. Among all the resampling
detection methods, spectrum-based method [18–21] is one of the most widely used approach which is
capable of resampling factor estimation as well. However, a weakness of spectrum-based methods is
ambiguity which greatly influences the accuracy of factor estimation. According to Gallagher [8], a
spectral peak in the spectrum of an image is corresponding to three resampling factors. Most of existing
spectrum-based methods limit their research on particular region such as downscaling factor estimation or
upscaling factor estimation.

Stimulated by the progress that deep learning has brought to the computer vision [22–24], convolutional
neural networks (CNNs) are widely applied in the field of digital image forensics [25–27]. Instead of directly
feed the investigated images into a network, many of the current deep learning based approaches for forensics
prefer to pre-process the images by a set of filters for content suppression [28], by extracting residual images
[29,30] or by computing several transformation domain representations like DCT coefficients [31,32].
Besides, some CNN based methods tend to adjust the network architecture for better performance on
detection. For example, a novel type of convolutional layer, called constrained convolutional layer, has
been proposed for image forgery detection task [33,34]. Instead of using pre-trained models, this
approach adaptively extracts image manipulation features by forcing CNN to learn prediction-error filters.
In addition, a CNN-based architecture for resampling parameter estimation is proposed [35], which
analyses the sensitivities to mismatch between training and testing data points to failure cases. Moreover,
Cao et al. [36] proposed a dual-stream CNN to capture the resampling trails along different directions.
They concatenate the horizontal and vertical streams to construct more powerful feature representative for
resampling detection and resampling region location.

In this paper, we propose a dual-stream resampling parameter estimation framework which comprises of
gray steam and frequency stream. An input image is first transformed into frequency domain to obtain its
spectrum. Later, the image itself is directly fed into gray stream and its spectrum is fed into frequency
stream to extract high dimension features, respectively. Features from these two streams are then
concatenated to construct finally feature representative which includes the resampling traces left in space
and frequency domain. The frequency stream is used for suppressing the influence of image contents to
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obtain better description of resampling. Our experiment results show the effectiveness of the proposed
method in detecting both upscaled and downscaled factor.

The remainder of the paper is organized as follows. In Section 2, we present a review of prior work on
resampling forensics. In Section 3, we elaborate the architecture of the proposed resampling parameter
estimation network. In Section 4, extensive experimental results and analysis are included. In Section 5,
the conclusions are summarized.

2 Resampling Forensics

To maintain the authenticity of tampered image content, it is often necessary to perform geometric
manipulations like scaling and rotation, which introduce resampling and interpolation. At its core,
resampling maps the pixels of the original image from its source coordinates to a new coordinates of the
resampled image. However, the size of the resampled image generally does not align with the original
image. An interpolation step is thus involved to calculate the value of the pixels that only occurs in the
resampled image. Most of the image interpolation kernels in practical are linearly separable. Without loss
of generality, we consider rescaling a signal with scaling factor � in one dimension, which maps pixels x
from source signal gs xð Þ to a new sampling location to obtain the resampled signal gr xð Þ
gr xð Þ ¼

X
i
h

x

�
� i

� �
gs xð Þ (1)

as a result of linear interpolation with kernel h �ð Þ. In this case, factor � > 1 imply upscaling and � < 1 denote
downscaling.

Most resampling detectors expose the existence of resampling operation by exploiting periodic traces
in resampled signals. Popescu et al. [12] found that the resampling process introduces correlations between
neighboring samples to some extent. In this case, a set of periodic samples that are correlated to their
neighbors can be found in resampled signals, and the period length of the specific statistical
correlations depends on the scaling factor. They employed expectation maximization (EM) algorithm to
estimate probability maps which exposes the periodic patterns hidden in resampled images. Their
method was later improved by Kirchner [9] with a fixed local linear predictor, which is more effective
with higher accuracy.

Compared to the method that directly exposes the periodic patterns of resampled images, Gallagher [8]
proposed a simple and fast approach to detect resampling operation and estimate its scaling factor. He first
computed the second derivative of the resampled images

D2 gr xð Þf g ¼
X

i
D2 h

x

�
� i

� �
gs xð Þ

n o
(2)

where D2 �f g is an operator of the 2nd order derivative. He also found that the variance of the second order
derivative of a resampled image has a periodicity equal to the scaling factor �

V D2 gr xþ �lð Þf g� � ¼ V D2gr xð Þ� �
(3)

where l is an integer and V �f gmeans variance process. Later, this theory had been extended to kth derivative
by Mahdian et al. [11]. In a word, resampled images and their derivatives have inherent periodicity and its
period corresponds to resampling factor.

After extracting the periodical signal from the resampled images by derivatives or linear predictor
residues, a post-processing is then applied in the frequency domain to determine the existence of
resampling operation. In the frequency domain, the spectral peaks are related to the period of periodical
signal which means the presence of spectral peaks is a sign of resampling. Fig. 1 shows the 1-D FFT and
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2-D FFT of an original image and its up-scaled version with a factor of 1.5. As we can see, the resampled
image has two distinct and strong peaks in 1-D FFT and four prominent peaks in 2-D FFT, while the
spectrum of original image has no clear peaks. It is observed that the original image and resampled image
differ in frequency domain.

In addition, the spectral peaks are related to the resampling parameter according to Gallagher. The link
between spectral peaks and resampling parameter can be used for resampling factor estimation. Because of
aliasing, several scaling factor may correspond to the same frequency peaks. Despite this unavoidably
ambiguity, the estimated scaling factor � can be calculated as follows

fpeak ¼

1

�
; � � 2

1� 1

�
; 1,�, 2

1

�
� 1; �, 1

8>>>>><
>>>>>:

(4)

where fpeak denotes the frequency of spectral peaks.

In recent years, it has been shown that deep neural networks are capable of extracting complex statistical
dependencies and widely applied in the field of digital forensics. Bayar et al. [27] proposed constrained
convolutional layer for resampling detection and resampling factor estimation. They used constrained
convolutional layer to suppress an image’s content and adaptively learn manipulation detection features.
This network architecture achieves high performance in manipulation detection including resampling
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Figure 1: The 1-D FFT and 2-D FFT of an original image and its resampled version with a factor of 1.5. (a)
Original image. (b) 1D-FFTof (a). (c) 2D-FFTof (a). (d) Upscale (a) with � ¼ 1:5. (e) 1-D FFTof (d). (f) 2-D
FFT of (d)
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detection. It is worth to note that CNN based resampling approaches [34–36] are capable of discriminating
up-scaling and down-scaling, overcoming the ambiguity of spectrum-based methods.

3 The Proposed Method

In this section, we give an overview of dual-stream CNN architecture for resampling parameter
estimation. Fig. 2 depicts the overall design of our proposed dual-stream CNN architecture. It consists of
four main components. Firstly, in order to capture different dimensional features, the spectrum of the
investigated image is computed to be fed into frequency stream and the investigated image itself is sent
into gray stream. Secondly, the high level representation of image manipulation features is generated by
gray and frequency streams. Thirdly, features of gray and frequency streams are concatenated to construct
comprehensive representation of resampling traces. Finally, the concatenated features are fed into the
softmax layer which is used for multiple classification. A detailed introduction of such four components
are presented below.

3.1 Dual-Stream Input

To better characterize the resampling images, several features are adopted to model richer tampering
artifacts. In our network architecture, we use a dual-stream network to learn rich features for resampling
parameter identification, which contains gray stream and frequency stream. The input of gray stream is
resampled image itself without any post-process. Each input has dimension of 256� 256� 1. With the
help of subsequent convolutional layers, the gray stream is designed to capture characteristic long-ranging
correlation patterns between neighboring pixels, learning feature representation of resampling traces left
in spatial domain. In the meanwhile, the frequency stream receives the spectrum of the investigated
image and learns feature representation of resampling traces left in frequency domain. As discussed in
Section 2, the spectrum of resampled images have prominent peaks which do not occur in un-resampled
images. Hence, the input of frequency stream suppresses the image content and provides detectable
features for training CNN.

Figure 2: Proposed dual-stream CNN architecture. BN means batch normalization. TanH means hyperbolic
tangent layer. GAP means global average pooling. FC means fully connected layer
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3.2 High Level Feature Extraction

In our second conceptual block, we use a set of regular convolutional layers to learn new associations
and higher-level prediction-error features. As shown in Fig. 2, the size of all convolutional kernels is 3� 3.
We can also notice that all convolutional layers are followed by a batch normalization (BN) layer.
Specifically, this type of layer minimizes the internal covariate shift, which changes the input distribution
of a learning system by applying a zero-mean and unit-variance transformation of the data when training
the CNN model. All the BN layers are followed by a nonlinear mapping called activation function. This
type of function is applied to each value in the feature maps of every convolutional layer. In our CNN,
we use TanH activation layer, which is one of the widely used activation in CNN architecture.

3.3 Feature Fusion

The output of the last convolutional layer of previous step is then fed into global average pooling (GAP)
to generate a feature representation of gray and frequency stream. GAP is an operation that calculates the
average output of each feature map in the previous layer. This simple operation reduces the data size
significantly and prepares for the final classification component. It also has no trainable parameters
because GAP just compute the average of each feature map. Each element of the feature representation
corresponds to one feature map of the previous convolutional layer. In this case, the feature map is more
closely related to the classification categories. Compared to use fully connected layer to generate feature
representation, the use of GAP removes a large number of trainable parameters from the model and hence
speeds up the training process, reducing the tendency of over-fitting. Moreover, due to the averaging
operation over the feature maps, the model is more robust to spatial translations. After the feature
representation of gray and frequency stream is given, both feature representation will be concatenated
together to generate the concatenated feature which contains resampling traces left in spatial and
frequency domain introduced by resampling operation.

3.4 Classification

To identify the resampling parameter that an input image has undergone, the concatenated feature is fed
to a classification block which consists of a fully-connected neural network defined by three layers. More
specifically, the first two fully-connected layers contain 256 and 100 neurons respectively. These layers
learn new association between the deepest convolutional features in CNN. The output layer, also called
classification layer, contains eleven neurons for each possible resampling parameter. Fully-connected
layers resemble a feature space transformation which transforms high feature space to low feature space.
It is beneficial for extracting the dominant features in previous high dimensional feature space and
debasing the influence of noise. Through such a classification layer, the probability corresponding to each
category is obtained and the most probable category is the output of the network.

4 Experiments

In this section, extensive experiments are conducted to verify the performance of the proposed method.
We implemented the proposed network using Pytorch framework and trained it on a machine equipped with a
NVIDIA GTX 1070. All the experiments are carried out on a PC with Intel(R) Core(TM) i7 (2.80 GHz)
processer, and 16G memory, running the Windows 10 operating system.

4.1 Experimental Setting

For a quantitative evaluation, we used 1000 uncompressed images (3872� 2592) captured by different
Nikon cameras from the Dresden image database [37], which had been created for digital image forensics.
Each original image was converted to grayscale and then non-overlapping divided into sub-images with the
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size of 256� 256. We took 20,000 patches from it to create our un-resampling dataset. The images were
respectively sampled with eleven different scaling factors in the range of [0.5, . . ., 1.5] using three
interpolation kernels, i.e., bilinear, bicubic and lanczos2. In total, we created a set of 660,000 images.
Among them, we used 440,000 images for training network and the rest were used as our test dataset.
The network trained used the Adam optimizer with random parameter initialization. The learning rate is
0.001 and the weight decay is 0.9.

4.2 Effectiveness Validation of Dual-Stream

In order to assess the performance of gray stream and frequency stream, three cases (using gray stream,
frequency stream, and dual-stream) are studied respectively. As is shown in Fig. 3, the accuracies of gray
stream and frequency stream models are 97.09% and 95.45% on average, respectively. Due to aliasing,
the performance of frequency stream worse than gray stream. Meanwhile, the accuracy of the dual-stream
model is 98.42%, which is the most effective model among three models. It can be seen clearly that the
accuracy of the two one-stream methods are lower than the dual-stream method. The primary reason is
that only one dimension feature is considered in one-stream method. However, different features play
different roles on resampling parameter estimation. For example, the frequency stream is beneficial for
suppressing image content while the gray stream contributes to learn the periodic pattern introduced by
resampling. Thus, when both the gray and frequency features are taken into account, the accuracy rate
will gain 1% improvement. On the basis of the obtained outcomes, it is obvious that the proposed dual-
stream architecture could improve the performance for resampling parameter estimation.

4.3 Comparison with Existing Algorithms

In this experiment, an analysis of the performance comparison between two CNN-based methods
[34,35] and one spectrum-based method [8] is given. To present the performance comprehensively, we
take the Mean Absolute Error (MAE) as performance criterion [19,35]. The performance for varying
resampling factors using different interpolation kernels is shown in Tab. 1, with the best results
highlighted in bold. As we can see, four resampling factor estimation methods achieve better performance
in the images with lanczos2 interpolation kernel compared to bilinear and bicubic interpolation kernel.
This is because the value of the interpolated pixels in resampled images takes most of neighboring pixels
in original images into consideration when using lanczos2 as interpolation kernels. In this case, the pixels
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Figure 3: Scaling factor estimation accuracy for three input schemes: proposed dual-stream, only frequency
stream and only gray stream
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of resampled image become more closely linked to each other so that the period pattern introduced by
resampling becomes more pronounced. In other words, the better the interpolation kernel is used, the
better estimation accuracy can be rendered.

Experiments show that the MAE of our proposed scheme are less than 0.05 for all tested resampling
factors. Typically, it can achieve less than 0.015 on upscaling factors for all the three interpolation
kernels. The performance of our proposed scheme on upscaling factor estimation is similar to the other
three competing methods which demonstrates the ability of the proposed scheme on upscaling factor
estimation. However, the MAE of the other three methods increase in the case of downscaling factor
estimation. On the contrary, although the MAE of the proposed scheme still increase for downscaling
factor estimation, the MAE increment is the smallest compared to the other three methods. For example,
the MAE of Liu et al. [35] increases 0.011 compared with upscaling factor 1.1 and downscaling factor
0.9 using lanczos2 as interpolation kernel. And, in the same case, Bayar et al. [34], Gallagher [8]
increases 0.0096 and 0.085, respectively. While the MAE of the proposed scheme only increases 0.002.
In general, it is very challenging to extract resampling traces in downscaled images since downscaling
operation may result in loss of information about pixel value relationships. That is why the performance
of all the resampling factor estimation methods decrease on downscaling factor estimation. However, the
proposed scheme maintains pretty good performance on downscaling factor estimation. This is because
the frequency stream used in our proposed architecture. The input of the frequency stream is the spectrum
of investigated images which does not depend on the pixel relationships between neighbors, extracting
the resampling traces in frequency domain for resampling factor estimation. Specifically, the MAE of the
proposed scheme on estimating downscaled images with a factor of 0.5 is closed to 0.03, superior to
other methods. This result demonstrates that the proposed scheme works with a relatively stable
performance on scaling factor estimation.

Table 1: Performance in terms of the MAE for scaling estimation with different scaled factor estimation
methods. The investigated images are scaled with a factor of � with three interpolation kernel

Methods �

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Bilinear

Gallagher [8] 0.1016 0.0955 0.0883 0.0762 0.1029 0.0083 0.0119 0.0179 0.0116 0.0127 0.0089

Liu et al. [35] 0.0878 0.0413 0.0227 0.0389 0.0255 0.0488 0.0176 0.0067 0.0183 0.0212 0.0144

Bayar et al. [34] 0.0611 0.0773 0.0402 0.0602 0.0233 0.0062 0.0089 0.0131 0.0044 0.0276 0.0181

Proposed 0.0433 0.0211 0.0119 0.0235 0.0128 0.0046 0.0172 0.0088 0.0175 0.0117 0.0112

Bicubic

Gallagher [8] 0.1061 0.0872 0.0801 0.0694 0.0895 0.0081 0.0098 0.0111 0.0175 0.0167 0.0113

Liu et al. [35] 0.0775 0.0376 0.0165 0.0228 0.0214 0.0411 0.0079 0.0045 0.0134 0.0188 0.0127

Bayar et al. [34] 0.0559 0.0659 0.0334 0.0538 0.0221 0.0059 0.0081 0.0099 0.0034 0.0227 0.0143

Proposed 0.0382 0.0177 0.0115 0.0187 0.0093 0.0031 0.0141 0.0069 0.0128 0.0101 0.0097

Lanczos2

Gallagher [8] 0.1087 0.0894 0.0794 0.0713 0.0922 0.0067 0.0065 0.0189 0.0172 0.0156 0.0075

Liu et al. [35] 0.0734 0.0285 0.0113 0.0218 0.0184 0.0377 0.0067 0.0043 0.0111 0.0167 0.0126

Bayar et al. [34] 0.0522 0.0574 0.317 0.0389 0.0167 0.0067 0.0071 0.0102 0.0031 0.0192 0.0157

Proposed 0.0317 0.0161 0.0112 0.0179 0.0149 0.0034 0.0124 0.0047 0.0087 0.0092 0.0093
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In practice, we have no prior knowledge about which interpolation kernels is used in a resampled image.
Therefore, for further accessing the performance of each resampling factor estimation methods, the accuracy
is also considered in our experiment. Fig. 4 shows the accuracy of different methods on resampling factor
estimation averaging with three interpolation kernels. As we can see, the proposed method achieves
accuracy over 90% for different resampling factor of the test dataset, which means the proposed scheme
has significant classification performance. It can be observed that four methods achieve high classification
performance in upscaling factor estimation. However, the accuracy of the other three competing methods
degrades in downscaling factor estimation. This is because the relationships of most of the pixel value are
destroyed after an image is being downscaled which weakens the period pattern in spatial domain
introduced by resampling. On the contrary, the proposed scheme maintains high classification accuracy
for downscaling factors. Since the frequency stream of the proposed scheme receives the spectrum of
investigated images and suppresses image content, the proposed scheme can still detect the resampling
traces in frequent domain when estimates downscaling factors and maintains high classification accuracy.

5 Conclusions

In this paper, we presented a new CNN-based architecture for resampling factor estimation. A dual-
stream CNN architecture is proposed to extract resampling features from both spatial domain and
frequency domain. The gray stream aims at exposing the periodical patterns left in spatial domain
introduced by resampling operation. Meanwhile, the frequency domain suppresses the image content and
concentrates on spectral peaks which are beneficial for exposing the difference between original images
and resampled images. The experimental results demonstrate that an end-to-end network design is
capable of estimating rescaling factors accuracy, with mean absolute estimation errors well below some
existing resampling factor estimation methods. Besides, the proposed network has the ability to
discriminate upscale and downscale factor, overcoming the inherently ambiguity of spectrum-based
methods. In the future, we would extend our work to detect the presence of resampling and estimate
resampling parameters in the existence of more complex operation chain.
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