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Abstract: The actuaries always look for heavy-tailed distributions to model data
relevant to business and actuarial risk issues. In this article, we introduce a new
class of heavy-tailed distributions useful for modeling data in financial sciences.
A specific sub-model form of our suggested family, named as a new extended
heavy-tailed Weibull distribution is examined in detail. Some basic characteriza-
tions, including quantile function and raw moments have been derived. The esti-
mates of the unknown parameters of the new model are obtained via the
maximum likelihood estimation method. To judge the performance of the maxi-
mum likelihood estimators, a simulation analysis is performed in detail. Further-
more, some important actuarial measures such as value at risk and tail value at risk
are also computed. A simulation study based on these actuarial measures is conducted
to exhibit empirically that the proposed model is heavy-tailed. The usefulness of the
proposed family is illustrated by means of an application to a heavy-tailed insurance
loss data set. The practical application shows that the proposed model is more flexible
and efficient than the other six competing models including (i) the two-parameter
models Weibull, Lomax and Burr-XII distributions (ii) the three-parameter distribu-
tions Marshall-Olkin Weibull and exponentiated Weibull distributions, and (iii) a
well-known four-parameter Kumaraswamy Weibull distribution.

Keywords: Weibull distribution; actuarial measures; heavy-tailed distributions;
estimations; insurance losses

1 Introduction

Modelling insurance risk data using a heavy tailed distribution has obtained more importance and
interest for actuaries. Mostly the Insurance risk data sets are positively skewed, more peaked than meso-
kurtic, unimodal and owns thick right tail; for detail, we refer to [1–3]. To obtain the estimates of
business risk for insurance risk data sets, the heavy tailed distributions are very effective and suitable and
gives more good fit to the data than the other models, see [4–6]. Heavy-tailed distributions have plays a
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major role and have great importance in the actuarial sciences offering the best description of the claim size
distributions; see [7,8].

Realising the significance of these types of data modelling, researchers have shown a great interest in
proposing new statistical models appropriate for modelling such data. A few of such models used for
modelling insurance risk data and risk returns are Weibull, Pareto, Lognormal and gamma distributions,
see for detail [9]. However, there are very few probability models in the literature which has the
capability to model data with the aforesaid features, therefore, it is necessary to propose new models to fit
the insurance risk data, financial returns; for more detail we refer the interested readers to [10–17].

Studying the above literature, we are inspired to develop more dynamic probability models that are
flexible in data fittings. Henceforth, in this article, our main objective is to suggest a new family of
heavy-tailed (for short, NEFHT) models for modelling heavy tailed data. Several characterizations of the
NEFHT distributions will be discussed here. Our research focuses on the special sub case of the NEFHT
distributions, named as, a new heavy-tailed Weibull (NEHTW) distribution. Moreover, the most widely
used maximum likelihood method of estimation is taken into conderation for estimation of the unknown
model parameters. Furthermore, value at risk (VaR) and tail value at risk (TVaR) also computed. At last,
we are concentrating our contemplations on the conclusions obtained from the NEHTW distribution fitted
to insurance data.

The cumulative distribution function (cdf) of the NEFHT distributed random variable say
X, is follows:

G x;r; nð Þ ¼ e1� 1�rF x;nð Þð Þ2 � 1

e1� �rð Þ2 � 1
; r. 0; x; n 2 R; (1)

where �r ¼ 1� r and F x; nð Þ represents the cdf of the baseline model. This might rely mostly upon the vector
parameter nð ÞT. An interesting motivation of the proposed approach is that it has not been adopted yet.
Henceforward, based on the introduced approach, several new model can be derived. The probability
density function (pdf) corresponding to Eq. (1) is

g x; r; nð Þ ¼ 2rf x; nð Þ 1� rF x; nð Þð Þe1� 1�rF x;nð Þð Þ2

e1� �rð Þ2 � 1
; x 2 R (2)

Henceforth, representing X � NEFHT x; r; nð Þ a random variable having density function given in Eq. (2).

The main objective of the present work is to develop and examine the proposed family in order to get
new models appropriate for modelling financial data sets. Its key advantage is that it offers more flexibility to
the resulting models by inserting just one extra parameter instead of including two or three parameters as
appeared in other methods. Based on the NEFHT family of distributions, we introduce a three-parameter
NEHTW model and give a comprehensive description of some of its mathematical properties so that it
will attract the wider applications in insurance sciences and other related areas of research.

The rest of this article is structured in the different sections illustrated as: In Section 2, we have
incorporated the NEHTW model and several plots displayed for its density. Section 3 contains
mathematical properties including quantile function and moments. Section 4 focuses on the estimation
and simulation studies of the recently recommended family. Actuarial measures VaR and TVaR of the
NEHTW model are derived and based on these measures, a simulation study is conducted in Section 5.
Section 6 offers insurance data modeling, While the Section 7 presented the final conclusion of the paper.
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2 A Special Sub-Case

This portion of the article presents a particualr sub case of NEHT family by using the cdf of Weibull
distribution with scale and shape parameters c and a; respectively. The expressions for the cdf and pdf of
the Weibull model is given by F x; nð Þ ¼ 1� e�cxa ; x > 0; n > 0; and f x; nð Þ ¼ acxa�1e�cxa ; respectively.
Where n ¼ a; cð Þ: The NEHTW model’s cdf is provided by the following expression.

G x;r; a; cð Þ ¼ e1� 1�r 1�e�cxað Þð Þ2 � 1

e1� �rð Þ2 � 1
; x � 0; r; a; c > 0; (3)

with density function

g x; r; a; cð Þ ¼ 2arcxa�1e�cxa 1� r 1� e�cxa
� �� �

e1� 1�r 1�e�cxað Þð Þ2

e1� �rð Þ2 � 1
; x > 0: (4)

The pdf plots of the NEHTW model for selected parameter values are presented in Fig. 1.

3 The Mathematical Properties

This section presents some important characterizations of the NEFHT family.

3.1 The Quantile Function

Quantile function is extensively utilized for collecting samples from a specific model. The quantile
function of X, represented byQ uð Þ, where X � NEFHT, is exhibited by the expression given by Eq. (5) as

Q uð Þ ¼ F�1
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� log 1þ u e1� �rð Þ2 � 1

� �� �r

r

8>><
>>:

9>>=
>>;
; (5)

where u 2 0; 1ð Þ: The quantile function is used to measure the effect of the shape parameters on the skewness
and kurtosis. Henceforth, via using Eq. (5), we obtained the expressions for skewness and kurtosis. The
formulas for skewness and kurtosis are presented by the following expressions.

Figure 1: The NEHTW model pdf for specified values of the parameters

CMC, 2021, vol.66, no.1 539



Skewness ¼
Q

1

4

� �
þ Q

3

4

� �
� 2Q

1

2

� �

Q
3

4

� �
� Q

1

4

� � ;
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Usually, these measures are slightly influenced by the extreme observations. For c ¼ 1 and different
values of a and r graphs for the skewness, mean, variance and kurtosis of the proposed model are
sketched in Figs. 2 and 3.

Figure 2: Graphs for the mean and variance of the NEHTW model

Figure 3: Plots for the skewness and kurtosis of the NEHTW model
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3.2 The Moments

Suppose a random variable X has the NEFHT distribution. Then, its rth moments can be obtained as
follows:

l0r ¼
Z 1

�1
xr
2rf x; nð Þ 1� rF x; nð Þð Þe1� 1�rF x;nð Þð Þ2

e1� �rð Þ2 � 1
dx (6)

Using the series, we have

ex ¼
X1

i¼0

xi

i!
(7)

Replacing x by 1� 1� rF x; nð Þð Þ2 in Eq. (7), we have

e1� 1�rF x;nð Þð Þ2 ¼
X1
i¼0

1� 1� rF x; nð Þð Þ2
� �i

i!

e1� 1�rF x;nð Þð Þ2 ¼
X1
i¼0

Xi

j¼0

�1ð Þj
i!

i
j

� �
1� rF x; nð Þð Þ2j;

e1� 1�rF x;nð Þð Þ2 ¼
X1
i¼0

Xi

j¼0

X2j
k¼0

�1ð Þjþkrk

i!
i
j

� �
2j
k

� �
F x; nð Þk (8)

Using Eq. (8) in Eq. (6), we get

l0r ¼ gi;j;k

Z 1

�1
xrf x; nð ÞF x; nð Þkdx� rgi;j;k

Z 1

�1
xrf x; nð ÞF x; nð Þkþ1dx; (9)

where, gi;j;k ¼
P1
i¼0

Pi
j¼0

P2j
k¼0

2 �1ð Þjþkrkþ1

i! e1� �rð Þ2 � 1
� � i

j

� �
2j
k

� �
From Eq. (9), we have

l0r ¼ gi;j;k sr;k � rsr;kþ1

� �
; (10)

where,sr;k ¼
R1
�1 xrf x; nð ÞF x; nð Þkdx and sr;kþ1 ¼

R1
�1 xrf x; nð ÞF x; nð Þkþ1dx

The moment generating function (mgf), say MX tð Þ of the NEFHT distributions can be obtained
as follows

MX tð Þ ¼
X1
r¼0

tr

r!
l0r: (11)

Using Eq. (10) in Eq. (11), the study obtains the mgf of the NEFHT distributions.

4 Estimation of Paramters and Monte Carlo Simulation

The following sub-section provides a well-known approach for estimation of unknown model
parameters, named as maximum likelihood method estimation. Moreover, for assessing the nature of the
maximum likelihood estimators (MLEs), a comprehensive analysis is performed.
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4.1 Parameter Estimation

This section focuses on the estimation of model parameters of the NEFHT family via the ML method of
estimation. Let x1; x2;…; xn be a set of observations of size n from the density function given in Eq. (2).
Corresponding to Eq. (2), the log-likelihood function (LLF) is

L xi; r; nð Þ ¼ n log 2þ n log rþ
Xn
i¼1

log f xi; nð Þ þ
Xn
i¼1

log 1� rF xi; nð Þ½ � þ 1� 1� rF xi; nð Þð Þ2

�
Xn
i¼1

log e1� �rð Þ2 � 1
h i (12)

By differentiating Eq. (12), we can maximize the LLF either directly or via using a computer software.
Here, the MLEs are obtained by adopting the computer software R-program with the “L-BFGS-B”
programme. On behalf of the parameters, the partial derivatives of Eq. (12) are

@

@r
L xi; r; nð Þ ¼ n

r
�
Xn
i¼1

F xi; nð Þ
1� rF xi; nð Þð Þ þ 2F xi; nð Þ 1� rF xi; nð Þð Þ �

Xn
i¼1

2�re1� �rð Þ2

e1� �rð Þ2 � 1
� �; (13)

and

@

@n
L xi; r; nð Þ ¼

Xn
i¼1

@f xi; nð Þ=@n
f xi; nð Þ �

Xn
i¼1

@F xi; nð Þ=@n
1� rF xi; nð Þ þ 2 1� rF xi; nð Þð Þ@F xi; nð Þ=@n: (14)

Equating
@

@r
logLðxi;r; nÞ and @

@n
log Lðxi;r; nÞ to zero, yields the MLEs of r; nð Þ.

4.2 The Monte Carlo Simulation Study

In this portion, a comprehensive Monte Carlo simulation analysis is considered for assessing
the performance of the ML estimates. The simulation study is conducted using the NEHTW distribution.
The generation of random numbers is successfully performed using the inverse cdf procedure
from the NEHTW model through R software. The major steps taken while performing simulation study
are given below:

� We produced different samples of sizes n = 25, 50, … , 1000 from the proposed model.

� MLEs of the parameters are derived.

� MSEs and biases are calculated as

MSE hð Þ ¼ 1

1000

X1000
i¼1

ĥi � h
� �2

and Bias hð Þ ¼ 1

1000

X1000
i¼1

ĥi � h
� �

for w ¼ a;r; cð Þ, respectively.

The numerical results of the simulation study are displayed in Figs. 4–7.

5 The Actuarial Measures

One of the major role of financial science organizations is to determine the market loss. This portion
contains the computation of some essential risk measures named as, VaR and TVaR for suggested model,
which plays a key role in portfolio optimisation under the unpredictable situations.

5.1 The Value at Risk

The VaR is most widely considered by the professionals with in the field of insurance and finance to
determine risk factor. The measure VaR is mostly specified with 90, 95 and 99% of the confidence level,
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Figure 4: Estimated parameters and the MSEs of NEHTW distribution for a ¼ 0:9;r ¼ 0:6 and c ¼ 0:5

Figure 5: Graphical display of the absolute biases and MSE of the NEHTW distribution for
a ¼ 0:9; r ¼ 0:6 and c ¼ 0:5

representing the risk probability equal or greater than X percent of the time. The VaR measure of X is the
qthquantile of its cdf. If X has the density function provided in Eq. (2), then

xq ¼ F�1
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� log 1þ q e1� �rð Þ2 � 1

� �� �r

r

8>><
>>:

9>>=
>>;
: (15)

5.2 The Tail Value at Risk

The TVaR is an essential technique used for the computation of the estimated value of the risk provided
that an event turned out beyond a determined significance level has occurred. Let X be NEFHT distributioned
random variable, then, the TVaR for the variable X can be determined as
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TVaRq Xð Þ ¼ 1

1� q

Z1

VaRq

xg x;r; nð Þdx: (16)

Using Eq. (2) in Eq. (16), we have

TVaRq Xð Þ ¼ gi;j;k
1� q

X1
l¼0

k
l

� �
�

1

a
þ 1;c lþ 1ð Þ VaRq

� �a� �

lþ 1ð Þ1aþ1c1=a
� r

X1
m¼0

k þ 1
m

� �
�

1

a
þ 1; c mþ 1ð Þ VaRq

� �a� �

mþ 1ð Þ1aþ1c1=a

2
664

3
775:

Figure 6: Plots of the estimated parameters and theMSEs of NEHTWdistribution for a ¼ 1:4;r ¼ 0:9 and c ¼ 1

Figure 7: Graphical presentation of the absolute bias and bias for NEHTW distribution using
a ¼ 1:4; r ¼ 0:9 and c ¼ 1
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5.3 The Numeric Risk Measures

We presented a computational analysis of these risk measures using two parameter Weibull and
proposed models for various combination of parameters values with in this section. This process is
carried out as:

� From the Weibull and NEHTW models, random samples of sizes n = 100 and 150 are obtained.

� The parameters are estimated via the MLE approach.

� The process is replicated 1000 times to acquire the numerical figures for VaR and TVaR for comparing
the competitive models.

The TVaR and TVaR measures are reported in Tabs. 1 and 2. In the support of Tabs. 1 and 2, the graphs
of the VaR and TVaR utilizing the proposed and Weibull models are sketched Figs. 8 and 9, respectively.

The comprehensive simulation study is conducted for suggested and Weibull model. A model is
considered to be a heavy tailed, if the risk assessment values are higher. The results given in Tab. 1 and
2 exhibits, that the computed risk figures of the suggested model are higher than the standard Weibull
distribution. The graphical display of the simulation results is portrayed in Figs. 8 and 9, expressing the
suggested model as more heavy tailed than the Weibull distribution.

Table 1: The simulated results for the VaR and the TVaR for n =100

Distribution Parameter Significance level VaR TVaR

Weibull a = 0.5
c = 1

0.700 1.4316 5.7850

0.750 1.8980 6.6115

0.800 2.5582 7.7125

0.850 3.5545 9.2770

0.900 5.2362 11.7596

0.950 8.8633 16.7558

0.990 13.4393 22.7010

0.999 47.1262 62.7459

NEHTW a = 0.5
r = 0.3
c = 1

0.700 28.1151 39.0563

0.750 29.8637 41.0757

0.800 32.0718 43.6145

0.850 35.0287 46.9963

0.900 39.4058 51.9697

0.950 47.4531 61.0298

0.990 56.2074 70.7893

0.999 105.9726 125.1375
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6 Applications

The heavy tailed models are prominently used for measuring the risk values of the data. We have
considered an insurance loss data, in order to assess the performance of the proposed model. Moreover,
the study provides simplified calculations of the actuarial measurements while using the existing data set
for the Weibull and NEHTW models.

Table 2: The simulated results of the VaR and the TVaR for n = 150

Distribution Parameter Significance level VaR TVaR

Weibull a = 1.8
c = 1

0.700 1.0959 1.4754

0.750 1.1803 1.5430

0.800 1.2768 1.6219

0.850 1.3922 1.7184

0.900 1.5417 1.8461

0.950 1.7707 2.0468

0.990 1.9757 2.2305

0.999 2.7486 2.9459

NEHTW a = 1.8
r = 1.2
c = 1

0.700 1.1861 2.3344

0.750 1.3857 2.5447

0.800 1.6336 2.8047

0.850 1.9586 3.1436

0.900 2.4251 3.6278

0.950 3.2421 4.4707

0.990 4.0795 5.3300

0.999 8.1585 9.4824

Figure 8: The graphical display of the results given in Tab. 1
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6.1 Application to the Vehicle Insurance Loss Data

The link given in this subsection, provides the insurance loss data available at http://www.
businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/research/
books/GLMsforInsuranceData/data_sets. To determine the better fit of our suggested model, we have
compared our proposed model with other recognized famous distributions. The competing distributions
contains the Weibull, Exponentiated Weibull (EW), Kumaraswamy Weibull (Ku-W), Marshall-Olkin
Weibull (MOW), Lomax and Burr–XII (BX-II) models.

The maximum likelihood estimates of the model parameters are presented in Tab. 3. Whereas the model
adequacy is evaluated by the well-known measures such as Hannan-Quinn information criterion (HQIC),
Akaike information criterion (AIC), Bayesian information criterion (BIC) and Consistent Akaike
Information Criterion (CAIC). The results of these measures are presented in Tab. 4.

The researchers always interested in a smaller values resulted by the aforesaid measures. Tab. 4
offers the final results of these measures, which illustrates that our suggested NEHTW model delivers a
superior fit than the other competent models. Furthermore, using the insurance loss data, the fitted plots
of the cdf, pdf, Kaplan Meier and probability-probability (PP) plots of the NEHTW models are presented
in Figs. 10 and 11 respectively.

Figure 9: The graphical display of the results provided in Tab. 2

Table 3: The ML estimates of the NEHTW and other compared distributions

Distribution â ĉ ĥ r̂ ĉ k̂

NEHTW 0.7333 0.1101 0.6971

Weibull 0.759 0.106

MOW 1.153 0.085 3.098

EW 0.176 3.389 9.120

Ku-W 0.4387 2.800 31.00 0.175

Lomax 1.690 19.139

B-XII 0.109 3.984
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6.2 Calculation of Actuarial Measures Using Insurance Data

Here we have considered an insurance data set already used in Section 6.1, in order to compute
the numerical values of VaR and TVaR and to compare the Weibull and NEHTW distribtuions. The
obtained results of the VaR and TVaR, while considering different intervals of significance levels are
illustrated in Tab. 5.

Table 4: Computational analysis of the NEHTW and six competing models

Distribution AIC BIC CIAC HQIC

NEHTW 1380.098 1387.129 1381.650 1384.491

Weibull 1432.698 1441.406 1432.719 1436.094

MOW 1410.814 1423.877 1410.856 1415.909

EW 1400.419 1413.482 1397.440 1405.514

Ku-W 1397.006 1414.423 1397.076 1403.799

Lomax 1418.450 1427.158 1418.471 1421.846

B-XII 1467.001 1475.710 1467.022 1470.397

Figure 10: The estimated pdf together with the cdf of the NEHTW distribution

Figure 11: Sketch of the Kaplan Meier and PP plots for the NEHTW model
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From the above discussion, it is clearly shown that while modelling data, as the risk value of a model
increases, the model becomes heavier tailed. From the calculated values given in Tab. 5, it is the evident that
the NEHTW model possess more longer tail than the existing Weibull model, which gives the testimony of
the NEHTW as a strong candidate model for modelling insurance data sets.

7 Conclusion

In this article, we have provided the most flexible and prominent family, named as, new extended family
of heavy tailed distributions. A specific three parameter form of the NEFHT class of distributions, named as,
NEHTW distribution is studied, which has the capability to model heavy tailed data sets. Various basic
statistical characterization have been studied. The estimates of the unknown model parameters are
estimated via the most widely used ML method. A detailed evaluation of the of the simulation study is
done to investigate the efficiency of the estimators. Moreover, the significance of the NEHTW model is
illustrated via a practical application of the insurance loss data set. The practical application demonstrates
that the NEHTW model is a prominent alternate model for modelling insurance losses. We expect that the
new techniques will motivate the researchers for applications in actuarial sciences and many more
different fields of research.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Table 5: The actuarial measures using vehicle insurance loss data

Distribution Parameter Level of significance VaR TVaR

Weibull a = 0.759
c = 0.106

0.700 6.0099 7.8876

0.750 6.6154 9.9982

0.800 8.0933 9.0543

0.850 9.2902 12.0655

0.900 12.5648 13.0724

0.950 12.0919 14.7247

0.975 16.5602 17.1298

0.995 19.9980 21.9845

NEHTW a = 0.733
r = 0.6971
c = 0.110

0.700 8.5092 9.1209

0.750 8.6907 10.9540

0.800 11.7630 12.9234

0.850 14.9879 16.0912

0.900 15.9009 18.0990

0.950 15.0532 21.5432

0.975 21.9120 28.7895

0.995 29.9099 32.4359
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