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Abstract: Owing to the continuous barrage of cyber threats, there is a massive
amount of cyber threat intelligence. However, a great deal of cyber threat intelli-
gence come from textual sources. For analysis of cyber threat intelligence, many
security analysts rely on cumbersome and time-consuming manual efforts. Cyber-
security knowledge graph plays a significant role in automatics analysis of cyber
threat intelligence. As the foundation for constructing cybersecurity knowledge
graph, named entity recognition (NER) is required for identifying critical
threat-related elements from textual cyber threat intelligence. Recently, deep neur-
al network-based models have attained very good results in NER. However, the
performance of these models relies heavily on the amount of labeled data. Since
labeled data in cybersecurity is scarce, in this paper, we propose an adversarial
active learning framework to effectively select the informative samples for further
annotation. In addition, leveraging the long short-term memory (LSTM) network
and the bidirectional LSTM (BiLSTM) network, we propose a novel NER model
by introducing a dynamic attention mechanism into the BiLSTM-LSTM encoder-
decoder. With the selected informative samples annotated, the proposed NER
model is retrained. As a result, the performance of the NER model is incremen-
tally enhanced with low labeling cost. Experimental results show the effectiveness
of the proposed method.

Keywords: Adversarial learning; active learning; named entity recognition;
dynamic attention mechanism

1 Introduction

Owing to the growing number of increasingly fierce attack-defense campaigns in cyberspace,
cybersecurity situation has become more and more severe, resulting in extensive cybersecurity incidents.
Through keep abreast of and then analyzing the past cybersecurity incidents, security analysts can gain a
deep understanding of cyber threats and the entire threat invasion process.

As there exists detailed description about cyber threats in cyber threat intelligence, the analysis and
sharing of cyber threat intelligence would be helpful for organizations to implement proactive
cybersecurity defense. However, such cyber threat intelligence mainly comes from textual sources, like
cybersecurity white papers, blogs, vendor bulletins and hacker forums. Textual cyber threat intelligence
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covers substantial threat-related information and is the primary source for constructing a cybersecurity
knowledge base. However, processing such a massive amount of cyber threat intelligence may
overwhelm security analysts, especially, because discovering threat-related knowledge from cybersecurity
texts manually is cumbersome and time-consuming. To obtain threat-related information automatically,
information extraction is required, converting the textual cyber threat intelligence into structured linked
data and constructing cybersecurity knowledge graph, which can correlate the numerous seemingly
unrelated cyber threat information.

In general, information extraction includes named entity recognition, relation extraction and event
extraction. And information extraction in cybersecurity has attracted considerable attention. The Task 8 of
the SemEval-2018 workshop on semantic evaluation aims to implement semantic extraction from
cybersecurity reports using natural language processing (SecureNLP) [1]. In the SecureNLP task, there
are subtasks on the prediction of entity, relation and attribute in malware texts. Named entity recognition
(NER) is the major task in information extraction and is the premise for the remaining two tasks.
Moreover, NER is also the foundation of constructing knowledge graph and natural language
understanding. NER in cybersecurity focuses on specific and important threat-related classes, such as
software, malware, vulnerability, tool, attack-pattern [2].

Compared with the earlier NER methods that required handcrafted features, deep learning-based
architectures without manual feature engineering have achieved better performance [3]. However, such
deep neural network-based models rely heavily on a profusion of labeled training samples [4]. Moreover,
in the specific domain, there is limited annotation budget and it is difficult to obtain a large-scale labeled
training set. There are two challenges in particular in the annotation of cybersecurity texts: only
cybersecurity practitioners or cybersecurity experts can precisely annotate cybersecurity texts; and,
compared with the corpora of general domain, cybersecurity texts contain more specific entity types,
which requires more manual efforts to complete the annotation.

To address the above issues, active learning is proposed for incrementally selecting more informative
samples from the unlabeled data pool. The selected samples are annotated by oracles, which are then
added to the training set. As a result, we can incrementally train the model to improve its performance
with low labeling cost. However, most traditional active learning algorithms rely on the uncertainty
sampling strategy, which is complex when applied to the NER task due to its abundant tag space. In the
paper, instead of evaluating the prediction uncertainty of the model, we consider the similarity between
labeled samples and unlabeled samples. As a result, we train a discriminator with adversarial learning to
sample the informative sentences, and then propose an adversarial active learning scheme for entity
extraction in cybersecurity. More specifically, with the extracted features from the input sentence, we train
a discriminative model to judge the similarity between the labeled sentence and unlabeled sentence. In
addition, leveraging the long short-term memory (LSTM) network and bidirectional LSTM (BiLSTM)
network, we propose a novel NER framework with the introduction of a dynamic attention mechanism
into the BiLSTM-LSTM encoder-decoder. The two main contributions of this paper are:

1. To solve the lack of labeled corpus for training the NER model in cybersecurity, combining
adversarial learning with active learning, we propose an adversarial active learning framework to
incrementally select informative samples for oracles to be labeled, which reduces the labeling cost
for the training set.

2. For entity extraction from cybersecurity texts, we propose a novel dynamic attention-based BiLSTM-
LSTM model for the NER task, where a dynamic attention mechanism is presented to adaptively
capture dependency between two tokens, and LSTM is used as the tag decoder. Our model
outperforms the mainstream NER models used in cybersecurity.
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2 Related Work

By constructing the cybersecurity knowledge graph, security analysts can query and manage
cybersecurity information intelligently. In addition, with the cybersecurity knowledge graph, security
analysts can obtain a complete view of cybersecurity situation and make more accurate predictions on
threat development, which would be significant for proactively improving cybersecurity. Since
cybersecurity knowledge graph consists of cybersecurity entities and their semantic relations, NER
becomes the fundamental and crucial task.

The earlier NER methods were mainly based on statistical machine learning models, including
maximum entropy model (MEM), hidden Markov model (HMM), support vector machine (SVM), and
conditional random field (CRF). However, such machine learning-based methods rely on considerable
feature engineering, which would result in poor robustness and generalization of models. With the
success of deep learning in image recognition, speech recognition and natural language processing (NLP),
there have been many deep neural networks-based NER methods. Typically, due to capturing the
contextual feature information, bidirectional long short-term memory (BiLSTM) neural networks [5] have
achieve great success in entity extraction. Gasmi et al. [6] utilized BiLSTM-CRF to extract cybersecurity
concepts and entities and achieved promising results. Long et al. [7] applied the BiLSTM-based model to
identify indicators of compromise (IOCs). Satyapanich et al. [8] combined BiLSTM with the attention
mechanism to classify cybersecurity event nugget types and event argument types. Dionísio et al. [9]
introduced a BiLSTM-CRF model to identify named entities from cyber threat-related tweets, which was
used to issue cybersecurity alerts and fill the IOCs. Pingle et al. [2] developed a deep neural network-
based semantic relationship extraction system for cyber threat intelligence, which was aimed at obtaining
semantic triples from open source cyber threat intelligence and then was combined with the security
operation center to further enhance cybersecurity defense.

For most deep neural networks-based NER methods, chain CRF [10] acts as the tag decoder. However,
as an alternative, recurrent neural networks (RNNs) can be also used for decoding tags of sequences [11–13].
Shen et al. [14] employed LSTM as the tag decoder for NER task. They found it can not only yield
performance comparable to CRFs, but also with massive entities, LSTM outperformed CRF for decoding
tags and was faster to train.

Adversarial learning derives from the generative adversarial networks (GANs) [15], which were
originally designed to synthesize images for the purpose of data augmentation. The GAN architecture
consists of a generator and a discriminator, between which there is a two-player minimax game. Through
the alternate training, the generator tries to fool the discriminator with the generated data by capturing the
data distribution of the real sample, while the discriminator judges the input data as true or fake,
distinguishing the generated data from the real data. In early phase, due to generating diverse data in
continuous space, GANs were used as generative models. In essence, GAN provides a framework, within
which the originally poor data can be enhanced through adversarial training between the generator and
discriminator; after the alternate training, a well-trained discriminator can be obtained and further used as
a classifier. In recent years, GANs have been extensively applied into fields other than computer vision,
including speech recognition and natural language processing. Gui et al. [16] implemented part-of-speech
tagging for twitter through an adversarial discriminator to learn common features among the out-of-
domain labeled data, unlabeled in-domain data and the labeled in-domain data. Zeng et al. [17] applied
adversarial learning for distant supervised relation extraction. They used the deep neural network as the
generator to generate the negative class, and trained the piecewise convolutional neural network (PCNN)
as the discriminator to efficiently classify the final relation.

Active learning aims to incrementally select samples for labeling, thus achieving better classification
performance with lower labeling cost [18]. Current researches on active learning include the query-
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synthesizing method and the pool-based method. The query-synthesizing method belongs to the generative
model, which generate informative samples to be labeled. Zhu et al. [19] first proposed the GAN-based active
learning model to generate the samples to be labeled. However, due to difficulties in training the GANmodel,
there is pattern collapse of the generated samples, which cannot capture the data distributions of the real
samples [15]. In addition, it is also difficult for the oracle to label the meaningless generated samples.
Therefore, the performance of query-synthesizing algorithms relies on the quality and diversity of the
generated samples.

Pool-based active learning selects the informative samples from the unlabeled sample pool, which is the
main research focus of active learning. The use of pool-based active learning algorithms has been explored in
many tasks, like image classification, speech recognition, text classification, information retrieval, etc. The
representative sampling strategies of pool-based active learning algorithms include uncertainty-based
sampling [20], information-based sampling [21], ensemble-based sampling [22], expected model change-
based sampling [23] and core set-based sampling [24]. For typical uncertainty-based methods, Houlsby
et al. [25] proposed a Bayesian active learning by disagreement (BALD) model, in which the sampling
function is estimated by the mutual information of the training samples with respect to the model
parameters. Gal et al. [26] measured the uncertainty in the prediction of neural networks by estimating
the relationship between uncertainty and dropout, which was then applied to active learning. Sener et al.
[24] proposed a core set-based active learning algorithm, which minimized the Euclidean distance
between the sampled data points and unsampled data points in the feature space when training the model.
Kuo et al. [27] proposed an ensemble-based active learning model to select samples by measuring the
uncertainty, but the model tends to cause redundant sampling. Shen et al. [14] investigated the application
of active learning for the NER task, and then compared the performance of three typical active learning
models: the least confidence (LC)-based model, the BALD model and the maximum normalized log-
probability (MNLP)-based model.

3 Proposed Method

In the section, we describe the proposed adversarial active learning framework for NER in cybersecurity.
Our proposed model includes two components: the NER module and the adversarial active learning module.
The detailed implementation of the proposed model is described below.

3.1 Dynamic Attention-Based BiLSTM-LSTM for NER

Fig. 1 illustrates the architecture of the proposed novel NER model, depicting the embedding layer,
BiLSTM feature encoding layer, dynamic attention layer and the LSTM tag decoding layer.

3.1.1 Embedding Representation
The embedding layer converts the cybersecurity sentence into the low-dimensional and dense vector,

which is input into the encoder for feature extraction. To obtain high-quality embedding representation, in
this paper, we aggregate massive cybersecurity corpora from recent threat intelligence blogs, security
news, vulnerability descriptions from common vulnerabilities and exposures (CVE) and advanced
persistent threat (APT) reports. Then we use the word2vec algorithm to obtain a 100-dimensional word
embedding, which is looked up when converting the input sentence into embedding representation. The
obtained word embedding representation serves as the word-level feature of the input sentence.

In addition, to complete the embedding representation, we extract character-level features for each word
of the input sentence. Since convolution neural networks (CNNs) can extract local features of the input data
and select the most representative local features through pooling strategy, CNN was exploited to obtain
character features in [28–29], and achieved promising results in corresponding tasks. In this paper, we use
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the same CNN structure as [28] to obtain the character-level feature, which is then concatenated with word
embedding. Finally, the concatenated vector is input into the feature encoder.

3.1.2 BiLSTM Layer
LSTM has been widely used in NLP tasks, which has significant advantages in modeling the sequences.

LSTM integrates the past time-step information and the current input of the sequence to decide the current
output, which solves the problem of long-distance dependency when modeling sequences. LSTM consists of
the forget gate, input gate and output gate, which are used to control information flow. The specific
implementation of LSTM is

it ¼ rðWxixt þWhiht�1 þWcict�1 þ biÞ
ft ¼ rðWxf xt þWhf ht�1 þWcf ct�1 þ bf Þ
ot ¼ rðWxoxt þWhoht�1 þWcoct þ boÞ
ct ¼ it � tan hðWxcxt þWhcht�1 þWccct�1 þ bcÞ þ ft � ct�1
ht ¼ ot � tan hðctÞ

8>>>><
>>>>:

(1)

where it, ft, ot and ct respectively indicates input gate, forget gate, output gate and cell vector, r and tan h are
both nonlinear activation function,W ð�Þ are the weight matrices of the corresponding gate, and bð�Þ are the
bias vectors. In addition, ht indicates the hidden state of LSTM at time step t.
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Figure 1: Dynamic attention-based BiLSTM-LSTM model
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For text mining tasks, it is necessary to make full use of the context information of the sequence. While
LSTM solves the problem of long-distance dependency of sequence modeling, it learns features along the
forward direction, which can only use the past time-step information. Therefore, we employ the BiLSTM,
consisting of the forward LSTM and reverse LSTM, to capture contextual information for the current
time step. Specifically, the forward LSTM outputs hidden state h

!
t, and the reverse LSTM outputs hidden

state h
 

t. Then we concatenate both h
!

t and h
 

t, obtaining ht ¼ ½ h!t; h
 

t�, which denotes the feature
encoding of the current input relying on the context information. H ¼ fh1; h2; . . . ; hTg further indicates
the final feature of the sequence encoded by BiLSTM.

3.1.3 Dynamic Attention Mechanism
Since the self-attention mechanism directly learns the dependencies between any two tokens within the

sequence, it has attained success in machine translation and semantic labeling. Cao et al. [30] applied the self-
attention mechanism to Chinese NER task and achieved improved performance. Specifically, with the feature
encoding H ¼ fh1; h2; . . . ; hTg, the calculation of self-attention follows:

Qi ; Ki ; Vi ¼ HWi
Q ; HWi

K ; HWi
V (2)

ui ¼ AttentionðQi; Ki; ViÞ ¼ softmax
QiKi

Tffiffiffi
d
p

� �
Vi (3)

where with the trainable weight parameters Wi
Q, W

i
K and Wi

V , the feature encoding H is transformed into
query Qi, key Ki and value Vi respectively in h different subspaces. Then, we concatenate all the
subspaces’ vectors, obtaining the vector U ¼ fu1; u2; . . . ; uhg. Finally, with the weight parameter WO the
attention vector A ¼ fa1; a2; . . . ; aTg is expressed as

A ¼ ðu1; u2; . . . ; uhÞ �WO (4)

Although the above self-attention mechanism captures the dependencies between tokens within the
sequence, for different words of the sequence, the attention weight remains unchanged, which may lead
to inaccuracy. Analogous to human beings’ dynamically changed attention, the attention in sequence
modeling should also be dynamic, which would take the difference of attention distribution into
consideration. Referring to [31] and combining the self-attention mechanism, we propose a dynamic
attention mechanism to capture the dependencies. Specifically, in the dynamic attention layer, we first
calculate the self-attention vector. Then the hidden state ht and self-attention vector at are concatenated as
½ht; at�, which is fed into the nonlinear function sigmod for filtering. The result is dot-product with ct,
whose result is further sent to the gate recurrent unit (GRU). The specific calculation denotes

ct ¼ sigmodðWs � ½ht; at�Þ (5)

Et ¼ ct � ½ht; at� (6)

gt ¼ GRUðgt�1; Et; hÞ (7)

where WS and h are parameters. In addition, the output of dynamic attention is denoted as
G ¼ fg1; g2; . . . ; gtg, which is further input into the decoding layer.

3.1.4 LSTM Decoding Layer
Compared with chain CRF for decoding tags, the LSTM decoder can significantly speed up the training

and can achieve performance comparable to chain CRF decoder [16]. In this paper, we refer to [12] and adopt
LSTM for tag decoding. The unit of the LSTM decoder is depicted in Fig. 2.

412 CMC, 2021, vol.66, no.1



At time step t, the input to the LSTM decoder consists of gt obtained from the dynamic attention layer,
hidden state h0t�1 of tag decoding at the previous time step, predicted tag embedding Tt�1 at the previous time
step, and the cell vector c0t�1. The tag decoding is then calculated by

i0t ¼ rðW 0xi � at þW 0hi � h0t�1 þWti � Tt�1 þ b0iÞ
f 0t ¼ rðW 0xf � at þW 0hf � h0t�1 þWtf � Tt�1 þ b0f Þ
c0t ¼ i0t � tan hðW 0xc � at þW 0hc � h0t�1 þW 0tc � Tt�1 þ b0cÞ þ f 0t � c0t�1
o0t ¼ rðW 0xo � at þW 0ho � h0t�1 þW 0co � c0t þ b0oÞ
h0t ¼ o0t � tan hðc0tÞ
Tt ¼ Wts � h0t þ bt

8>>>>>><
>>>>>>:

(8)

where both r and tan h are nonlinear activation functions, and i0t, f
0
t, o
0
t respectively indicates input gate, forget

gate, output gate of LSTM decoder. c0t is cell vector and h0t is the hidden state at time step t. Tt indicates the
predicted tag embedding of the word xt.

With the predicted tag embedding, we utilize the softmax classifier to calculate the tag probability,
obtaining the probability pit of i-th tag for the current word xt,

pit ¼ pðijxtÞ ¼ expðSitÞXN

j¼1 expðS
j
tÞ

(9)

where St ¼ WsTt þ bs indicates the scores on all the tags of the current word xt. Ws is the weight parameter,
and bs is the bias parameter of the softmax classifier. Then the predicted tag of the word xt is obtained by

y ¼ argmax pðijxtÞ (10)

For model training, the loss function of NER can be defined as

LNER ¼
XDj j
j¼1

XLj
t¼1

log ptjðytjstj; �ÞÞ (11)

where Dj j indicates the size of training example, Lj indicates the length of the sentence sj, and ptj is the tag
probability of t-th word in sentence sj.

3.2 Adversarial Active Learning

In the adversarial active learning module, we select informative samples by incrementally evaluating the
similarity between the labeled sample and the unlabeled sample. Based on GANs, we combine the
adversarial learning with active learning. The architecture of adversarial active learning is depicted in Fig. 3.

(2)ct-1
(2)ct

(2)ht-1
(2)ht

gt

Tt-1

Tt

tanhσ tanhσ σ

tanh

Figure 2: Unit of the LSTM decoder
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With the labeled sample set SL and unlabeled sample set SU , we select the labeled sequence sL�SL and
the unlabeled sequence sU�SU as the input into the adversarial active learning module. After the sL and sU

sequences are first transformed into the embedding representation, the same structure of BiLSTM in the
aforementioned NER module is exploited to obtain their feature encoding respectively, obtaining HU and
HL in the learned latent space. As a result, the BiLSTM encoder and the discriminator are shaped as the
adversarial network. Within the adversarial framework, BiLSTM encoder tries to learn feature encoding
to deceive discriminator into predicting all the learned features are from the labeled sample set, while the
discriminator is trained to distinguish the labeled sample and unlabeled sample. After the adversarial
training, the discriminator outputs a similarity score. A high score indicates the unlabeled sample contains
the similar informativeness that the labeled sample covers; a low score indicates there is a large
difference in informativeness between the labeled sample and the unlabeled sample. Therefore, the
unlabeled sample with the low similarity score is annotated by the oracle.

The objective of the BiLSTM encoder in adversarial active learning module is defined as minimizing the
following loss function

LG ¼ �Es�SL ½logðDðsÞÞ� � Es�SU ½logðDðsÞÞ� (12)

The objective of the discriminator is defined as minimizing the following loss function

LD ¼ �ðEs�SL ½logðDðsÞÞ� þ Es�SU ½logð1� DðsÞÞ�Þ (13)

We further comprehensively consider both objectives of the proposed NER module and the generator in
adversarial active learning, obtaining the overall objective of NER in the proposed model as below

L ¼ �
XDj j
j¼1

XLj
t¼1

log ptjðytjstj; �ÞÞ � �Es�SL ½logðDðsÞÞ� � �Es�SU ½logðDðsÞÞ� (14)

where � is a hyperparameter used to balance the two parts of the above objective.

After the description of the proposed model, the operation process is depicted in Algorithm 1.

Figure 3: Architecture of adversarial active learning
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4 Experiment

4.1 Experiment Setting

The data in the experiment was collected from two sources: With the cybersecurity corpora released in
Semeval-2018 Task 8, we selected 500 sentences related to malware, which were annotated and used for
initially training the proposed dynamic-attention-based BiLSTM-LSTM model on the NER task before
using the adversarial active learning algorithm. Then, we selected and annotated 1464 sentences as the
testing set; in addition, we selected 9175 threat intelligence sentences from the AlienVault community,
WeLiveSecurity community, Amazon security-related blogs and APT reports of the past two years. We
annotated such cybersecurity sentences and added them to the initial training set, which we used for
evaluating the performance of the proposed adversarial active learning model.

Note that when annotating the cybersecurity entity in sentences, we refer to the entity types defined in
the Unified Cybersecurity Ontology (UCO 2.0) [2] and implemented the annotation referring to the entity
types, including organization, location, software, malware, indicator, vulnerability, course-of-action, tool,
attack-pattern, and campaign.

In our proposed model, the dimension of word embedding is set to 100, and the dimension of char
embedding is set to 25. In addition, to obtain the char embedding, the number of CNN filters is set to 20,
and the size of CNN kernels is set to 3. In the feature encoding layer, the dimensions of both the forward
LSTM and reverse LSTM are set to 300. And we utilize dropout in the BiLSTM layer to mitigate the
overfitting. In tag decoding layer, the dimension of LSTM is set to 600. In model training, the number of
epochs is set to 100 and the batch size is set to 128. Furthermore, we train the model by stochastic
gradient descent with the initial learning rate of 0.001. The hyperparameters are shown in Tab. 1.

For evaluation, we adopted the conventional criteria for information extraction, including precision (P),
recall (R) and F1-score. And F1-score was used to evaluate the comprehensive performance of model.

4.2 NER Performance Comparison

We first evaluated the proposed novel NER module, called Dynamic-att-BiLSTM-LSTM, which was
trained on the full training set and then compared with four mainstream NER models: CRF, BiLSTM-

Algorithm 1: Cybersecurity entity recognition with adversarial active learning

Input: The initial labeled training set SL and unlabeled set SU . Initialize parameters for the proposed
model.
Output: The well-trained dynamic attention-based BiLSTM-LSTM model.
1: for epoch = 1~N do
2: sample sL�SL:
3: calculate the loss function LNER in Eq. (11)
4: sample sU�SU :
5: calculate the loss function LG in Eq. (12)
6: min(L) in Eq. (14) to update the parameters θNER and θG
7: min(LD) in Eq. (13) to update the parameters θD
8: calculate sim(sL,sU ) with the well trained D , and annotate the sU with low similarity score
9: add the new labeled s to SL,
10: implement the step 3 to retrain the NER model
11: end for
12: return well-trained NER model
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CRF, self-attention based BiLSTM-CRF, and self-attention based BiLSTM-LSTM. The results of the
performance comparison are shown in Tab. 2.

As can be seen in the results, when BiLSTM is combined with the CRF, in which BiLSTM is used as the
feature encoder and CRF is used as the tag decoder, the combined model performs better than the single CRF
model, which may be due to its resolution of the long-distance dependency of BiLSTM. Then, with the char-
level embedding applied to NER, the performance of the BiLSTM-CRF model is enhanced, which shows the
significance of character embedding for identifying the specific token. In addition, when we add the self-
attention mechanism to the BiLSTM-CRF model, it turns out that self-attention contributes to the
enhancement for entity recognition performance. To demonstrate the effectiveness of LSTM for tag
decoding in the self-attention-BiLSTM framework, we compare the LSTM decoder with the conventional
chain CRF. It can be seen that LSTM is lightly better for tag decoding. Our proposed Dynamic-att-
BiLSTM-LSTM model outperforms other NER models, achieving the best F1-score of 88.61%, which
shows that the proposed dynamic attention mechanism can capture more precise dependencies between
two tokens.

Table 1: Hyperparameters of the proposed model

Description of parameters Value

word_embedding_dim 100

char_embedding_dim 25

cnn_filter_num 20

cnn_kernel_size 3

bilstm_e_dim 300

lstm_d_dim 600

epoch 100

batch_size 128

learning_rate 0.001

dropout_rate 0.5

Table 2: Performance comparison of NER models

Model Char embedding P/% R/% F1/%

CRF × 78.69 77.13 77.9

BiLSTM-CRF × 81.76 79.92 80.83

BiLSTM-CRF ○ 84.53 83.35 83.94

Self-att-BiLSTM-CRF ○ 86.38 84.24 85.3

Self-att-BiLSTM-LSTM ○ 87.07 84.45 85.74

Dynamic-att-BiLSTM-LSTM ○ 89.62 87.63 88.61

Note: “○” indicates that the model use char embedding; “×” indicates that the model does not use char embedding.
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4.3 Performance of Adversarial Active Learning

We next evaluated the effectiveness of our proposed active learning algorithm. We used the proposed
adversarial active learning to select samples which were then annotated by the oracle. Then the NER
model was incrementally retrained on the selected set with 100 training epochs. The performance of the
proposed NER model trained on the labeled set, which was sampled by the adversarial active learning
algorithm, was compared with the performance by using the full labeled training set. The results
according to the size of the labeled set are shown in Tab. 3. We can see with the increase in the number
of labeled samples, the model’s performance improves. When the sampled data size reaches 45% of the
full labeled training set, we achieve a good F1-score of 88.27%, which is only 0.34% less than when the
full training set is used, again showing the effectiveness of the proposed adversarial active learning.

We also compared the proposed adversarial active learning model with three conventional uncertainty
sampling-based active learning algorithms, which are based on LC, BALD and MNLP. By using these active
learning algorithms to select the samples to be annotated, we were able to compare the performance of the
proposed NERmodel based on different sizes of labeled data. We recorded the comparison results till the size
of the labeled set reached 45%. The performance comparison is shown in Fig. 4. From the results, we can see
that our proposed adversarial active learning algorithm outperforms the other three methods. Such results
may be due to the complex computation of the three methods when used in sequence labeling task, which
would lead to the inaccurate sampling results. In addition, both MNLP and BALD methods perform
better than the LC-based active learning, with MNLP achieving slightly better results than BALD.
However, in general, the performance of MNLP and BALD in active learning are quite close to each
other. The results show our proposed adversarial active learning method can be used to incrementally
improve the performance of the NER task with low labeling cost.

Table 3: Performance comparison of different size of labeled set

Size of labeled set P/% R/% F1/%

Full labeled set 89.62 87.63 88.61

10% of labeled set 55.27 52.95 54.09

20% of labeled set 75.31 73.03 73.66

30% of labeled set 84.72 82.39 83.54

40% of labeled set 88.75 85.82 87.3

45% of labeled set 89.47 87.1 88.27

Figure 4: Performance comparison of the active learning algorithms on the NER task
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5 Conclusion

Named entity recognition (NER) in cybersecurity is a fundamental task for constructing cybersecurity
knowledge graph, which is significant for data-driven proactive cybersecurity. Representative deep learning-
based NER models have recently achieved promising performance when there is a profusion of labeled data.
However, it is difficult to obtain massive amounts of labeled data for NER in cybersecurity. In addition, the
traditional uncertainty-based active learning algorithms are complex when applied to the sequence data. To
address the issue, this paper proposes an adversarial active learning framework to incrementally improve the
performance of the NERmodel with low labeling cost. Moreover, a novel dynamic attention-based BiLSTM-
LSTM model is presented for the NER task. The model presents a dynamic attention mechanism to
adaptively capture the dependency between two tokens, and employs an LSTM decoder for entity tag
decoding. Finally, we evaluate our proposed model through a series of comparison experiments. The
results show that the proposed NER model attains better performance, and the proposed adversarial active
learning scheme is effective in incrementally selecting informative samples. In future work, we would
like to introduce the syntactic feature into the model to further enhance the model’s performance. In
addition, we plan to build a specific domain dictionary with expert knowledge to rectify the extracted
cybersecurity entities.
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