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Abstract: With the development of wireless mobile communication technology,
the demand for wireless communication rate and frequency increases year by
year. Existing wireless mobile communication frequency tends to be saturated,
which demands for new solutions. Terahertz (THz) communication has great
potential for the future mobile communications (Beyond 5G), and is also an
important technique for the high data rate transmission in spatial information net-
work. THz communication has great application prospects in military-civilian
integration and coordinated development. In China, important breakthroughs have
been achieved for the key techniques of THz high data rate communications, which
is practically keeping up with the most advanced technological level in the world.
Therefore, further intensifying efforts on the development of THz communication
have the strategic importance for China in leading the development of future wire-
less communication techniques and the standardization process of Beyond 5G. This
paper analyzes the performance of the MIMO channel in the Terahertz (THz) band
and a discrete mathematical method is used to propose a novel channel model.
Then, a channel capacity model is proposed by the combination of path loss and
molecular absorption in the THz band based on the CSI at the receiver. Simulation
results show that the integration of MIMO in the THz band gives better data rate
and channel capacity as compared with a single channel.
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1 Introduction

1.1 Motivation

In the past 30 years, the average wireless transmission rate has doubled every 18 months, and the speed
demand has driven the rapid development of wireless communications. The highest frequency band allocated
by China Mobile for the 4G Time Division Long Term Evolution (TD-LTE) network is 2.6 GHz [1].
Although the fifth-generation (5G) mobile communications standard has not yet been completed, the 33-
46 GHz band frequency range of the time-sharing duplex (TDD) network is under consideration.
Currently, 28 GHz frequency is mainly used for the 5G communication test. It can be seen that the
increasing carrier frequency and decreasing wavelength are the development trend of wireless
communication. Terahertz (THz) communication with higher frequency and shorter wavelength are
expected to become the dominant direction of mobile communication in the future [2].

THz communication came into being based on traditional radio communication. The frequency of the
THz wave is 0.1~10 THz, the wavelength is 3 mm~30 μm, and the band is between microwave and far-
infrared light. The long band of the THz wave partially overlaps the band of the millimeter-wave
(wavelength is 10~1 mm), and the short band of the THz wave partially overlaps with the infrared light
(wavelength is 1~760 nm) transition zone [3]. Compared with microwaves, the THz wave frequency is
higher, which can achieve high-speed wireless transmission that microwaves cannot meet, the beam is
narrower, the directionality is better, and the positioning is more accurate. Compared with infrared light,
THz wave can penetrate sand and dust smoke and can work normally in windy or dusty weather. The
photon energy of the THz wave is about one-fortieth of the visible light, and the THz wave is used as
information carrier energy efficiency is high. THz communication has unique properties, such as opaque
atmosphere, high rate, large capacity, good directivity, small scattering, good security and high
confidentiality. Terahertz waves are in the field of transition from electronics to photonics, which
combines the advantages of microwave communication and optical communication. As an extension of
the microwave, terahertz wave provides much wider communication bandwidth than the microwave and
has larger transmission capacity and faster speed. This is the biggest advantage of terahertz
communication. In 2013, the speed of terahertz high-speed wireless communication has exceeded
100 Gbps. Besides, due to the narrow beam, the THz wave has better directivity which can achieve better
confidentiality and anti-interference and anti-interception capabilities. Compared with optical
communication, the transmission of terahertz waves is less affected by harsh environments such as smoke
and sand. Besides, the wavelength of the THz wave is short, so the antenna can be made very small and
the device can be made into a nanometer level to realize communication between nanometer devices.

At present, the research and application in the field of THz communication gets attention worldwide.
Many countries have proposed THz communication research programs. At present, some foreign research
groups have done a lot of research and experiments on THz communication and reported some THz
communication laboratory demonstration systems and have obtained some experience. The main THz
communication research programs are NASA and the US Air Force Scientific Research Institute.
The office of research laboratory (AFOSR) and the Sensor Research Division of the US air force research
laboratory (AFRL) are research projects for compact and innovative SiGe-based THz sources and
detectors for air force imaging, communications and early warning. Another US air force applied research
program is safe short-range atmospheric communications. Besides, the research plan includes the wireless
area networking of terahertz emitters and detectors (WANTED) project funded by the EU fifth framework
program and NanoTera engineering (ballistic nano-devices for THz data processing).

The novel electromagnetic properties exhibited by metamaterials are mainly derived from its sub-
wavelength structure rather than the intrinsic properties of the material. One can adjust the intensity of its
response to electromagnetic waves by changing the shape, size and arrangement of its microstructure
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spectrum range. It is precise because of the unique properties of metamaterials that it provides new ideas and
means for the development and application of THz technology. Since THz technology has great potential
application prospects in recent years, people have made a lot of efforts to fill this “THz gap” and
achieved some important results such as the generation and detection of THz radiation, THz quantum
cascade lasers and so on. However, compared with the rapid development of THz radiation generation
and detection technology, there is lack of considering the control of THz wave technology. The
development of THz devices has been slow such as THz filtering, phase control, switching and
modulation. As we all know, many materials in nature have no electromagnetic response in the THz
band. For a long time, people have not been able to find a suitable material to manufacture corresponding
devices to efficiently control the transmission of THz waves. The realization and rapid development of
metamaterials have brought new opportunities for the development and application of THz technology.

1.2 Literature Review

With the development of nanotechnology, applications based on wireless nano-networks are possible
[4]. The sensor nodes and wireless gateways in the wireless nano-network are composed of nanomaterials
and the size is only micron level with simple processing functions which can perform simple tasks such
as environmental sensing, numerical calculation, data storage etc. [5]. Due to the advantages of small
size, sensor nodes can be used in many special scenarios to complete more elaborate monitoring work
and achieve a wider range of sensor network deployments [6]. At the same time, the terahertz frequency
band has also been proved to be the best frequency band for communication between nano-nodes [7–10].
The application of terahertz communication technology to wireless nano-networks will give creative ideas
for biological applications, real-time control of industrial processes and military fields brand new solution
[11]. Although nano-devices have made great progress in design and manufacturing, their ability to
perform tasks independently is still limited. To expand the capabilities of a single nano-device, it is
necessary to collaborate and share information with other nano-devices. However, how to make these
devices communicate reliably is one of the biggest challenges now facing [12]. In wireless nano-
networks, the communication methods between nano-devices are mainly molecular communication and
nano-electromagnetic wave communication. The main idea of molecular communication is to encode the
transmitted information into a special molecule and then send the information to the designated node
through spontaneous diffusion or active transmission. Nano-electromagnetic wave communication relies
on traditional electromagnetic wave communication for information transmission.

Nano-technology was first proposed by Nobel prize-winning physicist Richard Feynman in his speech
entitled “There is enough space at the bottom”. The application of nanotechnology in the field of wireless
communication has prompted the generation of wireless nano-nodes [13]. Nano-nodes are miniature
sensors that combine the advantages of new nano-materials. It cannot only perform simple tasks such as
sensing, computing, data storage and driving but also identify and detect nanoscale data such as
compound identification of 10 parts per billion, detection of harmful viruses or bacteria, etc. As the
functions of these devices become more and more diversified, it is necessary to control and coordinate
their multiple functions which brings several challenges for nano-scale communication research.

Nano-communication refers to the information transmission technology between nano-nodes. This
method of coordinating and sharing information expands the processing capacity of a single nano-node
[14]. At present, there are still many restrictions on the communication between nano-nodes such as the
size of nano-nodes, design complexity, energy consumption [15] and other issues that will limit its direct
application at the nano-scale. Using new nanomaterials as a new generation of nano-electronic
components will overcome the main shortcomings of existing technologies [16]. These new materials
include graphene and its derivatives namely carbon nanotubes (CNT) which are a new type of
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single-layer sheet-like structure composed of carbon atoms and are considered to be the most representative
of wireless nano-network materials candidate material [17].

The properties of the nanomaterial itself determine its bandwidth, delay and power in communications
and recent research on graphene and its derivatives shows that the terahertz frequency band
(0.1 THz~10.0 THz) is the most suitable for the nanometer’s frequency band of node communication.
Besides, the authors in [18] proposed that a 1 μm long graphene nano-antenna has good performance in
the THz frequency band. The characteristics of the transmission information and the terahertz frequency
band is consistent with the predicted operating frequency of graphene [19].

1.3 Contributions

Because the wavelength of the terahertz band is very short [20] when the nano-nodes communicate in
the terahertz band, a large number of unconnected antennas can be deployed in a limited space to form a large
antenna array which provides convenience for the realization of MIMO [21,22]. At present, most researches
on terahertz channels are about energy acquisition and information capacity analysis [23–25], while there are
few studies on multiple inputs and multiple-output (MIMO) in the terahertz band. Because of this, this paper
proposes a MIMO model suitable for the terahertz frequency band and analyzes the channel model with
traversal capacity as a metric [26,27].

1.4 Paper Organization

The rest of the paper is outlined as follows. In Section 2, the channel model of MIMO in the THz band is
described. In Section 3, the MIMO-THz channel capacity is analytically derived and discussed. In Section 4,
the numerical results are analyzed and evaluated while Section 5 concludes the paper.

2 Channel Model

The bandwidth of the terahertz band is very large which support the terabit transmission rate per second
and the terahertz band itself has frequency selectivity [28]. In nano-communications, due to the limitations of
the energy of nano-devices and other factors, the distance between the sending end and the receiving end is
relatively close, but the antenna spacing is much smaller than the distance between the sending end and the
receiving end. In the short-distance transmission, the anti-interference of the terahertz band is very good.
Because of the above characteristics, its MIMO channel is modeled as follows. The simplified MIMO
channel model in the terahertz channel is shown in Fig. 1.

Figure 1: Simplified MIMO channel in terahertz communication
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As shown in Fig. 1, it is assumed that there areM antennas at the transmitting end and N antennas at the
receiving end. The signals transmitted on the antenna array can be expressed as

x tð Þ ¼ x1 tð Þx2 tð Þ…xM tð Þ½ �T (1)

among them, the symbol �½ �T represents the transpose of the matrix and xj tð Þ is the signal of the jth antenna
port at the transmitting end.

Similarly, the signals on the antenna array at the receiving end are

y tð Þ ¼ y1 tð Þy2 tð Þ…yN tð Þ½ �T (2)

Among them, yi tð Þ is the signal of the ith antenna port at the receiving end. In signal transmission, there
is the influence of noise factors which can be expressed as

w tð Þ ¼ w1 tð Þw2 tð Þ…wN tð Þ½ �T (3)

Among them, wk tð Þ is the noise signal on the k-the channel. Besides, the channel gain moment An on the
nth path is [29,30]

An ¼
a11 n½ �
a21 n½ �

..

.

aN1 n½ �

a12 n½ �
a22 n½ �

..

.

aN2 n½ �

� � �
� � �
� � �
� � �

a1M n½ �
a2M n½ �

..

.

aNM n½ �

2
6664

3
7775 (4)

Among them, aij n½ � represents the channel coefficient of the jth antenna at the sending end and the ith
antenna at the receiving end on the nth path, which can be calculated by the following expression

aij ¼
ffiffiffiffiffi
Pj

p
Bvij (5)

Among them, Pj is the average power of the signal on the transmitter xj tð Þ; B is a composite matrix of
i � j; vij is the weight of the channel from the jth antenna at the sending end to the ith antenna at the receiving
end. It is a complex Gaussian random variable, where E vij

�� ��2n o
¼ 1, and the mean value is 0. We set the

total number of MIMO channel paths in terahertz communication to L and the delay to r. In summary,
the signal relationship between the discretized receiver and transmitter can be expressed as

y tð Þ ¼
XL
n¼1

Anx t � rð Þ þ w tð Þ (6)

3 Channel Capacity Analysis

To quantify the potential of the MIMO channel model in the terahertz band in nano-communications, the
channel capacity is used as a performance metric. In the analysis, the terahertz frequency band is regarded as
a single transmission window with a width of 10 THz. Through the terahertz channel access control
transmission protocol [31], channel state information (CSI) can be obtained at the receiving end, but it
cannot be assumed that the transmitter end also knows the channel information. Therefore, this paper
mainly studies the traversal capacity using channel state information at the receiving end.

As mentioned in the previous section, the terahertz frequency band is highly frequency-selective, and at
the same time, its molecular absorption noise is non-white [21]. Therefore, when calculating the capacity of
MIMO channels in THz communication, the total capacity is obtained by dividing the total bandwidth into
multiple narrow sub-bands and calculating their capacities [28]. The frequency band is divided into n
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sub-channels, and the bandwidth of each sub-channel is Df . The traversal capacity of the channel is
expressed as

C ¼ Df
Xn

ln In þ n

M
AnA

T
n

� �
(7)

When the sub-band width is small enough, each sub-channel can be regarded as a non-selective flat
channel, and the power spectral density of the noise can be considered locally flat at this time, then
Eq. (7) can be used to calculate the channel capacity. Where n is the signal-to-noise ratio (SNR) of the
channel, and its value can be expressed as

n ¼ S
WP

(8)

where S is the power spectral density at the transmitting end; W is the noise power spectral density; P
represents the channel transmission path loss. In the terahertz frequency band, the total path loss and
noise influence are mainly determined by the frequency, the transmission distance and the composition of
the molecular medium. The noise mainly includes electronic noise of the system, antenna noise,
molecular absorption noise and other additional noise. Since the influence of electronic and antenna noise
in the present environment is very low [32–35], the main focus is on molecular absorption noise. It can
be seen from [27] that the noise power spectral density W can be expressed as

W ¼ kB
Z

T0 1� e�k fð Þd
� �

df (9)

Among them, T0 is the reference temperature; d is the transmission distance; k fð Þ is the medium
absorption coefficient; k is the Boltzmann constant. The path loss is mainly composed of transmission
loss Pspread and molecular absorption attenuation Pabs, and its value P can be obtained by the following
expression [26]:

P ¼ Pspread þ Pabs

¼ 20 log
4pfd
c

� �
þ k fð Þd 10 log e (10)

where c is the speed of light in free space.

4 Simulation Results and Analysis

In this section, the proposed channel model of the MIMO in terahertz communication is simulated and
analyzed (Tab. 1 summarizes the simulation parameters). The traversal capacity C in Eq. (7) is used as a
metric which is mainly affected by the signal-to-noise ratio n in Eq. (8). The signal-to-noise ratio is
mainly determined by the molecular absorption noise power spectral density W in Eq. (9), the path loss
power spectral density P and the input power spectral density S in Eq. (10). At the same time, to make
the simulation as close to reality as possible, the total energy of the signal is set to 500 pJ. This is mainly
because, in nano-communication, the nano-nodes mainly obtain energy through the tablet-type nano-
generator and store it into the battery and due to the size and mechanism of the nano-node, its energy is
about 500 pJ [24].

When CSI is unknown at the transmitting end, the cumulative distribution function (CDF) of MIMO
channel traversal capacity in terahertz communication is shown in Fig. 2, where M is the number of
transmitting antennas and N is the number of receiving antennas. The Figure shows the channel CDF
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when the number of transmitting and receiving antennas is 4-4, 5-5, 6-4, 4-7, and 8-3 respectively. It can be
seen from Fig. 2 that the capacity of the MIMO system in terahertz communication has been significantly
improved with the increase of the number of antennas at the transmitting end and the receiving end.

In Fig. 3, five sets of data for the transmitter and receiver antennas are set to 4-4, 2-2, 1-1, 2-3, and 3-
6 respectively under different signal-to-noise ratio (SNR) and the variation of MIMO capacity is evaluated.
With the increase of the signal-to-noise ratio, the channel capacity generally shows an upward trend. For the
same signal-to-noise ratio, the MIMO convenience capacity of different antenna configurations also varies in
magnitude. Compared with a single channel, the MIMO channel capacity has almost doubled, showing that
different antenna configurations have a great impact on the capacity of the channel.

It is proposed in Section 3 that the CSI of the receiving end is used to calculate the traversal capacity. It is
not yet possible to assume that the receiving end can also obtain CSI, which makes the current system an
open-loop system as compared with the transmitter end. Knowing the channel information of the closed-
loop system, the two systems will differ in capacity.

Table 1: Simulation parameters

Parameter Value

Total energy of signal 500 pJ

Number of BS antennas M 8

Number of receiver antennas N 7

Frequency 2.2 THz

SNR n 20 dB
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Figure 2: Cumulative distribution of MIMO channel capacity in terahertz communication
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As shown in Fig. 4, set the number of antennas at the sending end and the receiving end to be 4-4 and
6-6 respectively. At this time, the capacity comparison under the two different situations of known and
unknown channel information is shown in Fig. 4. When the receiving end informs the sending end of the
channel information through feedback, the channel becomes a closed-loop system. At this time, the
channel capacity can be calculated by water injection method. The results in Fig. 4 clearly shows that due
to the use of the receiver to obtain channel information to calculate the capacity, the capacity is lost and
the closed-loop system with known channel information at the transmitter can provide a larger amount
than the existing open-loop system. Of course, this is only when the signal-to-noise ratio is low. When
the signal-to-noise ratio is high, it can be seen that even a closed-loop system with known channel
information will not greatly improve the capacity.
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Figure 3: Traversal capacity of MIMO channel in terahertz communication
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Figure 4: Traversing capacity when the transmitter CSI is unknown and known
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Fig. 5 compares the spectral efficiency of the proposed study with reference [28] against the transmit
power. It can be seen that the spectral efficiency of both algorithms increases with increasing transport
power. However, the spectral efficiency of the proposed study is better than reference [28] which verifies
its effectiveness.

To evaluate the effectiveness of the proposed study from energy efficiency perspective, Fig. 6 compares
the energy efficiency of the proposed study with reference [28]. It is clear from Fig. 6 that the energy
efficiency of the proposed study is better than that of reference [28] scheme under each value of transmit
power, which indicates the effectiveness of the proposed study.
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Figure 5: Comparison of the spectral efficiency vs. different values of transmit power
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5 Conclusions and Future Recommendations

This paper proposes a MIMO channel model suitable for terahertz communication and simulates the
model. From the simulation results, it can be seen that the channel model has higher channel capacity and
supports higher transmission compared to a single-channel bit rate that is consistent with the
characteristics of the terahertz band. High channel capacity and transmission bit rate provide support for
new information coding and modulation techniques. Compared with the MIMO technology in the
traditional communication field, the terahertz communication for nano-communication MIMO technology
is still in its infancy. In the next step, we will improve the channel mechanism and make further research
on the estimation and equalization of MIMO channels in the context of THz communications.
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