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Abstract: Intelligent straw coverage detection plays an important role in agricul-
tural production and the ecological environment. Traditional pattern recognition
has some problems, such as low precision and a long processing time, when seg-
menting complex farmland, which cannot meet the conditions of embedded
equipment deployment. Based on these problems, we proposed a novel deep
learning model with high accuracy, small model size and fast running speed
named Residual Unet with Attention mechanism using depthwise convolution
(RADw–UNet). This algorithm is based on the UNet symmetric codec model.
All the feature extraction modules of the network adopt the residual structure,
and the whole network only adopts 8 times the downsampling rate to reduce
the redundant parameters. To better extract the semantic information of the spatial
and channel dimensions, the depthwise convolutional residual block is designed
to be used in feature maps with larger depths to reduce the number of parameters
while improving the model accuracy. Meanwhile, the multi–level attention
mechanism is introduced in the skip connection to effectively integrate the infor-
mation of the low–level and high–level feature maps. The experimental results
showed that the segmentation performance of RADw–UNet outperformed tradi-
tional methods and the UNet algorithm. The algorithm achieved an mIoU of
94.9%, the number of trainable parameters was only approximately 0.26 M,
and the running time for a single picture was less than 0.03 s.

Keywords: Straw segmentation; convolutional neural network; residual structure;
depthwise convolution; attention mechanism

1 Introduction

Returning straw to a field is a conservation tillage measure that is widely valued around the world today.
Straw return can not only eliminate the air pollution caused by straw burning but also increase fertilizer and
crop yields and reduce greenhouse gas emissions [1–3]. Therefore, straw mulching has a positive impact on
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agricultural production and the ecological environment. To better limit straw burning and guide farmers to
reasonably return straw to fields, it is necessary to quantitatively evaluate the straw returning rate. Therefore,
the detection of the straw coverage rate in fields is particularly important.

To accurately and quickly calculate the straw coverage rate, it is highly valuable to solve this problem
using computer vision technology that has rapidly developed in recent years. The technology has the
characteristics of low cost, high efficiency and large economic benefits. However, this method is usually
carried out by unmanned aerial vehicles (UAVs) with cameras, which brings many problems. For
example, because the field environment is generally complicated, there are usually disturbances such as
vegetation, roads, agricultural machinery, and houses around fields. Especially, the surrounding trees cast
long shadows over fields under the hot sun. These interference factors may appear in the pictures taken
by a UAV, resulting in increased processing difficulty and decreased accuracy. To solve the problem of
difficult straw detection in complex scenes, the most important thing is to separate these objects, which
can strongly reduce the interference.

The most common traditional segmentation method is threshold segmentation. For example, Wang et al.
[4] proposed a method combining the Sauvola and Otsu algorithms to detect the straw area in a detailed
image. Li et al. [5] proposed a method combining texture features with a BP neural network to identify
straw and soil, but the detection time was up to 10 s. Therefore, Liu et al. [6] proposed straw coverage
detection based on a multi–threshold image segmentation algorithm and used the DE–GWO algorithm to
conduct multi–threshold image segmentation. The detection accuracy reached more than 95%, and the
test time for a single picture was shortened to less than 2 s; however, the stability of the algorithm was
not good. The above segmentation algorithms based on a threshold value all have the same problem, that
is, objects with similar colors may be classified into one class. However, the texture–based algorithm
needs to manually design features, which greatly increases the difficulty of the algorithm’s development.
In addition, the above algorithms are not effective for complex farmland, especially when the images are
subject to interference caused by the tree shadows.

In recent years, due to the development of deep learning, Hinton et al. [7] significantly reduced the error
rate of ImageNet image classification to 16% in the 2012 ILSVRC competition by using convolutional neural
network. Then the convolutional neural network was widely used in the fields of image recognition [8–14],
object detection [13–17], image segmentation [18–22] and so on. Among them, the use of fully convolutional
network to solve the semantic segmentation problem was proposed by Jonathan Long et al. [23], which was
the first to use fully convolutional network to solve the semantic segmentation problem. As the convolutional
neural network can automatically extract the features of each class through learning a large amount of data,
it has a significant classification effect on images, and the segmentation effect for complex scenes is
obviously better than the traditional segmentation based on texture or threshold. For example, Liu et al.
[24] designed DSRA–UNet deep convolutional neural network, which can accurately segment up to
6 classes of farmland scene, and the segmentation effect of straw was not disturbed by other classes, so
the segmentation result was better, and the shadow problem can be solved to some extent. However,
there are still many training parameters in this algorithm, and the effect of shadow segmentation on
straw still needs to be improved. Based on this, a new segmentation network was designed to solve the
problem of straw coverage detection in complex scenes. Overall architecture adopted the design idea of
UNet [25] symmetry—decoding. It was a whole residual network [26] architecture, and use the
Depthwise Convolution [27] to reduce the number of parameters. At the same time, attention
mechanism [28–32] was designed to focus on integral pixel hard. Through the above operation, the
network in a very low number of parameters and shallow depth, and only 8 times down sampling cases
still can achieve higher precision. The proposed algorithm was tested on the straw data set, and it can
achieve better segmentation effect under different lighting environment, camera shooting height and
scene complexity. At the same time, the network is end–to–end trainable and has a small number of
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parameters, which makes its model small in size and fast in operation, and greatly reduces the difficulty of
deploying to embedded devices. Therefore, the algorithm is very conducive to on–site real–time detection
in an environment with few electronic devices such as farmland.

2 Proposed Method

2.1 Model Analysis and Overview

Straw coverage detection is based on computer vision technology. In this technology, the image is
acquired by aerial photography using a UAV, and then the image is preprocessed and input into the
convolutional neural network to obtain the prediction map. As shown in Fig. 1, the complex field scene
includes straw, soil, road, the surrounding vegetation, agricultural machinery, tree shadows and other
interfering factors. If there is no disturbance in the field, the field only contains straw, grass and soil.
Since the amount of grass is relatively little and most of it is covered by straw, the grass and soil are
classified into one class. Regarding the interference of farm machinery and tree shadows in the field (it
can be seen from the figure that the influence range of tree shadows is larger than any other), it is difficult
to divide the area because of the shadows of the trees on the straw; therefore, it is easy to identify the
straw covered with tree shadows as soil.

To accurately segment straw, this paper used a convolutional neural network to extract the straw
characteristics and proposed a new segmentation network called RADw–UNet. The network is based on
UNet’s symmetric codec semantic segmentation model, in which the low–level feature layer uses the
standard convolution and the high–level feature layer uses the depthwise convolution to construct
the entire network architecture. Meanwhile, a large number of 1 × 1 convolutions are used to increase the
dimension to reduce the number of training parameters. In addition, the residual structure is added in
the two convolution processes of each layer to increase the depth and feature expression ability of the
network. Finally, the attention mechanism is added to obtain more accurate information before the skip
connection. Through the above operation, the straw segmentation ability can be improved by reducing the
network parameters and depth to adapt to the complex farmland scene.

Figure 1: Schematic diagram of complex field scene
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2.2 RADw–UNet Algorithm

The network architecture proposed in this paper is shown in Fig. 2, where the depth of the feature map is
marked above the feature map. The number in the circle is the number of feature extraction modules in each
layer, and the meaning of each symbol is marked in the dotted box. This architecture uses only three
downsampling layers instead of the four in the original UNet. The purpose is to reduce the number of
parameters in the network and to increase the ability of the network to obtain global information. Again,
it is going to be upsampled after three deconvolutions. Layers 1–3 in the lower sampling process are
connected with layers 6–8 in the upper sampling by a skip connection. In the coding stage, the first layer
uses the residual blocks of the standard convolution for feature extraction. The second to fourth layers
use the max pooling to reduce the dimensionality, and then use the depthwise convolutional residual
blocks to perform downsampling feature extraction. Finally, a feature map with the horizontal size
decreased eightfold and the depth expanded to 128 will be obtained. In the decoding stage, a multi–level
attention mechanism is added to increase the semantic information in the low–level feature map before
the skip connection, and then a 1 × 1 convolution is carried out, which is spliced with the deconvolved
feature map of the upper layer to combine the downsampling and upsampling information with the same
scale. After the splicing is completed, feature fusion is carried out through the depthwise convolutional
residual block. After the third upsampling, the spliced feature map is passed through the standard
convolutional residual block, and then the prediction map that is the same size as the input picture is
obtained through the 1 × 1 convolution and softmax function.

2.3 Standard Convolutional Residual Block

The residual network [26–33] can not only solve the disappearing gradient and exploding gradient
problems caused by the deep network but can also fuse the input information into the network through a
shortcut to make the network deeper. Thus, the network can be deepened when the network depth is
shallow to enhance the feature expression capability. This module in Fig. 3 adds a residual structure on

Figure 2: Network architecture of RADw–UNet algorithm
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the basis of the standard convolution. Both convolution layers use a 3 × 3 convolution kernel and the ReLU
activation function. The residual structure adds the input feature map after a 1 × 1 convolution kernel to the
output of the two convolution layers to obtain the output result of this layer. This module is mainly used to
extract the semantic information of high–resolution feature maps because high–resolution maps are generally
shallow in depth and a large amount of information is stored in their spatial dimension; in addition, the
standard convolution can better extract spatial dimension information than the depthwise convolution.
Therefore, it is used in the feature extraction of the first layer and the last layer with a large size and shallow depth.

2.4 Depthwise Convolutional Residual Block

Different from the standard convolution operation, a depthwise convolution kernel [34] is only
responsible for one channel, and the feature map with the same number of channels in the input layer is
obtained without changing the depth of the feature map. This module is shown in Fig. 4. After the input
feature maps are convoluted with two depthwise convolutions, their feature maps are concatenated and
spliced such that the number of channels of the feature maps at this time will be doubled, and then
feature fusion is carried out through a 1 × 1 convolution. In this process, two feature maps that have
passed through the depthwise convolution are spliced to fuse semantic information with different
complexity, which is more conducive to extracting features with different complexity from modules.
Meanwhile, the depth of the feature map does not change during the depthwise convolution, but the
network depth increases after splicing. This effect greatly reduces the network size, but it also decreases
the precision due to the lack of training parameters. Therefore, this block uses a 5 × 5 convolution kernel
to extract more information. Meanwhile, the residual structure is added to enhance the feature extraction
capability. Since depthwise convolution extracts features from different depths separately, it has a better
ability to obtain depth information. To use the depthwise convolution efficiently, it is used in the feature
extraction stage of the high–level feature map from the second to the seventh layer in this paper.

Figure 3: Standard convolution residual blocks

Figure 4: Depthwise convolution residual blocks
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2.5 Multi–Level Attention Mechanism

Attention mechanisms have been widely used in natural language processing, image classification and other
fields [28,29]. In recent years, they have also been applied to semantic segmentation and achieved good results
[30,31]. Inspired by the attention upsample module in literature [32] and the Squeeze–and–Excitation module in
the literature [35], we form the attention mechanism proposed in this paper, and it is shown in Fig. 5. Since the
low–level feature map contains more location information while the high–level feature map contains rich class
information, a more accurate feature map can be obtained by weighting the low–level features with more
abundant class information. Therefore, this paper uses the rich semantic information in the high–level feature
map to select the features for the low–level feature map to add more details to the low–level feature map.
This approach enables more useful contextual information to be extracted at different levels.

Due to the features of the figure, after the max pooling, we can obtain more important information under
the current receptive field. The high–level feature map after the global max pooling obtains 1 × 1 × N feature
vectors that provide the global context information. Again, after a 1 × 1 convolution, the ReLU reduces the
dimension of the low level features. Finally, through a sigmoid activation function, the feature vector is
mapped to the range of 0–1 to obtain the weight coefficient of each channel. Then, the weighted feature
map is obtained by multiplying the weights by the low–level features that have passed the 1 × 1
convolution operation to obtain the importance of different channels and improve the feature expression
ability of useful channels through learning. In addition, the weighted feature map is spliced with the low–
level feature map, and the number of channels is reduced by half using a 1 × 1 convolution operation in
order to fuse the input information with the weighted information. Finally, the high–level feature map is
deconvolved to obtain the same shape as the low–level feature map, and the final filtered feature map is
obtained by adding the weighted feature map.

3 Network Training and Optimization

3.1 Data Pre–Processing

This dataset was taken by a DJI wu2 generation UAV in Daigang township, Yushu city, Jilin Province in
October 2018. Since straw is produced only after the autumn harvest, the number of samples is notably small.

Figure 5: Multi–level Attention Mechanism
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There are only 120 valid data samples, of which 100 are captured via a 2–minute video every 1.2 s. However,
these 100 pictures are only single straw field images, lacking interfering factors, such as agricultural
machinery, road, plants and tree shadows. Only the remaining 20 pictures contain these complex
interferences, as shown in Fig. 6.

Therefore, it is necessary to augment the data, improve the robustness of the network, and enhance the
network segmentation of complex scenes. Since most of the images do not contain interference, new images
need to be synthesized by adding interference to the 100 images containing only soil and straw. First, the
pictures containing road, plants, houses and other interferences are synthesized. The main method is to
cut out the road, plant, farm machinery and house in 20 pictures with interference and then add them to
the pictures without interference and perform some operations, such as rotation and scaling, to produce
pictures containing multiple categories of interference. Regarding tree shadows, it is difficult to cut tree
shadows from the original images for image synthesis because the data set is small and the tree shadows
are transparent. Therefore, this paper uses Photoshop to generate a large number of tree shadows and then
adds them to 200 basic images. Through the above methods, 600 composite maps were obtained, and the
600 composite maps and 100 original images containing only straw land were used as the data set.

3.2 Loss Function

The cross–entropy loss (CE loss) function is often used in multi–classification, since it has the
characteristic of fast convergence. However, the loss function is easily affected by unbalanced categories.
Therefore, an equilibrium factor is introduced to solve the unbalanced category problem and make the
network more focused on straw segmentation. The formula is defined as follows:

LCEðy; byÞ ¼ � 1

N

XN

i¼1

XC

j¼1
ðWj � yij � LogðbyijÞÞ; (1)

In the above formula, LCE is the value of the loss function, C is the number of classes, yij is the true value
of the i –th pixel of the j –th class, byij is the probability that the i –th pixel is predicted to be the j –th class, and
Wj is the weight of the j –th class. Since the four interference categories of agricultural machinery, highways,
houses and vegetation have similar proportions in the images and their occurrence frequencies are small, the
weightWof all of them is 0.1. Straw is the focal class of this algorithm. The coverage and colour of straw are
close to those of soil. Therefore, the weight of soil is 0.3, and the weight of straw is 0.8. The combined effect
of these weights is the best after the experimental test. Through this balance, the network can pay more
attention to the straw pixel information and produce a better segmentation effect for the shaded straw.

Figure 6: (a) Image of only straw; (b) Image of complex scene
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3.3 Training Hyperparameters

1. Optimizer: Adam

2. Learning–rate: The initial learning rate was 0.001, the decay coefficient was 0.5, and the minimum
was 1e–8.

3. Batch size:1

4. Training epochs:125

5. Steps per epoch:560

4 Results and Discussion

The above algorithm was qualitatively and quantitatively evaluated on the straw data. The algorithm was
trained and tested in an environment with Ubuntu18+python3.6+tensorflow1.10+ Keras2.2.0, and the
training time was approximately 3 hours with an Nvidia GTX 1080 graphics card.

4.1 Evaluation Index

To better evaluate the straw coverage accuracy, this paper uses the straw coverage RSCP, the straw coverage
error ESCR and the straw Intersection–over–Union SIoU to measure the performance of the algorithm.

4.1.1 Straw Coverage Error
The predicted straw coverage is defined as:

RSCP ¼ Pp

H �W
; (2)

The actual straw coverage is defined as:

RSCT
Pt

H �W
; (3)

The error of straw coverage was obtained from Eqs. (2) and (3):

ESCR ¼ Pp � Pt

H �W
; (4)

In the above formula, RSCT is the actual straw coverage rate. H is the picture height.W is the width of the
picture, Pp is the predicted number of straw pixels, and Pt is the true number of real straw pixels.

4.1.2 Straw Intersection–over–Union
The straw Intersection–over–Union can reflect the relationship between the predicted straw and the

real straw, which is an important index to measure the straw segmentation accuracy. The formula is
defined as follows:

SIoU ¼ Pi

Pp þ pt � Pi
; (5)

In the formula, Pi is the number of intersecting pixels, Pp is the predicted number of straw pixels, and Pt

is the actual number of straw pixels.

4.2 Effect Comparison of Different Algorithms

To verify the effectiveness of the algorithm proposed in this paper, the algorithm was compared with
other algorithms, and the results are shown in Tab. 1. It can be seen from the table that the performances

254 CMC, 2021, vol.66, no.1



of SegNet [36] and Deeplab [37] in these data set were not good. The number of parameters for both of them
was high, and the FPS was low. The UNet algorithm used a 3 × 3 convolution kernel size for all convolutions,
and its maximum depth was 512. The precision reached 87.47% and the number of parameters was 7.8 M
after 4 times downsampling. However, due to its simple network structure, the FPS was relatively high. DE–
GWO [6] is a traditional threshold segmentation algorithm, which had a poor detection effect on complex
scenes with shadows and a lower mIoU. The DSRA–UNet [24] algorithm achieved an mIoU of 94.1%,
the number of parameters was reduced to 0.76 M, and it had a high FPS. The proposed algorithm
increased the mIoU up to 94.9%, the number of parameters was only 0.26 M, and the FPS reached 34,
which were better than other methods mentioned above.

Fig. 8 shows the straw detection results of the proposed algorithm in different scenarios and its
comparison with other algorithms. The grey level corresponding to the category is shown in Fig. 7.

Fig. 8 shows the original figure, the ground truth and the prediction results of various algorithms from
top to bottom, and it shows the straw coverage detection effect under different straw scenarios from left to
right. For the first simplest scenario, the straw detection difficulty is relatively low, and most of the algorithms
can detect the straw correctly; however, SegNet’s detection effect is not good. The second is a scene with tree
shadows. It can be seen from the figure that the traditional algorithm has a weak detection effect for the tree
shadows that covered straw. SegNet can detect part of the straw, while UNet and the algorithm proposed in
this paper can segment most of the straw covered by shadows. Images three and four are complex farmland
scenes. It can be seen from the figure that there are large areas with errors in the other methods, especially
around roads, vegetation and tree shadows. The algorithm proposed in this paper can better segment the
interferences and improve the straw coverage detection accuracy.

Table 1: Comparison of different algorithms

Algorithms mIoU (%) Parameters (M) FPS

SegNet 72.67 10 15

DeeplabV3 79.84 40.9 13

UNet 87.47 7.8 30

DE–GWO 72.5 – 2

DSRA–UNet 94.1 0.76 35

Ours 94.9 0.26 34

Figure 7: The grayscale color corresponding to each category
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4.3 Basal Architecture Contrast

To verify the effectiveness of the proposed network architecture, two comparative experiments was
designed. The first set of experiments was used to verify the effectiveness of using the standard
convolutional residual block in the low–level feature map and the depthwise convolutional residual block
in the high–level feature map. The second set was used to verify the effect of different decreasing
sampling multiples on the model.

4.3.1 Convolution Type Contrast
For the high resolution feature map (such as the input three–channel picture and the feature map

obtained after the last upsampling), the horizontal size is large, the depth is shallow, and most of its
information is stored in the spatial dimension. Therefore, this paper used the standard convolution
residual block in the high–resolution and low–depth feature map and used the depthwise convolutional

Figure 8: Experimental results of different algorithm
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residual block the low–resolution and high–depth feature map. The experimental results are shown in Tab. 2,
where the other parameters remained unchanged and only the type of convolution was changed. All–Conv
refers to the use of only the standard convolutional residual block. All–DwConv refers to the use of only the
depthwise convolutional residual block. Conv+DwConv means that the standard convolutional residual
block is used in the shallow layer and the depthwise convolutional residual block is used in the deep
layer. It can be seen from the table that when only the standard convolution was used, the model resulted
in an mIoU of 92.7% with high precision, but the number of parameters was approximately 8 times that
of other methods. When only the depthwise convolution was used, the mIoU improved to 93.1%, and the
number of parameters was only 0.257 M. When the structure proposed in this paper was adopted, the
mIoU reached 94.9%, and the number of parameters increased by only approximately 0.007 M compared
with the previous one, but the precision improved by 1.8%. Thus, the standard convolution can extract
spatial information better and is suitable for use in high–resolution feature maps. The depthwise
convolution can extract the high depth feature map better because the feature map of each channel can be
extracted by the convolution, which has a high utilization rate for depth information. Therefore, the
proposed structure can make full use of spatial information and depth information to achieve a balance
between the number of parameters and the precision.

4.3.2 Comparison of Different Downsampling Multiples
For a deep convolutional neural network, different downsampling multiples may determine the depth

and horizontal dimension of the network. It is not necessarily true that the deeper the depth is, the higher
the sampling ratio is, and the better the effect. In this experiment, in order to verify this, the results of
different downsampling multiples are shown in Tab. 3. Pooling–4 represents 2 such downsamplings, that
is, the maximum pooling layer with a step size of 2 is passed through twice. Although the number of
parameters is small, the accuracy is not high due to the shallow network. Maximum pooling is carried out
4 times in Pooling–16. As the number of downsamplings is increased, the depth of the network is also
increased, resulting in number of network parameters increasing to 0.99 M and an obvious accuracy
improvement. Pooling–8 is the downsampling multiple adopted in this paper. The horizontal size is
reduced to 8 times the original size, the number of parameters is reduced to 0.26 relative to Pooling–16,
and the mIoU is also improved to some extent. This shows that, for different tasks, a deeper network
does not necessarily result in better performance. In contrast, choosing an appropriate downsampling ratio
can make the accuracy and model size both optimal.

Table 2: Comparison of results from different convolution

Methods mIoU (%) Parameters (M)

All–Conv 92.7 2.18

All–DwConv 93.1 0.257

Conv+DwConv 94.9 0.264

Table 3: Comparison of results from different convolution

Methods mIoU (%) Parameters (M)

All–Conv 92.7 2.18

All–DwConv 93.1 0.257

Conv+DwConv 94.9 0.264
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4.4 Comparison of Different Modules

To study the role of each module in the algorithm proposed in this paper, four different networks were
designed, and their effects were compared. The experimental results are shown in Tab. 4. The first one is the
backbone network. Since the middle layer (i.e., the second and seventh layers) used a 5 × 5 standard
convolution, this part had a high number of parameters. However, due to the simplistic model, the mIoU
was only 85.14%. The second part changed the middle layer to a depth convolution, thus greatly
reducing the number of model parameters. However, the feature extraction ability of the network was
greatly increased due to the addition of a depthwise convolution block, and it achieved an mIoU of
92.16%. The third part added a residual structure in both the upper and lower sampling, and the mIoU
was increased to 93.62%. The fourth part introduced a multi–level attention mechanism. It can be seen
from the table that the precision had been further improved after the introduction of this mechanism, and
the number and precision of the parameters can be well balanced. The mIoU reached a maximum of
94.9%, and the number of parameters was only 0.26 M.

4.5 Field Test Sesults

This algorithm was applied to the field test of complex farmland scenes and good experimental results
were obtained. Since the straw detection algorithm is mainly concerned with straw coverage, this part only
lists the straw detection results (agricultural machinery is also marked out because of the certain interference
to straw caused by agricultural machinery). The following is the straw coverage detection results under four
different scenarios. As shown in Fig. 9, the pixel value of straw is 255, that of agricultural machinery is 50,
and that of other circumstances is 0. In the dotted box of sample 1 is shaded straw. It can be seen that
compared with UNet and the traditional algorithm, the algorithm in this paper has a better shadow
processing effect on this part. Sample 2 is a picture of a small area with shadows, vegetation, and roads.
The UNet algorithm has a certain ability to deal with the shadows, but some places that should be
segmented into straw are judged wrong, and the traditional algorithm still has a negative effect on the
shadows. However, the algorithm proposed in this paper can well segment the stalks in the shadows and
segment the highway vegetation. Sample 3 is a field containing agricultural machinery, people and their
shadows. It can be seen that the other algorithms are weak at segmenting these interferences, and the
shadow part is usually identified as soil. The algorithm in this paper can not only segment the agricultural
machinery but also correctly classify the small targets of people and their shadows as straw and soil.
Sample 4 is a picture containing complex scenes with many trees, vegetation, and a highway. UNet and
the algorithm proposed in this paper can successfully segment the vegetation and highway, but UNet
made some mistakes, and UNet and the traditional algorithms are not good for shadow processing;
however, the algorithm in this paper can greatly improve the straw classification accuracy in the shaded part.

Table 4: Comparison of results from different modules

Methods mIoU (%) Parameters (M)

bone 85.14 2.06

bone+Dw 92.16 0.150

bone+Dw+Res 93.62 0.188

bone+DS+Res+Atten 94.9 0.26
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For the farmland under the above four complex scenarios, the experimental results obtained after using
three different algorithms to segment the farmland are shown in Tab. 5. It can be seen that the IoU of straw for
the algorithm proposed in this paper is the highest. In Sample 1, the straw IoU was improved by 7.9% and
7.4% compared with UNet and the traditional algorithm, respectively, and the coverage error was reduced to
0.002. In Sample 2, there were many mistakes for UNet, and so the straw IoU was only 83.1%. The
traditional algorithm had a poor multi–class segmentation effect and the straw IoU was only 80.9%.
Finally, the proposed algorithm can achieve a good segmentation and resulted in straw IoU of 94%. In
Sample 3, the mIoU reached up to 96.7%, the straw coverage rate was 49.6%, and the straw coverage
error reached the lowest because the algorithm in this paper could well segment the agricultural
machinery and eliminate the interference from people and their shadows. The experimental verification
showed that 40% of the segmented agricultural machinery area was straw. However, the traditional
method cannot separate the agricultural machinery, and most is recognized as straw; therefore, the error
was obvious. Sample 4 was complex farmland containing a large number of tree shadows, roads and
vegetation. The algorithm proposed in this paper dealt with all of them well, and the straw IoU improved
by 12.7% and 22.5% compared with UNet and the traditional algorithm, respectively. To sum up, the
algorithm proposed in this paper can well conduct straw detection in complex scenes and segment straw
when a large number of shadows from trees exist. Moreover, the running time for a 720 × 400 image is
approximately 0.029 s, which means that it has obvious speed advantages over the traditional algorithm,
and it meets the practical detection requirements for accuracy and speed.

Figure 9: Detection results from farm with different complexity
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5 Conclusions

This paper proposed a semantic segmentation method to solve the problem of straw segmentation in
complex scenes. A new network architecture, the RADw–UNet network, was designed by improving the
UNet algorithm. The standard convolutional residual block and depthwise convolutional residual block
were used to construct the whole network to reduce the number of parameters and improve the network
segmentation accuracy. In the training, the weighted cross entropy loss function was adopted to make the
network pay more attention to difficult classification areas and improve the contribution rate of straw to
the network. Furthermore, the comparison experiments of the basal framework and different modules
were designed to further verify the effectiveness of the proposed algorithm. The mIoU was 94.9%, the
number of parameters was only 0.26M, and the running speed was up to 34 frames per second when the
algorithm was applied to straw segmentation; therefore, the effect was better than that of traditional
segmentation based on a threshold or texture and other semantic segmentation networks.
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