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Abstract: This study adapts the flexible characteristic of meshfree method in ana-
lyzing three-dimensional (3D) complex geometry structures, which are the inter-
locking concrete blocks of step seawall. The elastostatic behavior of the block is
analysed by solving the Galerkin weak form formulation over local support
domain. The 3D moving least square (MLS) approximation is applied to build
the interpolation functions of unknowns. The pre-defined number of nodes in
an integration domain ranging from 10 to 60 nodes is also investigated for their
effect on the studied results. The accuracy and efficiency of the studied method on
3D elastostatic responses are validated through the comparison with the solutions
of standard finite element method (FEM) using linear shape functions on tetrahe-
dral elements and the well-known commercial software, ANSYS. The results
show that elastostatic responses of studied concrete block obtained by meshfree
method converge faster and are more accurate than those of standard FEM.
The studied meshfree method is effective in the analysis of static responses of
complex geometry structures. The amount of discretised nodes within the integra-
tion domain used in building MLS shape functions should be in the range from
30 to 60 nodes and should not be less than 20 nodes.

Keywords: Meshfree method; local support domain; moving least square shape
function; 3D elastostatic behavior; complex geometry

1 Introduction

Meshfree methods, that have been developed recent years, are believed to show more advantages than
finite element method in dealing with problems of fluid flows, large deformations, crack growth along the
complex path, fragment-impact, complex shape structures and so on [1–5]. By using meshfree method,
the prediction of unknowns is performed with the aid of discretized nodes only. There are many different
meshfree approaches, which have achieved remarkable solutions for numerical problems, such as
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smoothed particle hydrodynamics (SPH) method [6–10], finite difference methods with scattered points [11],
element free Galerkin (EFG) method [8–12], meshless local Petrov-Galerkin method [13,14], dual-horizon
peridynamics [15], nonlocal operator method [16], meshfree radial point interpolation method (RPIM)
[17,18], natural neighbour radial point interpolation method (NNRPIM) [19], etc.

Meshfree methods have been implemented in various fields and problems of engineering, in which
problems of liquid and/or interaction between solid and liquid are solved by using SPH method. Ren
et al. [20] and Akbari et al. [21] analysed the 2D interaction model of wave action through pervious
breakwater by developing an improved SPH method. The method was also used in the analysis of nano
flows [22], multiphase flows [23] and so on. The EFG method was applied to problems of 2D solid
mechanics and heat transmission [24,25]. The analysis of boundary value problems by using meshfree
method with high order approximation was reported by Milewski [26]. In addition, applications of
meshless methods on three-dimensional solid mechanics problems were also presented. The 3D problems
with singularity and heterogeneous material were solved by using MLPG method [27]. The radial point
interpolation method was applied to obtained 3D elasticity responses of an axletree base [28]. An
improvement of radial point interpolation method by combining with natural neighbour finite element
method was reported and successfully applied for a simple case of three-dimensional solid [19].

EFG is one of the most known and robust meshfree methods. It is a development of Galerkin method
applied on partial differential equations. EFG analyses the weak form formulations of displacement field
similarly to standard FEM. Nevertheless, a number of discretised nodes within structure domain are used
for building approximation functions instead of FEM elements. Compared to traditional FEM, EFG
method has many advantages. Firstly, the problem of meshing structure can be eliminated. Secondly,
EFGM performance does not depend on nodal distribution. Additionally, EFGM does not require any
special treatment for structure with incompressible material [25]. Therefore, the applications of EFGM
and its improvement in the wide range of engineering problems have attracted the attention of many
researchers such as the nonlinear analysis of Darcy-Forchheimer problems [12], heat transition problems
[29,30], nonlinear calculation of solid structures [8–31], wave propagations of fluid analysis [32,33], etc.
In this study, the implementation of EFGM in three-dimensional elastostatic analysis on complex
geometry structure will be investigated. The detail of EFGM will be further discussed in the next section.

The process of forming shape functions is the main feature indicating the discrepancy between
traditional finite element methods and meshless methods. Many meshfree shape functions have been
successfully developed, which include moving least squares approximation, point interpolation, partition
of unity (PU) and HP-clouds approximation [34]. Whereas, the MLS approximation is widely applied
method with simplicity and reasonable accuracy [35]. The MLS shape functions are formulated based on
a number of nodes within an integration domain instead of pre-defined element as in FEM. Unlike
regular FEM mesh, in which the elements should not overlap with each other, the nodes connectivity in
meshfree methods defines a structure through overlapping of support domains. The shape and size of
these domains are crucial in stability and accuracy results obtained by using EFGM with MLS
approximation. Liu et al. [28] reported in their particular study using radial point interpolation that the
spherical support domain with pre-defined number of nodes ranging from 20 to 70 provided more stable
results compared to the model with pre-defined support size (diameter). Extendedly, the former model
will be studied for its effectiveness on results obtained by using MLS shape functions.

The objective of this study is to present the application of EFGM using moving least square
approximation in analyzing elastostatic responses of three-dimensional structure with complex geometry.
Effect of spherical support domains with pre-defined number of nodes, which are used for building MLS
approximation, on convergence and accuracy of results is also investigated. The number of nodes in each
domain ranges from 10 to 60. Each step increases by 10 nodes. The efficiency of the EFG method is
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verified by comparing the elastostatic responses of a complex concrete block with the results determined by
standard FEM and commercial software ANSYS. Whereas, standard FEM uses linear tetrahedral elements
and ANSYS uses 10-node tetrahedral elements. All the coding in this study including EFGM and
standard FEM are performed using MATLAB program.

2 Element Free Galerkin Method in Three Dimension

The EFG method is a typical meshless method solving the Galerkin weak form by only using a set of
distributed points. The shape functions of EFG method are formulated relying on MLS approximation over a
local support domain, which contents a group of nodes. The EFGM is one of the most extensively applied
meshless methods in many boundary value problems of solid mechanics. There are three components used to
construct the moving least square approximations, which include a weight function; a basis, which is linear
polynomial in this study; and coefficients depending on position. The weight function does not vanish only in
support domain of current integration node. Connectivity of discretized nodes in meshfree structure is
defined by overlapping of the nodal support domains. In general, the support domains can be any
geometric shape and size. However, in this study, the spherical domains are taken into considering for its
numerical simplicity.

Even though EFG is a meshless method, a background mesh is needed for solving the integration of
Galerkin weak form. The MLS constructing process in 3D is described in this section.

2.1 Moving Least Square Approximation

Let us consider a spherical domain�s containing N nodes (Fig. 1). The governing displacement of nodes
is described as u(x). At each node, the displacement parameter is ui corresponding to u(x) at that node.

The moving least square approximation uh(x) over domain �s is given by:

uh ¼ pT xð Þa xð Þ (1)

Figure 1: Support domain in building MLS approximation
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where p(x) is the monomial basic function with the number of basis m:

pT xð Þ ¼ p1 xð Þ; p2 xð Þ; . . . ; pm xð Þ½ � (2)

In this study, 3D linear basic function is used as:

pT xð Þ ¼ 1; x; y; z½ � (3)

a(x) is a coefficient vector given as follows:

a xð Þ ¼ A�1 xð ÞB xð Þu (4)

in which moment matrix A(x) is given by:

A xð Þ ¼
XN
i¼1

wip xið ÞpT xið Þ ¼ PTWP (5)

with wi is the weight function at node I within domain �s and

P ¼
pT x1ð Þ
pT x2ð Þ
. . .

pT xNð Þ

2
664

3
775; W ¼ diag w1; . . . ;wNð Þ (6)

and

B xð Þ ¼ ½w1 xð Þp x1ð Þ;w2 xð Þp x2ð Þ; . . . ;wN xð Þp xNð Þ� ¼ PTW (7)

uT ¼ u1; u2; . . . ; uN½ � (8)

Substituting Eqs. (3)–(8) to Eq. (1), the MLS approximation over domain �s is given as:

uh xð Þ ¼
XN
i¼1

fi xð Þui (9)

where

fi xð Þ ¼
Xm
j¼1

pj xð Þ A�1 xð ÞB xð Þ� �
ji (10)

In this work, a 4th order spline weight function is used as follows:

wi xð Þ ¼ 1� 6
di
ri

� �2

þ 8
di
ri

� �3

� 3
di
ri

� �4

0 � di � ri

0 di � ri

8<
: (11)

where di = |xi – x| is the distance between point xi and x, ri is the radius of the support of point xi for
weight function.
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2.2 Meshfree Analysis Procedure

The meshfree method is used to analyse three-dimensional solid structure using displacement based
formulation. The codes are compiled in MATLAB program based on following steps:

Step 1

The domain of problem is discretised into arbitrarily distributing nodes:

� Numbering discretised nodes, creating background cells for integration, which are tetrahedral cells in
this study.

� Assigning the physical properties of the analysed structure. The concrete material has Young’s
modulus E of 30500 MPa and Poison’s ratio l of 0.2.

Step 2

The boundary value problem is presented through the differential equation with desired boundary conditions.
For the fixed boundary, the displacements of corresponding DOFs of boundary are assigned as zeroes.

Step 3

Assembling global stiffness matrix constructed from weak form governing differential equation includes:

� Generating the Gauss points based on the background tetrahedral cells.

� Defining support domain for each Gauss point (looping over). A number of nodes in each support
domain are pre-defined ranging from 10 to 60 nodes. In each step an increase of 10 nodes is
applied for investigating the effect of support domain in the studied problems.

� Within the support domain, the derivatives of shape functions can be determined as in following formulations:

○ The shapes functions of N nodes in the current domain are:

ΦT xð Þ ¼ f1 xð Þ;f2 xð Þ; . . . ;fN xð Þ½ � ¼ pT xð ÞA�1
4x4 xð ÞB4xN xð Þ (12)

where

A�1
4�4ðxÞ ¼

PN
j¼1

wj
PN
j¼1

xjwj
PN
j¼1

yjwj
PN
j¼1

zjwj

PN
j¼1

xjwj
PN
j¼1

x2j wj
PN
j¼1

xjyjwj
PN
j¼1

xjzjwj

PN
j¼1

yjwj
PN
j¼1

xjyjwj
PN
j¼1

y2j wj
PN
j¼1

yjzjwj

PN
j¼1

zjwj
PN
j¼1

xjzjwj
PN
j¼1

yjzjwj
PN
i¼1

z2j wj

2
6666666666664

3
7777777777775

(13)

and

B4�N xð Þ ¼
w1 w2 . . . wN

x1w1 x2w2 . . . xNwN

y1w1 y2w2 . . . yNwN

z1w1 z2w2 . . . zNwN

2
664

3
775 (14)

○ The partial derivatives of the shape functions are calculated by re-writing Eq. (12) as [36]:

ΦT xð Þ ¼ CT xð ÞB4�N xð Þ (15)
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where

CT xð Þ ¼ pT xð ÞA�1
4x4 xð Þ ) AC ¼ p (16)

○ Analysing the partial derivatives of C by following formulation:

AC;i ¼ p;i � A;iC (17)

with subscript, “,i” indicates the derivatives with respect to x, y or z.

○ Hence, Eq. (15) can be determined as follows:

ΦT
;i ¼ CT

;iBþ CTB;i (18)

� After obtaining the partial derivatives of shape functions, the stiffness matrix is assembled similarly to
standard finite element method.

� The assembling process of surface load matrix is similar to stiffness matrix, but the shape functions
are used instead of their partial derivatives.

Step 4

The above discrete nodal equations of stiffness and force matrices are assembled into global matrices.

Step 5

The results of nodal displacements can be obtained by solving the standard discrete equations KU = F.

Step 6

The nodal stresses are determined by performing post-processing of the displacements obtained in Step 5.

3 Numerical Results

The studied structure is a 3D concrete block of an interlocking step seawall (Fig. 2) [37]. In analysis
using meshfree method, the number of discretised points in the support region is an important variable
that greatly affects the accuracy, as well as, the convergence of the obtained solutions. Therefore, in this
work, the number of nodes in the range from 10 to 60 is investigated with the increment step of 10
nodes. The recommended number of support domain nodes is, then, used for further analysing of
elastostatic responses of the structure.

The displacement and stress responses are estimated by using EFG method in MATLAB program. The
efficiency of EFG method is evaluated by making a comparison between the obtained solutions and those of
standard FEM and ANSYS software. Fig. 3 illustrates the discretised models using EFG and standard FEM.

The results shown in Figs. 4–6 are obtained by EFGM with various numbers of nodes in the support
domain. Those figures show the convergent trends of elastostatic responses with the increase of global
nodes. It is worth noting that “Reference” stands for results determined by ANSYS while the other
legends represent the results obtained by meshfree method with corresponding nodal amount in support
domains. In those figures, the existences of 10-node support domain responses are eliminated due to their
lacking of accuracy. It is believed that with low number of support domain nodes, which is less than 20
in this study, the moment matrix A is close to singularity. Hence, it causes inaccurate results. With the
same number of global points, when the number of nodes in interpolation domain increases, the accuracy
of results increases accordingly. In addition, the support domain nodes higher than 30 can give more
accurate results and faster convergence.

170 CMC, 2021, vol.66, no.1



Fig. 7 compares the computational time in hours of the meshfree method implementation with various
number of nodes within the support domains. The 5000-discritized node block corresponding to the third
mesh was investigated. The figure shows that the computational time increases gradually when the
support nodes rise from 20 to 50 (no more than 6% compared to 20-node support domain). Nevertheless,
when the support nodes reach 60, the computational time increases significantly (up to 26%).

Figure 2: Sketch of studied concrete block

Figure 3: Three-dimensional models of the studied concrete block: a) the pressure is applied on block
surfaces and edge 1–2 is used for extracting results, b) adaptively discretised nodes for EFG analysis and
c) tetrahedral meshes for linear FEM analysis
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The following analysis uses 40-node domain for investigating elastostatic responses along edge 1–2 of
the concrete block obtained by EFGM compared with FEM. The convergence studies of displacement and
stress responses are performed and shown in Figs. 8–10. In these three figures, “Meshfree” represents the
results determined by EFG method where “FEM” stands for the results obtained by standard FEM with
linear tetrahedral elements. It can be observed that the solutions determined by EFGM converge much
faster than those of FEM.

Figure 4: Convergence of maximum X-displacement for all cases of investigated support domains

Figure 5: Convergence of maximum Z-displacement for all cases of investigated support domains

Figure 6: Convergence of maximum normal stress rzz for all cases of investigated support domains
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Figs. 11 and 12 show the displacement distribution along edge 1-2 with respect to X and Z axes,
respectively. The X-displacement is the main deformation response of the block. The number of nodes
used in the three models is around 17000. The figures show that EFG predicts more accurate solutions
than FEM with the same number of DOFs.

Figure 7: Computational time of the concrete block meshed into 5000 nodes with different support nodes

Figure 8: Convergence of maximum X-displacement obtained by EFG and FEM

Figure 9: Convergence of maximum Z-displacement obtained by EFG and FEM
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Figure 10: Convergence of maximum normal stress rzz obtained by EFG and FEM

Figure 11: Distribution of X-displacement along edge 1-2

Figure 12: Distribution of Z-displacement along edge 1-2

Figure 13: Normal stress distribution along edge 1-2
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The distribution of normal stress rzz is presented in Fig. 13. Although the EFG results are fluctuating, the
approximation polynomial (Poly [Meshfree]) derived from EFG’s data shows better agreement with
“Reference” than FEM’s line does.

Fig. 14 illustrates the deformations along X and Z axes of the block. The comparison is performed
between the results obtained by meshfree method and those of ANSYS. The solutions show that the
difference of maximum X-displacement is 1.2%, while that difference for Z-displacement is 2.1%.

Figure 14: Comparing the deformations of the block analysed by meshfree method with reference results.
a) X-displacement by EFG, b) Reference X-displacement, c) Z-displacement by EFG, d) Reference
Z-displacement
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4 Conclusion

The EFG meshfree method using three-dimensional moving least square approximation was successfully
applied in analyzing three-dimensional complex geometry structures, namely interlocking concrete blocks for
step seawall structure. The elastostatic responses of the block were obtained relying on Galerkin weak form
formulation over local support domains, which are defined by a collection of discretised nodes in a
spherical region. The nodal amount ranging from 10 to 60 was also investigated because of its crucial role
in MLS interpolation. The accuracy and efficiency of the studied method were validated by making
comparison of the solutions analysed by FEM using linear shape functions on tetrahedral elements and well
known commercial software, ANSYS. Some conclusions are pointed out as follows:

� The elastostatic responses of the studied concrete block obtained by EFG method converge faster and
are more accurate than those of standard FEM.

� The number of nodes in support domain should be greater than 20 and should be in the range from 30 to 60.

� The singular moment matrix may occur if the nodal number in support domain is less than 20.

� Because of just using a number of discretised nodes, the application of EFG method in analysing 3D
complex structure is simpler compared to regular FEM.
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