
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 4, 683-689

CONTACT Shu Gao gshu418@163.com
© 2019 TSI® Press

SI bitmap index and optimization for membership query

Shu Gaoa,b Zhen Wanga Liangchen Chena
aSchool of Computer Science,Wuhan University of Technology, Wuhan, 430063, China;
bHubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, Wuhan, 430063, China.

KEYWORDS: Bitmap Index, Data Mining, Interval Bitmap Index, Membership Query, Sliced Bitmap Index

1 INTRODUCTION
RAPID growth of Internet in the last decades has

generated large volumes of data of all types and formats
that are produced from Social media and IoT devices
including sensors and embedded systems. The advent
of the age of big data facilities the need for more
efficient data indexing and querying techniques (Gani,
Siddiqa, Shamshirband, & Hanum, 2016).To speed up
the query processing, many index techniques are
adopted, including B tree index, R tree index, bitmap
index and so on. The bitmap index (O'Neil, 1987) uses
bitmap vectors to index data based on binary bit values,
0 and 1, which is space-saving as well as high
efficiency to query data because it is easier to perform
logical operations, such as AND, OR, and Not IN, etc.,
on bit values. In most applications, bitmap indexes are
shown to perform better than tree-based index schemes,
such as the B-tree or R-tree and their variants.
However, problems may occur if bitmap index is built
on a high cardinality attribute. To exploit the
advantages of bitmap index and overcome its
shortcomings, this paper proposes a new bitmap index
technique named Sliced-Interval Bitmap Index (SI
Bitmap Index for short), which is space-time and
efficiency, especially for Membership query, and also
describes the method to optimize Membership query
based on SI Bitmap Index. Results have shown that SI
Bitmap Index is more space-time efficient than Simple

Bitmap Index, Interval Bitmap Index and Sliced
Bitmap Index, and the optimized Membership query
processing algorithm is highly effective. Moreover, it
can be also applied for both Equality query and Range
query.

Structure of this paper is as follow. Section 2
reviews current bitmap index techniques and their
characteristics. Section 3 introduces SI Bitmap Index
and detailed method to optimize Membership query.
Section 4 provides comparison between SI and other
bitmap index techniques in space and query-time.
Section 5 gives the conclusion and future work.

2 RELATED WORK
BITMAP index is based on bulk index data stored

as sequences of bits. Compared to other index methods,
bitmap index has more flexible encoding schemes and
takes less time to answer the query for an attribute with
low cardinality i.e., sex attribute. However, bitmap
index requires more space if it is built on a high
cardinality attribute. To overcome this space problem,
most of researchers are interested in reducing index size
while improving query processing efficiency on
attribute with high cardinality. Two approaches have
been developed: 1) Bitmap Index Compression, and 2)
Bitmap Index Extension (Chambi, Lemire, Kaser &
Godin, 2016).

In the first approach, Most of the recently proposed
compressed bitmap formats are derived from Oracle’s

ABSTRACT
The explosive growth of data produced by internet of things has contributed to
the abundance of data. Since then, efficient indexing and querying techniques
for data retrieval has become a major challenge. Bitmap index and its extension
techniques, which involve a bit sequence that represents a specified property and
indicates the data items that satisfies this property, are well-known methods to
improve processing time for complex and interactive queries on the read-mostly
or append-only data. This paper proposes an improved bitmap index technique,
named Sliced-Interval Bitmap Index (SI Bitmap Index), which is efficient in both
space and response time for Membership query. It also describes the method to
optimize Membership query, based on SI Bitmap Index, in four steps.
Experimental results indicate that SI Bitmap Index is space-saving as well as high
efficiency on Membership query.

684 GAO, WANG, CHEN

BBC (Antoshenkov, 1995) and use run-length
encoding (RLE) for compression: Enhanced Word
Aligned Hybrid (EWAH) (Lemire, Kaser, & Aouiche,
2010), Compressed ‘n’ Composable Integer Set
(Concise) (Colantonio & Pietro, 2010), Variable
Length Compression (VLC) (Corrales, Chiu, & Sawin,
2011), COMPressed Adaptive indeX (COMPAX)
(Fusco, Stoecklin & Vlachos, 2010), Variable Aligned
Length-Word Aligned Hybrid (VAL-WAH) (Guzun,
Canahuate, Chiu & Sawin, 2014), and so on. These
techniques can reduce the size of index dramatically.
However, when making a query, the techniques cannot
perform a Boolean operation on index directly. They
need to decompress each compressed Bitmap Index
before making a query, leading to use much query
processing time.

In the second approach, the concept of bitmap index
is extended in order to use less storage space while
remaining efficient query processing time. In this
approach, each indexed attribute value is encoded with
a number of bitmap vectors. Query processing and data
retrieval are supported by Boolean operation on bitmap
vectors before accessing the data. The well-known
techniques are Simple Bitmap Index (O'Neil, 1987) ,
Interval Bitmap Index (Chan & Ioannidis, 1999), Sliced
Bitmap Index (Chan & Ioannidis, 1998), Dual Bitmap
Index (Wattanakitrungroj & Vanichayobon, 2006). The
three indexes will be introduced in the following
because SI is related to them. And our research focuses
on the Bitmap Index Extension because the
performance of this approach in term of space-time
trade-off is better than the compression approach.

Given a data set T of N records, and T has an
attribute Y with cardinality C. A bitmap index is
essentially a collection of bitmaps. The size of each
bitmap is equal to the cardinality of the indexed

relation, and the 𝑖𝑡ℎ bit corresponds to the 𝑖௧௛ record. In
the simplest bitmap index design, the 𝑖௧௛ bit of a bitmap
associated with value 𝑣𝑖 is set to 1 if and only if the 𝑖௧௛
record has a value 𝑣𝑖 for the indexed attribute.To
reduce the space complexity and the query response
time, many other bitmap index techniques have been
introduced. Unlike Simple Bitmap Index, Interval
Bitmap Index uses less bitmaps to store the index. It
consists of ⌈𝐶/2⌉ bitmaps ℵ = { 𝐼଴, 𝐼ଵ, … , 𝐼⌈஼/ଶ⌉ିଵ} ,
where each bitmap 𝐼௝ = [𝑗, 𝑗 + 𝑚] ,and 𝑚 = ⌊𝐶/2⌋ −
1. Benefitted by its index structure, it works efficiently
for both Equality query and Range query (Chan &
Ioannidis, 1999). Sliced Bitmap Index is more space-
saving than other bitmap index techniques. It focuses
on the method that decomposes the attribute value v by
some bases. At first, the index should choose a base set
<𝑏ଵ ,𝑏ଶ ...𝑏௡ >, then present value by base set with a
coefficient <𝑐ଵ,𝑐ଶ...𝑐௡>, and make sure that 𝑏ଵ ∗ 𝑐ଵ +
𝑏ଶ ∗ 𝑐ଶ + ⋯ + 𝑏௡ ∗ 𝑐௡ = 𝑣. Sliced Bitmap Index slices
the storage space into many dimensions; any kind of
bitmap index can be used into each dimension.
Therefore, Sliced Bitmap Index is more space-saving

and can be mixed with other bitmap index techniques.
However, query efficiency needs to be optimized to
make sure the advantages of bitmap index can fully be
exploited (Chan & Ioannidis, 1998). Table 1 gives the
Y’s values and indexes presentation (attribute Y’s
cardinality is 9).

Table 1. Y’s Values and its Different Bitmap Indexes

(a) Values of Y

Y

0

4

7

8

(b) Simple Bitmap Index

𝐵଴ 𝐵ଵ 𝐵ଶ 𝐵ଷ 𝐵ସ 𝐵ହ 𝐵଺ 𝐵଻ 𝐵଼

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

(c) Interval Bitmap Index

𝐵଴ 𝐵ଵ 𝐵ଶ 𝐵ଷ 𝐵ସ

1 0 0 0 0

0 1 1 1 1

0 0 0 0 1

0 0 0 0 0

(d) <3,3> Sliced Bitmap Index

First dimension index Second dimension index

𝐻଴ 𝐻ଵ 𝐻ଶ 𝐿଴ 𝐿ଵ 𝐿ଶ

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 1 0

0 0 1 0 0 1

Various bitmap indexes have been designed for
different query types, including Equality queries,
Range queries, Aggregation queries, and so on.
However, as there is no overall best bitmap index over
all kinds of queries, maintaining multiple types of
bitmap indexes for an attribute may be necessary in
order to achieve the desired level of performance. In
this paper, we study the space-time tradeoff of bitmap
indexes for Membership queries. And SI Bitmap Index

INTELLIGENT AUTOMATION AND SOFT COMPUTING 685

is proposed, which represents each attribute value using
only two bitmap vectors, with each bitmap vector
representing many attribute values. In addition, a novel
Membership query processing method, which uses SI
bitmap index, is introduced. This paper shows that the
SI Bitmap Index is more efficient than the existing
techniques for Membership queries from a space-time
trade-off perspective.

3 SI BITMAP INDEX AND MEMBERSHIP
QUERY OPTIMIZATION

3.1 SI Bitmap Index Structure
SI Bitmap Index combines Simple Bitmap Index,

Interval Bitmap Index and Sliced Bitmap Index. Its
structure is similar to that of Sliced Bitmap Index,
however, using respectively Simple Bitmap index and
Interval Bitmap Index in its two dimensions. As shown
in Figure 1, the structure of SI Bitmap Index is a two-
dimensional sliced structure. Chan C.Y (Chan &
Ioannidis, 1998) has verified that the two-dimensional
sliced structure can balance the storage efficiency and
query performance, which is the reason why SI Bitmap
Index adopts the two-dimensional structure. And it uses
Interval Bitmap Index, in first dimension and simple
bitmap index in the other.

Figure 1. SI Structure

For example, <𝑏ଵ,𝑏ଶ> SI Bitmap Index is used on
attribute Y, and 𝑏ଵ and 𝑏ଶ are cardinality of each
dimension. For each attribute value 𝑣௜ of Y, its value in
each dimension is: 𝑣ଵ =𝑣௜ /𝑏ଶ , 𝑣ଶ =𝑣௜ mod 𝑏ଶ . (0 ≤
𝑣ଵ < 𝑏ଵ, 0 ≤ 𝑣ଶ < 𝑏ଶ)

Besides, 𝑣ଵ is indexed using Interval Bitmap Index
while 𝑣ଶ with Simple Bitmap Index.

SI Bitmap Index has two main features: it uses less
space than Sliced Bitmap indexed because it uses
Interval Bitmap Index in the first dimension, in contrast
with Sliced Bitmap Index which uses Simple Bitmap
Index in both the dimensions. Secondly, the
experimental results have shown that SI Bitmap Index
is high efficient on the Membership query. The detailed
optimization methods are discussed in Section 3.2.

3.2 Optimization for Membership Query
Considering a relation R whose schema contains

some attribute A taking values over a domain D, a
Membership query is to retrieve all tuples in R with A
= x (x ∈ D), which has extensive application in science
research and engineering practices.

To improve the efficiency of Membership query
using SI Bitmap Index, an optimized method is
proposed. The method consists of four steps, which are
described as follows.

Step 1. Relationship Mining of Attribute Values
During the query, data mining technique can be used

to group values' attribute that are frequently queried
together. Apriori algorithm, which is a kind of
association analysis technique, can produce frequent
items during mining process based on the frequency of
occurrence defined as Support. Support of these
frequent items can be used in analyzing the relevance
level of values of attribute Y.

For example, relationships of values of attribute Y
need to be studied further under <𝑑ଵ, 𝑑ଶ> SI Bitmap
Index structure. Apriori algorithm is used for mining
frequent 𝑑ଶ-items for a membership query on attribute
Y. And it is ensured that mined frequent 𝑑ଶ-items have
Supports bigger than a given Support. After mining
process, items having higher correlation with each
other are obtained. These 𝑑ଶ-items are the values of
attribute Y, having stronger correlation. And then, a
mapping table on attribute value and storage value is
created. Therefore, Step 1 is the basis of optimization
process.

Step 2. Conflict Resolution of Attribute
Relationship

In Step 1, frequent 𝑑ଶ-items have been mined. These
items have different Supports, and it is possible for
them to overlap each other. To create the mapping table
on attribute value and storage value in Step 3, it need to
be ensured that these frequent 𝑑ଶ -items should not
overlap with each other. Besides, if selected frequent
𝑑ଶ -items have maximum aggregated Supports,
efficiency of Membership query will be improved
vastly. The algorithm in Figure 2 describes how to get
a maximum set of frequent k-items without overlaps.

In Figure 2, The algorithm
MaxNoneOverlapFrequent-k-Items() has three
parameters, in which word is the set of frequent k-items
and Support is the Support of each k-item. And in (6),
function MergeWord merges new frequent k-item into
array v. For example, when new item {𝑣ହ,𝑣଺} merges
with {{ 𝑣ଵ , 𝑣ଶ },{ 𝑣ଷ , 𝑣ସ }},a temp set container is
produced which is {{𝑣ଵ,𝑣ଶ,𝑣ହ,𝑣଺},{𝑣ଷ,𝑣ସ,𝑣ହ,𝑣଺}}. And
in (7), function MergeList achieves the combination of
original container v and new produced temp container.
In above example, newly produced set container is
{{𝑣ଵ,𝑣ଶ},{𝑣ଷ,𝑣ସ},{𝑣ଵ,𝑣ଶ,𝑣ହ,𝑣଺},{𝑣ଷ,𝑣ସ,𝑣ହ,𝑣଺}}.

Besides, function MergeWord should check the
conflict. In case of {𝑣ସ,𝑣ହ} merging with {𝑣ଵ,𝑣ଶ} and
{𝑣ଷ,𝑣ସ}, merging {𝑣ସ,𝑣ହ} with {𝑣ଵ,𝑣ଶ} is non-conflict,
while merging {𝑣ଷ,𝑣ସ} with {𝑣ସ,𝑣ହ} is conflicting. So
the produced temp set container is {{𝑣ଵ ,𝑣ଶ ,𝑣ସ ,𝑣ହ}}.
Hash method is used to check the conflict.

The time complexity of the algorithm
MaxNoneOverlapFrequent-k-Items is O(2௡). But it can
work efficiently because hash method is adopted to
check conflict in MergeWord.

686 GAO, WANG, CHEN

Figure 2. Algorithm Description of MaxNoneOverLapFrequent-
k-Items

Step 3. Creation of Mapping Table on Attribute
Value and Storage Value (MT)

After step 2, we obtain non-conflict frequent 𝑑ଶ -
items under < 𝑑ଵ, 𝑑ଶ >SI Bitmap Index, having
maximum aggregated Support. Suppose that frequent
𝑑ଶ-items obtained from step 2 are in set 𝐷ଶ, and EXC is
the set including all attribute values of Y, and EXC is the
set including the attribute values which belong to ALLC

,but not to 𝐷ଶ. Based on the hypothesis, MT is obtained

by performing following steps.
Sorting frequent 𝑑ଶ-items in 𝐷ଶ by their Supports.
For every frequent 𝑑ଶ -item in Dଶ , every attribute

value is mapped into the storage value X (Initial X=0).
X is incremented by 1 after mapping.

Repeating step 2) until the mapping process of every
attribute value of every frequent dଶ-item is finished.

For elements in EXC , attribute values are ordered
descendingly and are processed similarly as in step 2),
until mapping processes of all the elements in EXC is
finished.

After mapping processes of attribute values of Y,
MT can be created.

The following is a case study.
In this case, attribute Y has 30 different values, and

<10, 3>SI Bitmap Index is established. Step1 and Step
2 is applied to get non-conflict frequent k-items, as
shown in Table 2.

Table 2. Frequent 3-items and their Supports

frequent 3-items Support

𝑣ଵ,𝑣ସ,𝑣ହ 23%

𝑣ଶ,𝑣଺,𝑣଼ 20%

𝑣ଶସ,𝑣ଶହ,𝑣ଶ଺ 18%

The mapping table of {𝑣ଵ,𝑣ସ,𝑣ହ} is shown in Table
3 and Table 4.

Table 3. Attribute Values and their Mapping

Attribute
value

Storage
value

First
dimension

value

Second
dimension

value

𝑣ଵ 0 0/3=0 0 Mode 3=0

𝑣ସ 1 1/3=0 1 Mode 3=1

𝑣ହ 2 2/3=0 2 Mode 3=2

…

Table 4. Mapping Table of Attribute Values

Attribute

value

Storage

value

First dimension
indexes

Second
dimension

indexes

𝐻଴ 𝐻ଵ 𝐻ଶ 𝐻ଷ 𝐻ସ 𝐿଴ 𝐿ଵ 𝐿ଶ

𝑣ଵ 0 1 0 0 0 0 1 0 0

𝑣ସ 1 1 0 0 0 0 0 1 0

𝑣ହ 2 1 0 0 0 0 0 0 1

…

As shown in the Table 3 and Table 4, the attribute
values are mapped into the storage values, and then the
storage values are calculated as index in the first
dimension and second dimension. The index in first
dimension adopts Interval Bitmap Index, and the index
in second dimension Simple Bitmap Index.

Step 4. Optimization of Query Statement (SO)
In general, under <𝑑ଵ, 𝑑ଶ>SI Bitmap Index, steps of

processing Membership query {𝑣ଵ, 𝑣ଶ, 𝑣ଷ,…𝑣௞} are as
follows.

1) Cleaning data.
Cleaning the query condition {𝑣ଵ, 𝑣ଶ, 𝑣ଷ,…𝑣௞}, and

removing repetitive elements. And making sure that
attribute values in set {𝑣ଵ, 𝑣ଶ, 𝑣ଷ,…𝑣௞} are all unique.

2) Grouping the attribute values in query
condition.

Based on mapping table, the attribute values are
divided into different groups. The grouping method is
as following.

EleType[]MaxNoneOverlapFrequent-k-Items(String
word [],Double support[],int n)

// Input：Frequent k-items and their Supports
//Output：Selected Frequent k-items

{ //The element in v[] is a set, and v[] is a container
of sets
(1) EleType v[];
(2) v[0]= Ø；
(3) Double maxValue=0.0;
(4) for(int i=1;i<=n; i++)
(5) {

//merging new item words[i] with v[] produces
new sets
(6) EleType[] temp=MergeWord(v,i-1,words[i]);

//merging new sets with original sets
(7) v=MergeList(v, temp);

//calculating the maximum set in v[]
(8) Double value=Max(v, i)；
(9) if(value> maxValue)
(10) maxValue=value;
(11) }
(12) Return v;

}

INTELLIGENT AUTOMATION AND SOFT COMPUTING 687

𝐺(𝑖) ={𝑣௔ |𝑖 = 𝑣௦/𝑑ଶ, 𝑣௦=mapped(𝑣௔) }, where 𝑣௔ is
attribute value, and 𝑣௦ is 𝑣௔′s storage value, and 𝑑ଶ is
cardinality of second dimension, and i is the serial
number of the group.

3) Optimizing the query according to the
continuity of groups.

After grouping queried attribute values, appropriate
optimization methods are chosen by analyzing
continuity of groups, which are intra-group query
optimization method and inter-group query
optimization method, as discussed in following section.

4) Merging the query results of each group.
Query results are merged and the Membership query

process is completed.
In < 𝑑ଵ , 𝑑ଶ >SI Bitmap Index structure, R(i) is

defined as the set of the attribute values in a query
request which are grouped in 𝐺(𝑖) , and

(,)Q H i L j  as a query request which needs to
query the records whose index in first dimension is i
and in second dimension j. Query optimization includes
intra-group query optimization and inter-group query
optimization.

 Intra-group query optimization
Intra-group query means these groups are not

“continuous” when the values in a query request are
mapped into different groups, as shown in Figure 3.

Figure 3. Intra-group Query

For example, groups 𝐺଴ and 𝐺ଶ in Figure 3, are not
adjacent to each other. Under this condition, G଴ and 𝐺ଶ
are queried separately, and their results are merged in
the end.

Providing the number of elements in R(i) equals to
 𝑑ଶ, query method can be optimized as follows.

     2, 0 , 1 , 1 i.e., ()Q H i L Q H i L Q H i L d Q H i         
Therefore, the response time is largely reduced

because it only needs to query the first dimension index
and access bitmaps vector two times, as SI Bitmap
Index adopts Interval Bitmap Index structure in the first
dimension.

Providing the number of elements in R(i) is x, and x
is less than 𝑑ଶ, there are two query methods. The first
one is to query each element in R(i) one by one, which
needs to access bitmap vector 3*x times. The second
one is to query 𝐺(𝑖) as a whole at the first, and then
query the elements in ()R i (()={ | () ()}R i x x G i x R i  ) ,

i.e., using     , '()Q H i Q H i L R i    . In this way, the
query requires to access bitmap vector 2+3*(𝑑ଶ -x)
times.

In case of 2+3*(𝑑ଶ-x)<3*x，i.e., x>(3* 𝑑ଶ +2)/6,
the second query method ensures that less time is
required, while in case of 2+3*(𝑑ଶ -x)>3*x， i.e.,
x<(3* 𝑑ଶ+2)/6, the first query method is more efficient.

 Inter-group query optimization
Inter-group query means these groups are

“continuous” when the values in a query request are
mapped into different groups, as shown in Figure 4.

v1 v4 v5 v2 v6 v8 v24 v25 v26 ...

G0 G1 G2

Figure 4. Inter -group Query

Providing that there is a continuous sequence
𝐺(𝑖), 𝐺(𝑖 + 1), … , 𝐺(𝑖 + 𝑘), and the number of vacant

elements in the sequence is V (()
i k

j i

V R j




).There

are two query methods. The first one is to query
sequence G(i), G(i + 1), … , G(i + k) as a whole at the
first, and then query the vacant elements in the
sequence, i.e., using
  , { | () }Q i H i k Q H i L x x is the vacant element     

. The method needs to access bitmap vector 2+3*V
times. The second one is to use the intra-group query
optimization method for every group 𝐺(𝑖), 𝐺(𝑖 +
1), … , 𝐺(𝑖 + 𝑘) at the first, and then merge the results
from every group. Providing that M is the times of
accessing bitmap vector in this way.

In case of 2+3*V<M, the first one would be more
efficient, While in case of 2+3*V>M, the second would
be better.

Obviously, if groups are much close, inter-group
query optimization will have a high performance.

4 PERFORMANCE STUDY
THIS section presents the experimental results of

comparing space-time performance of four bitmap
index techniques (Simple Bitmap Index, Interval
Bitmap Index, Sliced Bitmap Index and SI Bitmap
Index). The cardinality of the attribute Y is 30. The data
set is about 2GB. And the experiments were run on a
2.40 GHz Intel® Xeon® with 16 GB main memory and
the capacity of 1TB hard disk.

Different kinds of bitmap indexes on Y are created.
Figure 5 shows the space comparison of different
bitmap index techniques. It’s obvious that SI Bitmap
Index requires least space. The analysis can be seen in
Table 5, which shows the space requirement of four
bitmap index techniques.

Figure 5. Space Comparisons of Different Bitmap Indexes

688 GAO, WANG, CHEN

Table 5. A Comparative Study of Four Bitmap Indexes

Bitmap
Index

Number of
bitmap
vectors
used to

represent
each

attribute
value

Number of
distinct

values on
1 bitmap

vector

Number of
bitmap

vectors used
to represent
an attribute

with
cardinality C

(Space)

Simple 1 1 C

Interval
2

C     2

C 
   2

C 
  

Sliced 2 1C    2 C 
 

SI 2 C    2 C   

Figure 6 shows the response time comparison of
Membership query of different bitmap index
techniques, which shows that SI Bitmap Index has less
response time than the other bitmap indexes. The
reason is that SI Bitmap Index and the optimization
method for Membership query have the following
features.

Figure 6. Running Time Comparison of Membership Query

1) Apriori algorithm is used for mining frequent
d_2-items for a Membership query on attribute Y,
which has an <𝑑ଵ, 𝑑ଶ>SI Bitmap Index. After mining
process, 𝑑ଶ-items, having higher correlation with each
other, are obtained.

2) As shown in Step 3 of section 3, the mapped
values of their storage values are equal in the first
dimension and they are mutual exclusive and
complementary in second dimension, i.e., they are
0,1,2… , if the attribute values belong to the same 𝑑ଶ-
item.

3) As shown in Step 4 of section 3, to answer
Membership query, the number of bitmap vectors
scanned can be usually reduced by means of grouping

the attribute values and optimizing the query based on
the continuity of groups, as the number of the query on
the bitmap vectors of second dimension are often
decreased, even neglected.

In a word, data mining technique is used to group
values' attribute that are frequently queried together,
and then we take advantage of these characteristics to
build a good encoding scheme to reduce the number of
bitmap vectors scanned. Our experimental results
confirm that the performance of SI Bitmap Index is
better than those of the existing techniques for
Membership query from the point of view of space-
time trade-off.

5 CONCLUSION
BITMAP index techniques are widely used on read-

mostly or append-only data with low cardinality.
Simple Bitmap Index suits for Equality query while
Interval Bitmap Index suits for Range query. But
current bitmap index techniques, including Simple
Bitmap Index, Interval Bitmap Index and Sliced
Bitmap index, lose their advantages when confronted
with large volume of data with large cardinality
because of relative increase in indexing cost and query
cost. The introduced Sliced-Interval Bitmap Index is
useful because it is more efficient in space and time
than the other three bitmap index techniques.
Moreover, query optimization method, proposed in this
paper, can further reduce the response time for
Membership query. Experimental results in Section 4
have shown that SI Bitmap Index improves the
performance and it outperforms other three bitmap
indexes for Membership query from the point of space
and query time.

For future work, we plan to reduce the time of data
mining and investigate further applications in
information retrieval.

6 REFERENCES

G. Antoshenkov. (1995 March). Byte-aligned bitmap
compression. Proceedings of Data Compression
Conference. Washington, DC, USA: IEEE
Computer Society, 476-476.

S. Chambi, Lemire, D., Kaser, O., &Godin, R. (2016).
Better bitmap performance with Roaring bitmaps.
Software: Practice and Experience. 46 (5), 709–
719.

C. Y. Chan & Ioannidis, Y. E. (1999). An Efficient
Bitmap Encoding Scheme for Selection Queries.
Acm Sigmod Record.28 (2), 215-226

C. Y. Chan & Ioannidis, Y. E. (1998). Bitmap index
design and evaluation. ACM SIGMOD Record.
27(2): 355-366.

A. Colantonio, Pietro, R. D. (2010). Concise:
Compressed ‘n’ Composable Integer Set.
Information Processing Letters. 110 (16), 644-650

INTELLIGENT AUTOMATION AND SOFT COMPUTING 689

F. Corrales, Chiu, D., &Sawin, J. (2011 September).
Variable length compression for bitmap indices.
Proceedings of the 22nd international conference
on Database and expert systems applications.
Toulouse, France: Springer-Verlag. 381–395.

F. Fusco, Stoecklin, M.P, &Vlachos, M. (2010). NET-
FLi: on-the-fly compression, archiving and
indexing of streaming network traffic.
Proceedings of the VLDB Endowment. 3(2), 1382–
1393.

A. Gani, Siddiqa, A., Shamshirband, S., &Hanum, F.
(2016). A survey on indexing techniques for big
data: taxonomy and performance evaluation.
Knowledge and Information Systems. 46(2), 241-
284.

G. Guzun, Canahuate, G., Chiu, D., &Sawin, J. (2014
March). A tunable compression framework for
bitmap indices. Proceedings of IEEE 30th
International Conference on Data Engineering.
Chicago, IL, USA: IEEE. 484–495.

D. Lemire, Kaser, O., &Aouiche, K. (2010). Sorting
improves word-aligned bitmap indexes. Data &
Knowledge Engineering. 69(1), 3–28.

P. E. O'Neil. (1987). Model 204 architecture and
performance. Proceedings of the 2nd International
Workshop on High Performance Transaction
Systems. London, UK: Springer-Verlag. 40–59.

N. Wattanakitrungroj & Vanichayobon, S. (2006
October). Dual Bitmap Index: Space Time
Efficient Bitmap Index for Equality and
Membership Queries, Proceeding of International
Symposium on Communications and Information
Technologies. Bangkok, Thailand: IEEE. 568-573.

7 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by the

authors.

8 FUNDING
THIS work was supported by National Natural

Science Foundation (No. 51479155), Natural Science
Foundation of Hubei Province (No.2014CFB190).

9 NOTES ON CONTRIBUTORS

Shu Gao received the Ph.D. degree
from Wuhan University of
Technology, Wuhan, China, in
2001. She is currently a Professor
with School of Computer Science,
Wuhan University of Technology,
China. Her research interests
include data analysis, visual
analytics and their application in
Intelligent Transportation System.

Zhen Wang received the M.S.
degree in computer science from
the School of Computer Science,
Wuhan University of Technology,
Wuhan, China, in 2015. His
research interests include data
mining and IS development. He is
now working in the Tencent.

Liangchen Chen is a PhD
candidate in Computer Science
and Technology from Wuhan
University of Technology, China
and a lecturer at China University
of Labor Relations, and. His
research interests include data
analysis and Machine Learning.

