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Abstract: Both of Buckling and post-buckling are fundamental problems of
geometric nonlinearity in solid mechanics. With the rapid development of
nanotechnology in recent years, buckling behaviors in nanobeams receive
more attention due to its applications in sensors, actuators, transistors, probes,
and resonators in nanoelectromechanical systems (NEMS) and biotechnol-
ogy. In this work, buckling and post-buckling of copper nanobeam under
uniaxial compression are investigated with theoretical analysis and atomistic
simulations. Different cross sections are explored for the consideration of
surface effects. To avoid complicated high order buckling modes, a stress-
based simplified model is proposed to analyze the critical strain for buckling,
maximum deflection, and nominal failure strain for post-buckling. Surface
effects should be considered regarding critical buckling strain and the max-
imum post-buckling deflection. The critical strain increases with increasing
nanobeam cross section, while themaximumdeflection increases with increas-
ing loading strain but stays nearly the same for different cross sections, and the
underlying mechanisms are revealed by our model. The maximum deflection
is also influenced by surface effects. The nominal failure strains are cap-
tured by our simulations, and they are in good agreement with the simplified
model. Our results can be used for helping design strain gauge sensors and
nanodevices with self-detecting ability.

Keywords: Nanobeam; buckling; post-buckling; simplified model;
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1 Introduction

Buckling is a fundamental problem of geometric nonlinearity in solid mechanics [1]. Although
in most cases buckling occurs in an elastic state, deformation (i.e., the post-buckling deforma-
tion) is more difficult to predict than that under general loading (e.g., tension, bending and
torsion) [2]. With the rapid development of nanotechnology in recent years, nanobeams have been
widely used as sensors, actuators, transistors, probes, and resonators in nanoelectromechanical
systems (NEMS) and biotechnology [3]. Nanodevices less than 10 nm [4] have been fabricated
and applied. Therefore, buckling of nanobeams is almost inevitable in practical applications [5],
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and understanding post-buckling becomes more and more important [6]. In addition, since the
dimensions of nanobeam are at the nanoscale, there exists considerable material nonlinearity
induced by surface effects [7]. Understanding buckling of nanobeams is not only a fundamental
problem in solid mechanics for understanding the deformation of solids with both geometric and
material nonlinearities [8–10], but also of great significance to applications [11]. Early studies
focused on the stability of nanobeam (e.g., the critical strain and stress) [12–14]. The surface
effects on the elastic properties of nanobeam are considered as surface stresses based on surface
constitutive equations [15]. This method has been successfully used to resolve some problems
related to vibration, bending and buckling stability of nanobeam [16]. However, post-buckling
deformation of nanobeam is still unclear, and of great study interest in recent years [17–20].
Compared with stability, post-buckling deformation of nanobeam is much more difficult to be
predicted [21]. Post-buckling deformation of nanobeam can be affected by various factors such
as surface effects, crystalline orientation and geometrical imperfection, etc. [22–24]. In most cases,
these factors are coupled and thus add substantial complexities to the problem [25].

The Timoshenko beam model including surface stress effect has been widely used to analyze
the post-buckling of nanobeam [21]. Surface effect is considered as nonlocal shear stress items in
the governing equations [16,26]. However, for slender nanobeams, the conventional Euler buckling
model is also valid [27]. Moreover, there may exist multiple buckling modes under an identical
loading, which is also one issue in post-buckling analysis [28]. Although the patterns of high order
buckling modes of nanobeam are more complicated than that of the first order buckling mode,
the nature of their deformation is identical [29]. Therefore, understanding the first order buckling
is of great importance [30]. Although buckling stability analysis of nanobeam under uniaxial
compression has been relatively mature, further understanding on its post-buckling is still needed.
For instance, if the deflection of nanobeam under uniaxial compression can be well described by
a mechanical model, it can be potentially used as a strain gauge sensor at the nanoscale, which is
important for the self-detecting ability of nanodevices in NEMS [31]. For example, according to
the maximum deflection of nanobeams in a NEMS, the compression strain can be estimated. In
addition, there does not exist spacing for external sensors to detect the deformation of nanobeams
in a NEMS, and thus the post-buckling deformation of nanobeams can be used to characterize
its work state.

In this work, the buckling and post-buckling of copper nanobeams under uniaxial compres-
sion is studied via theoretical analysis and atomistic simulations. A stress-based simplified model
is proposed to analyze the critical strain for buckling, maximum deflection and nominal failure
strain. This model avoids solving complicated higher-order shape functions, and directly uses
a single cosine shape function. Different cross sections are explored and their similarities and
differences are analyzed. For a certain length, the critical unstable strain increases with increasing
cross-section dimension. In addition, we find that the surface effect plays an important role in
the critical strain and post-buckling deformation of nanobeam.

2 Models and Simulation Details

Buckling is a common deformation mode which occurs when compressive stress is applied to
a beam with high length-width ratio. Fig. 1 shows the loading geometry for the analysis based
on classical mechanics. A pair of forces F are applied to the beam along the length direction (the
x-axis). Here we focus on nanobeams with square cross sections given their wide applications in
NEMS [12]. When F exceeds a critical value Fcr, a nanobeam is no longer stable and buckling
can occur (Fig. 1b) with the introduction of perturbation (to mimic thermal fluctuations or
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other local heterogeneities) in the transverse direction (the y-axis). This critical force, Fcr, can be
obtained via classical mechanics as [1,2].
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z

Figure 1: Schematics of Cu nanobeam for mechanical modeling and atomistic simulations. (a) Ini-
tial and post-buckling configurations, and (b) initial cross-sectional configuration. Displacement
of the blue regions is fixed at zero in the y-direction and a perturbation is applied to mimic
thermal fluctuations or other local heterogeneities in atomistic simulations

Fcr = 4π2EI

L2
0

, (1)

where E is Young’s modulus, L0 is the initial length and I is the inertia moment of the beam

I = a4

12
. (2)

Here a is the cross-section side length. A beam is usually in elastic stage before F reaches
Fcr, thus stress and strain normally obey a linear relation before buckling occurs. At the spatial
scales of nanometer, the atomic stress is quite different from that of macroscopic scales. The
non-periodic boundary conditions induce uneven distribution of the atomic stress, resulting in
a larger error when using this stress to define the critical behavior. Essentially, our mechanical
model is stress-based (Eq. (1)). However, we find that the solution of buckling stress is implicit.
In order to facilitate the following discussion, we use buckling strain here. This method is widely
used in the field of nanomechanics [32]. In this work, there is no essential difference between
using buckling strain and buckling stress, since using the buckling strain is only for simplicity.
Therefore, we use critical strain in following discussion. Combining Eqs. (1) and (2), we obtain
the critical strain εcr:

εcr = π2a2

3L2
0

. (3)

At the nanometer scale, surface effects often become prominent and should be taken into
consideration. Wang and Feng’s seminal model to consider the effects of residual surface tension
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and shape of cross section is given as:

ε′cr = ε

(
1+ 8Es

Ea
+ 83

π3

l2

a2
τ 0

Ea

)
, (4)

where τ 0 is the residual surface tension. For both simplicity and stringency, here we consider the
effects of residual surface tension and the shape of cross section [27] into an effective surface
Young’s modulus Ẽs, and thus an approximate form with substitution of Eq. (3) leads to

ε′cr =
π2a2

3L2
0

(
1+ 8Ẽs

Ea

)
. (5)

Unlike buckling, post-buckling is more complex and difficult to solve analytically. Here we
define the nominal strain ε as

ε = δ

L0
, (6)

where δ is the absolute displacement of the beam ends in the x-direction (Fig. 2). Although the
patterns of high order buckling modes is more complicated than that of the first order buckling
mode, the nature of their deformation is identical [29]. To investigate the underlying mechanisms
of post-buckling, we focus on the most stable mode, i.e., the first order mode. A single consine
form is assumed to describe the post-buckling deformation of nanobeams to avoid complicated
or high order solutions. We focus on the maximum deflection, which plays a dominant role in
the deformation of nanobeams. Therefore, assuming deflection w(L,x) is in a single consine form,
we obtain

w (L,x)=A (L)

[
1− cos

(
2πx
L

)]
. (7)

Here A(L) is the amplitude at current length in the x-direction, L. The coordinate system
and relevant parameters are defined in Fig. 2. w(L,x) peaks at x=L/2, i.e.,

wmax (L)=w
(
L,
L
2

)
= 2A (L) . (8)
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Figure 2: Definitions of the coordinate system and mechanical parameters. w: Deflection; δ: Abso-
lute displacement of beam end in the x-direction; L0: Initial beam length; L: Current beam length
in the x-direction. The origin is set at the center of the left end. The dashed curve denotes the
central axis of the beam and the dash-dotted region corresponds to the infinitesimal element in
Fig. 3
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When buckling occurs, the input energy during compression loading translates into com-
pressive or tensile strain energy in different segments of the beam along the y-axis. Under
the assumption of small and isotropic deformation, the compression and tension parts are
evenly split along the y-axis, and the central axis length stays unchanged. Thus, we obtain the
following equation,

L0 =
∫ L

0

[(
∂w (L,x)

∂x

)2

+ 1

] 1
2

dx. (9)

To satisfy the geometry relation in the above equation, A(L) should increase with decreas-
ing L. Eqs. (7) and (9) allow us to predict the shape of a beam numerically and wmax is also
obtained via Eq. (8) at a certain ε.

However, besides elastic energy Ue, some of the work done by external force F is converted
into surface energy Us:

U =Ue+Us. (10)

The elastic energy of nanobeam is given as:

Ue =
∫ L

0

Da
2

(
d2w
dx2

)2

dx, (11)

where D=Ea3/12(1− ν2) is bending rigidity, and ν is Poisson’s ratio. The surface energy can be
approximately expressed as [33]:

Us = 2aL
∫ L

0

∣∣∣∣∣kd
3w
dx3

∣∣∣∣∣dx, (12)

where k is a constant for surface energy increment per bending angle [34]. If the surface effects
are ignored, the external work is completely converted into elastic energy, and the upper limit of
wmax can be obtained with Eq. (8). With the surface effect considered, the maximum deflection
of nanobeam is approximately expressed as a linear decrement of maximum deflection

w′
max ≈ 2 (A−ΔAs) , (13)

where ΔAs is the decreased deflection due to the surface effects, and can be obtained
from Eqs. (7–12):

ΔAs = 8k

√
12L

(
1− ν2

)
EU

, (14)

With the expressions for Ue and Us [33], a series of implicit solutions of ΔAs can be obtained,
which demonstrates that ΔAs is close to a constant.

The tensile and compressive stresses increase with increasing ε, and finally reach the elastic
limit. We define the nominal strain when plastic failure initiates as the nominal failure strain
εf . In order to predict εf for different situations, we develop a simplified model based on
classical mechanics.
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The local deformation at certain L and x is related to the local radius of curvature, R,
defined as

R= dl
dα

, (15)

where l is the arc length and α is the rotation of its tangent. For our model,

R (L, x)=

[(
∂w(L, x)

∂x

)2+ 1
] 1

2

dx∣∣∣d[arctan ∂w(L, x)
∂x

]∣∣∣ . (16)

At a fixed beam geometry, R is inversely related to local deformation. Thus failure first
emerges at the place with the smallest R. According to Eqs. (7) and (16), the smallest R at a
certain L, Rmin(L), is

Rmin (L)=R
(
L,
L
2

)
= L2

4π2A (L)
. (17)

Consider an infinitesimal element intercepted from Fig. 2 and illustrated in Fig. 3. The
maximum compression and tension occur at the inner and outer arcs, respectively. Since most
materials can bear more compression than tension, we assume failure first initiates at the outer
arc. As described in Fig. 3, the outer arc length dlout and central arc length dl0 can be obtained,
respectively, as

dlout (L,a)=
[
Rmin (L)+ a

2

]
dθ , (18)

and

dl0 (L)=Rmin (L)dθ . (19)
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Figure 3: Schematic of the infinitesimal element corresponding to the dash-dotted region in
Fig. 2. dlout, dl0 and dlin denote the length of outer arc, central arc and inner arc, respectively.
Rmin: curvature radius of the element; dθ : central angle
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Assuming that the central arc is free from deformation, we obtain the maximum tensile
strain via

εtmax (L,a)= dlout
dl0

− 1. (20)

Rmin(L) decreases with increasing ε, and εtmax increases with decreasing Rmin(L). When εtmax
reaches the intrinsic elastic strain limit of material, ε∗, failure occurs, i.e.,

εtmax (L,a)= ε∗. (21)

Eq. (21) together with Eqs. (9) and (17) provides an analytical approach to predict εf for
different beam geometries.

To evaluate the validity of the above nanoscale model and reveal underlying mechanisms,
we perform atomistic simulations with a large-scale atomic/molecular massively parallel simu-
lator (LAMMPS) [35]. An accurate embedded-atom method potential is used to describe the
atomic interactions in Cu [36]. This potential has been fitted to reproduce physical properties
such as stacking fault energy and elastic moduli [36], and widely used in a large number of
simulations, including shock compression [37], deformation [38,39], equations of state [40] and
cavitation [41,42].

Fig. 1 shows the loading geometry for both buckling and post-buckling simulations. The x-,
y- and z-axes are parallel to [110], [−110] and [001], respectively. The left and right ends of the
beam are fixed along the y-axis and all of the boundary conditions are non-periodic. In buckling
simulations, the beam is first relaxed through energy minimization, and increasing compressive
strain is applied along the x-axis at an increment of 0.001. At each strain, a pair of opposite
perturbation forces are applied separately along the y-axis to the middle part (green part in
Fig. 1a), and energy minimization is conducted after each force is applied. Then εcr is obtained
when the beam fails to maintain straight shape. In post-buckling simulations, energy minimization
is first conducted after the beam is compressed along the x-axis to 2% and initial geometric
imperfection (e.g., ramp displacements, see details in section I of supplementary information,
SI-I) is applied to the middle part along the y-axis. The system is then subjected to compressive
strain at an increment of 0.001 and the energy of system is minimized after each increment. The
temperature in all the simulations is fixed at 0 K. The initial length of beam L0 is 1000 Å for all
the simulations while a varies from 20 to 60 Å.

A set of tensile simulations are carried out to obtain ε∗ for different a. In these simulations,
the beams as in buckling simulations are subjected to tensile strain from 0 with increment
of 0.001. ε∗ is defined as the strain when plastic deformation first occurs. Other simulation
conditions are the same as buckling simulations.

3 Results and Discussion

Fig. 4a shows critical strain εcr of buckling simulations for different a, together with predic-
tions of Eq. (3). As expected, simulated εcr increases with increasing a, consistent with Eq. (3).
However, the simulation results deviate considerably from classical model. The relative errors
of the buckling model relative to the simulation results are shown in Fig. 4b. The relative
error decreases with increasing a, ranging from −47% to −17%. The larger errors at small a is
due to the larger surface energy per unit volume, since the surface effect is not considered in
classical model.
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Figure 4: (a) Critical strain εcr for buckling obtained from atomistic simulations, prediction with
Eq. (3) and fitting with Eq. (5). (b) Relative errors for predictions with Eq. (3) at different a

The external load translates into surface and structural stresses. Therefore, without consider-
ing the surface effect, εcr is underestimated (Fig. 4a). To include the surface effect, the simulation
data can be well fitted with Eq. (5) (the blue curve in Fig. 4a, Ẽs = 54 N/m).

For post-buckling, Fig. 5 shows the evolution of average potential energy per atom Up with

applied nominal strain (a = 40 Å), together with four representative snapshots. In these atomic
configurations, the atom types are characterized with the common neighbor analysis (CNA)
method [43,44] and only face-centered cubic (FCC, green) and hexagonal close-packed (HCP,
red) atoms are plotted. In the early stage (e.g., ε < 0.1), Up increases with increasing ε as a
result of the accumulation of elastic energy. The curvature and deflection magnitude of the beam
increases and no plastic deformation is found in this stage (1 and 2 in Fig. 5). However, Up begins
to decrease when ε exceeds 0.103 and plastic deformation occurs in the corresponding atomic
configurations (configuration 3, Fig. 5). The plastic deformation is induced by partial dislocation,
and the activated slip systems are (111)/[1̄1̄2] and (111̄)/[1̄1̄2̄], the same as the ones in Lennard–
Jones system under tension [45]. Thus, εf equals to 0.103 in this simulation. Up then continues
to decrease and the beam begins to crack in following compression process (configuration 4
in Fig. 5).

In our simulations, the maximum deflection wmax is obtained as the maximum y coordinate
of the beam minus a/2. The simulation results of wmax are shown in Fig. 6 for different ε and
a, together with the prediction of Eq. (8). Only data before failure are shown and the arrows
indicate the initiation of failure. Failure is not included in the prediction curve. During the initial
loading (e.g., ε < 0.05), the evolution and equilibrium processes induce differences in geometries
for different a. However, as the loading continues to increase, the beam geometries approach the
theoretical one and these differences decrease. In our model, wmax is determined by L0 and L
(or ε, Eq. (8)), and is independent of a. In this sense, the simulations and our model are in good
agreement. Nevertheless, wmax is less than the model prediction for all the cases we explored by
about 2 nm.

Similar to buckling simulations, wmax in post-buckling is also influenced by the surface
effect [46]. In general, the elastic energy of the nanobeam increases with increasing deflection. If
the surface effect is ignored, the work done by the external force F is completely converted into
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elastic energy. Considering the surface effects, a shift should be added to the original prediction
according to Eq. (13), which is consistent with simulation results (Fig. 6). In our case, the shift
constant c equals to 1.7 nm.
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Figure 5: Average potential energy per atom Up vs. nominal strain ε for post-buckling simulation
with a= 40 Å. Insets show snapshots at different ε. Green and red atoms represent face-centered
cubic (FCC) and hexagonal close-packed (HCP) local packing, respectively
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Figure 6: Maximum deflections for different a vs. nominal strain ε obtained from simulations
(symbols), predictions of Eq. (8) (black curve) and modification of Eq. (13) (cyan curve). Inset
shows an enlarged region of interest. Only data before failure are shown and the arrows indicate
the initiation of failure
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The nominal failure strain εf is also important in practical applications. Here we obtain εf
from our simulations via the method described above and the results are shown in Fig. 7. Since
the beam with a = 20 Å does not show indications of failure during the whole simulation (ε up to
0.3), εf is not available in this case. The predictions of our model (Eq. (21)) are also displayed in
this figure. The parameter ε∗ = 0.100 in Eq. (21) is determined by independent tensile simulations.
The simulation result is displayed in SI-II. In theses tensile simulations, the sample sizes are the
same as the nanobeams and the surface would have an effect on the plasticity behavior. Thus
the surface effect has already been included in ε∗ simulations and no additional modification is
needed for Eq. (21). As shown in Fig. 7, our model shows good agreement with the simulation
results for different a, which indicates our model can accurately predict the failure strain down
to 3 nm. Compared with the common solutions (high order buckling curves or assuming a
complicated surface system), there are only two parameters (the effective surface Young’s modulus
Ẽs and decreased deflection ΔAs) in this simplified model. The solution based on this model is
in good agreement with the results of atomistic simulations (Figs. 6 and 7).
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0.05

0.10

0.15

0.20 simulation
Eq. (19)

ε f

a (Å)

Figure 7: Nominal failure strain εf for different a obtained from atomistic simulations and
prediction by Eq. (21)

4 Conclusion

A stress-based simplified model is proposed to describe the buckling and post-buckling behav-
iors of Cu nanobeam under uniaxial compression. The critical strain for buckling, maximum
deflection and nominal failure strain for post-buckling are analyzed by this model. We also
perform atomistic simulations of the buckling and post-buckling processes. In buckling simu-
lations, the critical strain increases with increasing nanobeam cross section. With the surface
effects considered, the simulation results and our model are in good agreement. For post-buckling
simulations, the maximum deflection increases with increasing loading strain but stays nearly the
same for different cross sections, and the underlying mechanisms are revealed by our model. The
maximum deflection is also influenced by surface effects. The nominal failure strains are in good
agreement with this simplified model. Our results can be useful for designing related nanodevices
in NEMS.
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