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Abstract: Steel frames equipped with buckling restrained braces (BRBs) have
been increasingly applied in earthquake-prone areas given their excellent
capacity for resisting lateral forces. Therefore, special attention has been paid
to the seismic risk assessment (SRA) of such structures, e.g., seismic fragility
analysis. Conventional approaches, e.g., nonlinear finite element simulation
(NFES), are computationally inefficient for SRA analysis particularly for
large-scale steel BRB frame structures. In this study, amachine learning (ML)-
based seismic fragility analysis framework is established to effectively assess
the risk to structures under seismic loading conditions. An optimal artificial
neural network model can be trained using calculated damage and intensity
measures, a technique which will be used to compute the fragility curves of a
steel BRB frame instead of employing NFES. Numerical results show that a
highly efficient instantaneous failure probability assessment can be made with
the proposed framework for realistic large-scale building structures.

Keywords: Machine learning; Monte Carlo simulation; regression method;
fragility analysis; buckling restrained braces

1 Introduction

Steel frames equipped with the buckling restrained braces (BRBs) are gaining increasing
popularity and have wide applications in new structures [1–3] or for retrofitting existing ones [4]
given their excellent lateral force resistance. Fragility analysis plays an essential role for the seismic
risk assessment (SRA) of the steel BRB structures in earthquake-prone areas [5]. According
to the performance-based structural design method, the damage limit state, D, of a structure
under seismic excitations can be divided into several levels, e.g., negligible, light, moderate, and
severe damage states [5]. The probability of failure can be expressed as Pf = P [DM ≥D], where
DM indicates the damage measure. Considering that the intensity measure (IM) of a given
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ground motion may be an uncertain value, e.g., the peak ground acceleration (PGA) or spectral
acceleration (Sa), the conditional probability of failure can be modified as [6],

Pf =P [DM ≥D]=
∑
All x

P [DM ≥D | IM = x]P [IM = x] (1)

where P [DM ≥D | IM = x] indicates the fragility that suggests the failure probability under the
ground motion IM level x, and P [IM = x] expresses the annual occurrence probabilities of the
specific level x of an earthquake motion.

The Monte Carlo Simulation (MCS) based on the nonlinear finite element simulation
(NFES) [7] is one of the most accurate and popular techniques. However, the MCS is com-
putationally prohibitive because of its tremendous time cost, especially for realistic large-scale
structures. Consequently, some approximate regression methods, such as the least-squares [8] and
empirical regression methods [9], are commonly used to compute the fragility curve by utilizing
the limited data of structural responses. Among them, the empirical regression (denoted as Reg)
method is slightly more popular and expresses the fragility curve in the form of two-parameter
lognormal distribution functions [10].

Given the epistemic uncertainties of structures and the aleatory uncertainties of earthquakes,
numerous repeated simulations may be necessary to perform structural reliability or fragility
analysis using the MCS or the Reg method. Therefore, conducting instantaneous SRA of realistic
large-scale structures is problematic for researchers and engineers.

In the last few years, machine learning (ML) has become a powerful tool that supplanted con-
ventional finite element (FE) approaches for repeated computation. The artificial neural network
(ANN), an ML approach, has various applications in the reliability analysis of civil struc-
tures [11–23]. ML may also be extensively used in the fragility analysis of structural SRAs [24–32].
The basic idea of ML involves several steps. First, the actual DM of a structure under seismic
loadings is calculated according to the NFES, and appropriate intensity measures (IMs) are
selected to characterize the ground motion. Second, an optimal ML (e.g., the ANN) model is
trained using the IMs-DM data. Finally, the fragility curve of the structure can be predicted
according to the ANN model. The main concerns focus on the selection of the IMs and predicted
uncertainties of the ML (or ANN) model. For the IM selection, more than one IM is needed
to represent the ground motion because the random earthquake process cannot be sufficiently
characterized by any single seismic IM, such as the PGA, peak ground velocity (PGV), and SA.
However, the ANN model will be overfitted if given too many selected IMs and will become
complex if these selected IMs have substantial correlation with one another. A parametric study
was conducted to select the suitable combination of IMs that leads to close predictions of the
demand [28] but ignored the correlation among these selected IMs and that between the IM
and DM. A wrapper approach based on the genetic algorithm can be employed to select the
optimal set that maximizes ANN representation accuracy [27], for which the correlation between
the selected IMs is considered. Another filter approach based on the semi-partial correlation
coefficient is proposed to consider the independent correlation between the IM and DM [32].
For the predicted uncertainties of the ML (or ANN) model, the input and output randomness,
as well as the effect of data size on the accuracy of the ANN model, are studied [27]. These
uncertainties are investigated in relation to the fragility analysis of nuclear power plants [32].

In this paper, an ML-based seismic fragility analysis framework is proposed to instantaneous
assess the failure probability of a realistic large-scale 48-story steel BRB frame under excitations.
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The suggested framework is introduced in Section 2. The numerical results are presented and
discussed in Section 3. Conclusions are provided in Section 4.

2 ML-Based Seismic Fragility Analysis Framework

As depicted in Fig. 1, the proposed ML-based seismic fragility analysis framework consists
of three parts:

Figure 1: The ML-based seismic fragility analysis framework

(I) NFES. A relatively large number of ground motion records are selected, the FE model
of the steel BRB frame is developed, and the actual DMs of the structure are computed
under these selected seismic excitations, (Figs. 1a–1c);

(II) ANN regression model construction. The most relevant IMs are selected with the DM,
and the IMs-DM data are used to train the ANN model (Figs. 1d–1f);

(III) ML-based seismic fragility predictions. According to the statistical distributions of the
selected IMs, an extended sample data of the IMs is obtained. Then, the optimal ANN
model established in Part (II) can be used to predict the DM. Finally, the fragility curves
of the steel BRB frame at various performance state limits can be calculated using the
MCS or Reg method (Figs. 1g–1j).
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This section is organized as follows. Section 2.1 introduces the structure model and presents
the input ground motions. Section 2.2 explains the selection of the IMs and the training and
validation of the ANN model. Section 2.3 demonstrates the sampling methods of the IMs and
the prediction of the fragility curves.

2.1 NFES
2.1.1 Structure Model

This study conducts fragility analysis of a 48-story steel BRB frame. The structure is designed
according to the Chinese Code for Seismic Design of Buildings GB50011-2010 [33], which consists
of five-bay in the North–South and East–West directions with a span length of 8 m. Each story
of the frame is 4 m in height. The building stands at 192 m. The concrete slabs of each floor
and the roof are both 0.12 m in thickness. The elevation and plan views are shown in Fig. 2.
The frame consists of mega columns, mega beams, secondary columns, secondary beams, mega-
column beams, mega-column braces, and mega-beam braces (Figs. 2a and 2b). All columns and
braces are of box sections (denoted as B-type), whereas all beams are of I-type sections. Three
strength stories are designed and located at Floors 19–20, 36–37, and 48 (Fig. 2c). The section
geometries and material of all components are given in Tab. 1.

Figure 2: Elevation and plan views of 48-story steel BRB frame

The live load applied on each slab is 2.0 kN/m2, the self-weight dead loads on each slab and
the roof are 3.5 kN/m2, and the roof has an additional dead load of 3.32 kN/m2. The frame is
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located in an earthquake-prone region with seismic fortification intensity 8 (0.2 g), site soil class
II and design Group 1. The damping ratio of the structure under an 8-degree rare earthquake is
taken as 0.02.

Table 1: Section geometries and materials of structural components (units: m)

Component Floor Section geometry Material

Mega column 1–12 B-type 0.9× 0.9× 0.065× 0.065 Q345
Mega column 13–24 B-type 0.9× 0.9× 0.04× 0.04
Secondary column 1–24 B-type 0.8× 0.8× 0.06× 0.06
Mega column 25–36 B-type 0.08× 0.8× 0.04× 0.04 Q235
Mega column 37–48 B-type 0.7× 0.7× 0.03× 0.03
Secondary column 25–48 B-type 0.75× 0.75× 0.05× 0.05
Mega beam 1–48 I-type 0.8× 0.3× 0.019× 0.035
Secondary beam 1–48 I-type 0.692× 0.3× 0.013× 0.02
Mega-column beam 1–48 I-type 0.7× 0.3× 0.013× 0.024
Mega-column brace 1–24 B-type 0.25× 0.25× 0.018× 0.018
Mega-column brace 25–48 B-type 0.25× 0.25× 0.014× 0.014
Mega-beam brace 19–20 B-type 0.35× 0.35× 0.02× 0.02
Mega-beam brace 36–37,48 B-type 0.35× 0.35× 0.018× 0.018
Slab 1–48 40× 40× 0.12 C30

The BRB frame structure is analyzed using an open source software platform,
OpenSees [34,35]. During the seismic analysis of the frame under earthquake loads, each column
or beam component is modeled by using an Euler–Bernoulli fiber element with five Gauss points,
where the uniaxial behaviors of steel fiber is simulated by using a uniaxial Giuffre–Menegotto–
Pinto (GMP) model [34,36]. Moreover, the BRB component is simulated by employing a truss
element, for which the uniaxial stress–strain relationship is computed by utilizing the GMP model.
The beam–column connections are assumed to be rigid and the mass is regarded as concentrated
at the beam–column joints. The first five periods and frequencies of the steel BRB frame are
given in Tab. 2.

In the transient analysis, a Newmark-β integration scheme is employed with the parameters
γ = 0.5 and β = 0.25, and the Rayleigh damping is assumed to have a damping ratio of 0.02 that
corresponds to the first and second frequencies (1.29 and 4.14 Hz) in the seismic action direction
(i.e., N–S direction). A tolerance of 1.0 e-5 mm on the norm of the incremental displacement is
employed as the convergence criterion in the nonlinear iterative computation.

Table 2: First five periods and frequencies in the N–S direction of the SMF-BRB structure

Order 1 2 3 4 5

Period (s) T1 = 4.88 T2 = 1.52 T3 = 0.77 T4 = 0.50 T5 = 0.36
Frequency (rad/s) f1 = 1.29 f2 = 4.14 f3 = 8.21 f4 = 12.46 f5 = 17.32
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2.1.2 Input Ground Motions
To obtain the DM data used for training the ANN model, a 48-story steel BRB frame is

analyzed under a suite of 60 Los Angeles ground motion records in the SAC steel research
project [37]. Detailed information of all ground motions is presented in Tab. 3. The magnitude
range is from 5.7 to 7.7 and the source-to-site distance of the selected record ranges from 1 km to
107 km. These 60 records are divided into three groups in terms of the probability of exceedance:
the first, middle, and last 20 ground motion records for 50 years are respectively represented as
10%, 2%, and 50%.

2.2 ANN Regression Model Construction
2.2.1 IM Selection

Given that the input earthquake motion is a random process, establishing a clear and simple
relationship between the input and output DMs is difficult. Consequently, some IMs that repre-
sent the earthquake motion must be selected to describe the relationship. Characterizing seismic
motion generally requires more than one IM [39]. Tab. 4 lists seven commonly used IMs, i.e., the
PGA, PGV, peak ground displacement (PGD), Sa, average spectral acceleration (ASA), cumulative
absolute velocity (CAV ), arias intensity (Ia). Note that increasing the number of selected IMs will
enhance the complexity of the ANN model and may even lead to a risk of overfitting. Therefore,
selecting the most relevant IMs with the DM to train the ANN regression model is crucial.

As these IMs may be highly related to one another, conventional correlations are unsuitable
for selecting the most relevant IMs with the DM. In this study, a filter approach on the basis
of semi-partial correlation coefficients (SPCCs) is used to select the most relevant IMs [32], for
which the independent correlation between any IM and DM can be accurately measured after
controlling for (i.e., “partialling” out) the effects of the other six IMs. Tab. 5 and present the
correlation coefficients and SPCCs between the logarithms of IMs and DM. IM5 has the largest
correlation coefficient (larger than 0.9) with the DM and a very small SPCC, whereas IM3
(PGD) has the second largest correlation but the smallest SPCC (Tabs. 5 and 6). According to
the correlation coefficients in Tab. 5, IM2, IM3, IM4, and IM5 are the most relevant IMs with
the DM, whereas IM2 and IM4 (Tab. 6) are the most relevant ones quantified by the SPCCs.
Therefore, IM2 and IM4 will be adopted to train the ANN model in the following simulation.

2.2.2 Training and Validation of the ANNModel
Subsequently, the ANN model can be constructed by using the IMs-DM data which consists

of an input layer, hidden layer, and output layer (Fig. 3).

The hidden layer contains n independent neurons (or nodes), and each node receives all input
IMs from the input layer and computes the output, thereby yielding

yj = f

(
m∑
i=1

wijIMi+ bj

)
, j= 1, . . . ,n (2)

where IMi is the ith input variable, m is the number of IMs, yj is the output of the jth neuron
in the hidden layer, wij is the weight coefficient contributed by the IMi to the output yj, bj is the
bias of the jth neuron in the hidden layer, and f is the activation function. The choice of the
activation function plays an important role in the construction of the ANN. Activation functions
occur as linear and nonlinear types. A nonlinear activation function with the sigmoid function as
an example is expressed as
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Table 3: Summary of selected ground motions [38]

Probability SAC Earthquake Magnitude Distance (km) PGA (g)
of exceedance name location

10% in 50 years LA01 El Centro 6.9 10.0 0.461
LA02 El Centro 6.9 10.0 0.676
LA03 Imperial Valley 6.5 4.1 0.394
LA04 Imperial Valley 6.5 4.1 0.488
LA05 Imperial Valley 6.5 1.2 0.302
LA06 Imperial Valley 6.5 1.2 0.235
LA07 Landers,Barstow 7.3 36.0 0.421
LA08 Landers, Barstow 7.3 36.0 0.426
LA09 Landers, Yermo 7.3 25.0 0.520
LA10 Landers, Yermo 7.3 25.0 0.361
LA11 Loma Prieta, Gilroy 7 12.0 0.666
LA12 Loma Prieta, Gilroy 7 12.0 0.970
LA13 Northridge, Newhall 6.7 6.7 0.679
LA14 Northridge, Newhall 6.7 6.7 0.658
LA15 Northridge, Rinaldi RS 6.7 7.5 0.534
LA16 Northridge, Rinaldi RS 6.7 7.5 0.580
LA17 Northridge, Sylmar 6.7 6.4 0.570
LA18 Northridge, Sylmar 6.7 6.4 0.818
LA19 North Palm Springs 6 6.7 1.020
LA20 North Palm Springs 6 6.7 0.987

2% in 50 years LA21 Kobe 6.9 3.4 1.284
LA22 Kobe 6.9 3.4 0.921
LA23 Loma Prieta 7 3.5 0.418
LA24 Loma Prieta 7 3.5 0.473
LA25 Northridge 6.7 7.5 0.869
LA26 Northridge 6.7 7.5 0.944
LA27 Northridge 6.7 6.4 0.927
LA28 Northridge 6.7 6.4 1.331
LA29 Tabas 7.4 1.2 0.810
LA30 Tabas 7.4 1.2 0.992
LA31 Elysian Park 7.1 17.5 1.297
LA32 Elysian Park 7.1 17.5 1.187
LA33 Elysian Park 7.1 10.7 0.783
LA34 Elysian Park 7.1 10.7 0.681
LA35 Elysian Park 7.1 11.2 0.993
LA36 Elysian Park 7.1 11.2 1.101
LA37 Palos Verdes 7.1 1.5 0.712
LA38 Palos Verdes 7.1 1.5 0.777
LA39 Palos Verdes 7.1 1.5 0.501
LA40 Palos Verdes 7.1 1.5 0.626

(Continued)
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Table 3 (continued).

Probability SAC Earthquake Magnitude Distance (km) PGA (g)
of exceedance name location

50% in 50 years LA41 Coyote Lake 5.7 8.8 0.590
LA42 Coyote Lake 5.7 8.8 0.333
LA43 Imperial Valley 6.5 1.2 0.144
LA44 Imperial Valley 6.5 1.2 0.112
LA45 Kern 7.7 107.0 0.144
LA46 Kern 7.7 107.0 0.159
LA47 Landers 7.3 64.0 0.338
LA48 Landers 7.3 64.0 0.308
LA49 Morgan Hill 6.2 15.0 0.319
LA50 Morgan Hill 6.2 15.0 0.547
LA51 Parkfield Cholame 5W 6.1 3.7 0.781
LA52 Parkfield Cholame 5W 6.1 3.7 0.632
LA53 Parkfield Cholame 8W 6.1 8.0 0.694
LA54 Parkfield Cholame 8W 6.1 8.0 0.791
LA55 North Palm Springs 6 9.6 0.518
LA55 North Palm Springs 6 9.6 0.379
LA55 San Fernando 6.5 1.0 0.253
LA58 San Fernando 6.5 1.0 0.231
LA59 Whittier 6 17.0 0.769
LA60 Whittier 6 17.0 0.479

Table 4: Definitions of classical IMs

IMi Name Definitions Comments

IM1 Peak ground acceleration (PGA) max |a (t)| a (t): acceleration time history
IM2 Peak ground velocity (PGV) max |v (t)| u (t): velocity time history
IM3 Peak ground displacement (PGD) max |u (t)| u (t): displacement time history
IM4 Spectral acceleration (Sa) Sa (T1, rd) T1 = 4.88, rd = 2
IM5 Average spectral acceleration (ASA) 1

t2−t1
∫ t2
t1
Sa (t, rd)dt t1 = 0.2T1, t2 = 2T1

IM6 Cumulative absolute velocity (CAV)
∫ T
0 |a (t)|dt T : duration

IM7 Arias intensity (Ia) π
2g

∫ T
0 |a (t)|2 dt g: gravity acceleration

Table 5: Correlation coefficients between the IMs and DM in the log–log space

IM IM1 IM2 IM3 IM4 IM5 IM6 IM7

ρ 0.7677 0.9529 0.9563 0.9346 0.9754 0.7961 0.8447



CMES, 2020, vol.125, no.2 763

Table 6: SPCCs between the IMs and DM in the log–log space

IM IM1 IM2 IM3 IM4 IM5 IM6 IM7

ρ −0.0180 0.0679 −0.0058 0.0664 0.0412 −0.0362 0.0363

Figure 3: The ANN model

f (x)= 1
1+ e−αx (3)

and can be used to model the nonlinear behavior of the ANN, in which α is the sigmoid slope
which is taken as 1 herein.

Finally, the DM calculated in the output layer can be expressed as

DM =
n∑
j=1

vjyj+ d (4)

where vj is the weight coefficient between the output and the jth neuron in the hidden layer and
d is the bias in the output layer.

During the training of the ANN model, the discrepancy between the predicted DM and
actual DM is used to measure the performance of the ANN. A mean squared error (MSE) can
typically be adopted to quantify the difference and is defined as

MSE =
N∑
i=1

(
DMi−DMi

)2
/N (5)

in which N is the number of testing data, DMi is the ith predicted value and DMi is the ith
actual value.

Once the MSE is less than the pre-defined target, the training of the ANN model is termi-
nated and an ANN regression model is built. Otherwise, the training continues and the control
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parameters, e.g., the weight coefficient and bias, are updated according to a training algorithm
(such as the Levenberg–Marquardt training algorithm). Subsequently, a new output is computed
to examine the convergence of the system.

To improve the training efficiency of the ANN model, all input and output variables must
be normalized beforehand by mapping the original values to the dimensionless range [0,1] or
[−1,−1]. As the fragility analysis is conducted in the logarithmic space, the following scaled
equation should be used:

lnp′ = lnp− ln p̄
σ

(6)

where p′ and p indicate the scaled and unscaled values, respectively; and p̄ and σ respectively
denote the mean and logarithmic standard deviation.

2.3 ML-Based Seismic Fragility Predictions
In this section, seismic fragility analysis is performed according to ML. First, in view of the

prediction uncertainty of the ANN model, an optimal regression model is chosen from many
trained ones (Figs. 1e–1h). Subsequently, the input IMs should be determined, including the
sample range and size. Finally, the DMs can be predicted using the optimal ANN regression
model and will be used to calculate the fragility curve. The following sections discuss the sampling
method of the selected IMs and the computation of the fragility curve.

2.3.1 Sampling Methods of Selected IMs
In ML-based seismic fragility analysis, the size of the IMs-DM sample data considerably

affects the accuracy of the prediction. If the sample data is sufficiently large, then the failure
probability of the structure under an earthquake can be accurately computed. However, the values
of the IMs cannot be in an unlimited range [0, inf). To reasonably take these values, the statistical
distributions of the selected IMs according to 60 earthquake waves can be used (Figs. 1d–1g).
This paper adopted two sampling methods to ascertain the IMs using their statistical distribu-
tions: (1) truncated random distribution (TRD) and (2) truncated uniform distribution (TUD).
In the former, the IMs are randomly taken in a specific range; whereas in the latter, the IMs are
uniformly distributed in a given interval.

2.3.2 Computation of Fragility Curves
In this section, the MCS and Reg method are adopted to compute the fragility curves of the

structure under an earthquake. In the ML-based MCS, all selected IMs for a given PGA level x
can be determined using the above sampling methods and statistical distributions. Then, the DMs
can be predicted using the ANN model, (Figs. 1g–1i). Finally, the probability of the structure
reaching or exceeding the damage state Di can be computed as [15]

PiMCS [DM ≥Di |PGA= x]= 1
n

n∑
j=1

1
[
DMj ≥Di

]
(7)

where n is the number of ground motions; DMj is the DM value (i.e., maximum IDR) of the
structure subjected to jth seismic motion; and 1

[
DMj ≥Di

]
is 1 when DMj ≥Di and 0 otherwise.
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In the Reg method, the fragility of the structure or component can be expressed in a form
of lognormal cumulative distributions, and the conditional probability of failure for the specific
damage state Di can be written as [10].

PiReg [DM ≥Di |PGA= x]=�

[
1
βi

ln
(
x
αi

)]
(8)

in which Φ is the standard normal cumulative distribution function (CDF), αi is the median value
of the PGA at which the DM reaches or exceeds the threshold Di, and βi is the corresponding
logarithmic standard deviation.

Given the limited sample data, the structure may not reach the damage state Di when the
PGA takes the maximum value in some samples. Consequently, the conventional method for
computing the mean and logarithmic standard deviation is inapplicable here. In this study, a
multiple stripes analysis (MSA) method is adopted, in which two parameters αi and βi are
estimated by using the maximum likelihood method [10]. The likelihood function corresponding
to the damage state Di can be written as

Li =
m∏
j=1

(
n
zij

)
�

(
1
βi

ln
(
xj
αi

))zij [
1−�

(
1
βi

ln
(
xj
αi

))]n−zij
(9)

in which m is the number of PGA levels, zij is the number of ground motions at which the

structure reaches or exceeds the damage state Di at PGA = xj, and
∏

is a product over all

PGA levels. αi and βi in Eq. (8) are computed as α̂i and β̂i by maximizing the logarithm of the
likelihood function Li [10]. Thus,

{
α̂i, β̂i

}
= argmax

αi,βi

m∑
j=1

{
ln
(
n
zij

)
+ zij ln�

(
1
βi

ln
(
xj
αi

))
+
(
n− zij

)
ln
[
1−�

(
1
βi

ln
(
xj
αi

))]}
(10)

3 Results and Discussions

3.1 NFES Results
In this section, the 60 ground motion records in Section 2.1.2 are selected as the seismic

inputs. To increase the sample size, the PGA of each earthquake wave is scaled from 0.1 g to
1.5 g in increments of 0.1 g. Then, the IM2 and IM4 (shown in Tab. 4) of each record can be
computed. A total of 900 IMs-DM sample sets are thus generated. The damage states in terms of
the DM are defined in four levels in this research: negligible (D1), light (D2), moderate (D3) and
severe (D4). The corresponding threshold values are 0.5%, 1.5%, 2.5%, and 3.8%. The PGA-DM
cloud data calculated according to the NFES are depicted in Fig. 4. The statistical numbers of
the ground motions in each PGA level when the steel BRB frame reaches or exceeds the four
damage states are summarized in Tab. 7.

The two parameters in Eq. (8) at the four damage states are given in Tab. 8. In addition,
the fragility curves using the NFES are plotted in Fig. 5, for which the discrete data points
were computed using the MCS and the counterparts for the solid lines were obtained with the
Reg method.
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Figure 4: DM-PGA data points according to the NFES

Table 7: Number of ground motions reaching or exceeding specific damage states (n = 60)

PGA (g) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

z1 1 19 29 42 50 51 52 54 57 58 58 59 60 60 60
z2 0 0 0 3 8 14 19 21 24 24 26 27 34 35 38
z3 0 0 0 0 0 0 3 4 7 11 15 18 20 20 23
z4 0 0 0 0 0 0 0 0 0 0 0 0 5 6 8

Table 8: Parameters of the fragility curves

Damage state D1 D2 D3 D4

α̂i 0.3059 0.6693 1.1612 1.5173
β̂i 0.6658 0.5678 0.4117 0.2594

3.2 Training and Validation of the ANN
Subsequently, the feedforward ANN model is trained using the input variables IM2 and IM4

(i.e., PGV and Sa) and actual output DM (i.e., maximum IDR). Given the limited sample data,
a k-fold cross validation method is adopted to improve the generality of the ANN model (k= 15
herein), in which the 900 IMs-DM samples are randomly and equally divided into 15 subsets.
Note that the ANN model is trained 15 times, and one subset is used for validation while the
other 14 ones are utilized for training in each training process. Moreover, the validation subsets
in any two processes vary.
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Figure 5: Fragility curves obtained using the NFES

Herein, a three-layer ANN model with six neurons is used, and the MSE is adopted to
measure the performance of the model. The minimum MSE (i.e., goal of performance) is 0.001,
the learning rate is 0.001, the momentum is 0.9, the epoch is 100, and the maximum validation
check is 6. To overcome the overfitting, the training stops when the validation error reaches its
minimum value [40] (Fig. 6).

Figure 6: Early stopping of the ANN model
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Figure 7: Generalization error of the ANN model

Given the prediction uncertainty of the ANN model, the 15-fold cross validation-based ANN
is trained 200 times. The generalization error is illustrated in Fig. 7. In line with Fig. 7, the pre-
diction uncertainty of the ANN regression model cannot be ignored. For accurate simulation, the
optimal ANN regression model with a minimum error is selected, saved, and used in the following
computation. The predicted IM2-DM and IM4-DM data points according to the optimal model
are compared with the NFES results in Fig. 8. An acceptable discrepancy occurs between the
simulations using the ANN and NFES (Fig. 8). Therefore, the accuracy and reliability of the
ANN are verified.

Figure 8: ANN simulations
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Table 9: Statistical logarithmic means of IM2 and IM4

PGA (g) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

lnμ2 −2.027 −1.334 −0.928 −0.641 −0.417 −0.235 −0.081 0.053
lnμ4 −4.155 −3.462 −3.056 −2.769 −2.545 −2.363 −2.209 −2.075
PGA (g) 0.9 1.0 1.1 1.2 1.3 1.4 1.5
lnμ2 0.170 0.276 0.371 0.458 0.538 0.612 0.681
lnμ4 −1.958 −1.852 −1.757 −1.670 −1.590 −1.516 −1.447

3.3 ANN-Based Fragility Prediction
In Section 3.3, the fragility curves are calculated using the trained ANN model. The statistical

logarithmic means of the IM2 (PGV ) and IM4 (Sa) obtained from the 60 earthquake waves are
listed in Tab. 9. The logarithmic standard deviation of the PGV and Sa (denoted as σ2 and σ4)
for each PGA level are approximately 0.4881 and 0.9713, respectively. The means show strong
linear relationships with the PGA in the log–log space (Fig. 9). The statistical distributions of the
normalized logarithmic PGV and Sa at each PGA level are depicted in Fig. 10. Clearly, the PGV
follows a good logarithmic normal distribution whereas the Sa does not.

Figure 9: Regression relationships between two selected IMs and PGA in log–log space

Subsequently, the PGA is increased from 0.1 g to 2.0 g in increments of 0.1 g (for a total
20 PGA levels) and transformed from the logarithmic space. Then, the logarithmic means lnμ2
and lnμ4 are calculated according to the linear regression relationships shown in Fig. 9. The
logarithmic IM2 and IM4 at each PGA level and in accordance with the statistical distributions
are shown in Fig. 10. Finally, the normalized ln IM ′

2 and ln IM ′
4 obtained from Eq. (6) are

used to predict the normalized lnDM ′, and the fragility curve can thus be computed on the
basis of the lnDM. In the following sections, the effects of the sampling methods and sample
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size on the fragility curve, as well as on the prediction uncertainty of the ANN model, are
respectively studied.

Figure 10: Statistical distributions of normalized logarithmic PGV and Sa

Case I: Comparison of TRD and TUD

According to the statistical distributions of the PGV and Sa, the TRD and TUD introduced
in Section 2.3.1 are adopted to take the values of PGV and Sa. For TRD, 10000 ln IM2 and
10000 ln IM4 are randomly taken in the range of lnμi−2 lnσi and lnμi+2 lnσi, whereas for TUD,
they are uniformly distributed in [lnμi− 2 lnσi, lnμi+ 2 lnσi] with an increment of 0.01σi. A
total of 160801 data were involved. Fig. 11 shows the fragility curves using TRD and TUD. The
fragility curves for the two sampling methods are almost the same (Fig. 11), but the probability
of exceedance using TRD is obviously higher than that using TUD for the moderate and severe
damage states. Therefore, simulation using TUD is more conservative than that using TRD. TUD
is consequently adopted in the following analyses.

Figure 11: Fragility curves using different distributions of IMs. (a) TRD and (b) TUD
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Case II: Effect of sample size

Herein, the effect of sample size on the fragility curve is studied. Fig. 12 presents the results
of TUD using four sample sizes of 1681, 6561, 40401, and 160801. The maximum relative errors
for those values are listed in Tab. 10. Fig. 12 and Tab. 10 indicate that the results of the MCS and
Reg method using various sample sizes are very close to each other, and the relative maximum
error decreases when the sample size increases. Furthermore, sample size has a slight influence
on the fragility. In this study, TUD with a sample size of 1681 can provide a reasonable and
acceptable prediction.

Figure 12: Effect of sample size on fragility curves using TUD

Table 10: Maximum relative error between the results using the TUD with various sample sizes

Damage state D1 D2 D3 D4

e1681|6561(%) 0.3692 0.3490 0.3415 0.2594
e6561|40401(%) 0.2225 0.1645 0.1714 0.1452
e40401|160801(%) 0.0642 0.0570 0.0539 0.0454

Case III: Investigation of the prediction uncertainty

In this section, the prediction uncertainties of the ANN model are discussed, for which
the variability of the output is illustrated in Fig. 7. Herein, the effects of the input IMs
range, as well as the training and validation ratios, on the fragility curve are investigated.
Fig. 13 depicts the fragility curves using three various IMs ranges, i.e., [lnμi− 1.5σi, lnμi+ 1.5σi],
[lnμi− 2.0σi, lnμi+ 2.0σi], and [lnμi− 2.5σi, lnμi+ 2.5σi]. As evident from Fig. 7, as the value
range of the IMs increases, the probabilities of exceedance at the four damage states increase at
the low PGA levels, and decrease at the high PGA levels. Further, prediction uncertainties due
to the training and validation ratios are studied. The outcomes of three simulations using the
10-, 15-, and 20-fold cross validation methods are given in Tab. 11 and their influences on the
fragility curves are depicted in Fig. 14.
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Figure 13: Effect of the range of IMs on fragility curves

The above analyses indicate that the prediction uncertainties of the ANN model cannot be
ignored. In particular, the value range of the IMs exerts a considerable effect on the fragility
analysis. The training and validation ratios have slight influences on the fragility curves of the
structure at the negligible and severe damage states, whereas they have noticeable effects given
light and moderate damage states.

Table 11: Three train cases using various ratios for training, validation, and testing

No. Method Train ratio Validation ratio MinimumMSE

Train 1 10-fold cross validation 9/10 1/10 0.00363
Train 2 15-fold cross validation 14/15 1/15 0.00364
Train 3 20-fold cross validation 19/20 1/20 0.00364

3.4 Computational Cost
Finally, the time costs of the fragility analyses using the NFES and ANN are summa-

rized in Tab. 12. In this study, all computations are conducted on a HP Workstation with an
Inter Xeon W-2155 CPU with 10 physical cores at 3.3 GHz, and 64 GB of RAM. As the
FE model is large scale, complex, and entails a substantial matrix size, the NFES uses a six-
processor parallel method and requires approximately 2380 h. By contrast, the trainings of the
ANN model based on the 10, 15, and 20-fold cross validation methods merely require approx-
imately 8, 13, and 15 min, respectively. Furthermore, the time cost of he prediction using the
ANN model in Section 3.3 is only 2 min. Therefore, the ANN model exhibits extremely high
computational efficiency.
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Figure 14: Effect of training and validation ratios on fragility curves

Table 12: Comparisons of computational costs using NFES and ANN

Type of analyses No. of samples Total time cost

FE simulation 900 2380 h
10-fold cross validation 180000 8 min
15-fold cross validation 180000 13 min
20-fold cross validation 180000 15 min
ANN prediction 10529490 2 min

4 Conclusions

In this paper, a machine learning (ML)-based seismic fragility analysis framework is presented
to examine the failure probability of a realistic large-scale steel BRB frame under earthquakes.
The framework consists of a few sequential steps: building the model for nonlinear finite element
simulation (NFES), training and validating an artificial neural network (ANN) model, and per-
forming the fragility analysis using the ANN model. In the NFES, 60 earthquake records are
selected and a total of 900 sample data can be generated by scaling the peak ground acceleration
(PGA) of each record from 0.1 g to 1.5 g in increments of 0.1 g. The damage measures (DMs)
of the structure, such as the maximum inter-story drift ratios, under these ground motions, are
computed based on the NFES. Subsequently, the two most relevant IMs (i.e., PGV and Sa) with
the DM are filtered by using the semi-partial correlation coefficient and an optimal ANN model
is obtained using the IMs-DM data. The extended IMs from using the two sampling methods
are inputted to the optimal ANN model to compute the DMs. Then, the fragility curves are
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calculated using the Monte Carlo Simulation and empirical regression method. The following
conclusions can be obtained through the simulations:

(1) The ML-based seismic fragility analysis framework is of significantly high computational
efficiency and can instantaneously assess the failure risk of a large-scale structure under
an earthquake. The trained ANN regression model based on the two IMs (i.e., PGV and
Sa) and DM is reliable and accurate.

(2) The truncated uniform sampling method outperforms the truncated random one. The two
methods have almost similar fragility curves of the steel BRB frame at the negligible and
light damage states. However, the result of truncated uniform sampling is slightly more
reliable than that of its random counterpart at the moderate and severe damage states. In
addition, the former is not sensitive to sample size.

(3) The prediction uncertainties of the ANN cannot be ignored. The truncated ranges of IMs
have considerable influences on the fragility curves, and the training and validation ratios
also show notable effects on the probabilities of exceedance of the structure at the light
and moderate damage states.
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