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Abstract: The tower line system will be in an unsafe status due to uniform or
uneven fall of ice coating which is attached to the surface of tower and lines.
The fall of ice could be caused by wind action or thermal force. In order to
study the dynamic characteristics of the self-failure of the transmission line
under the action of dynamicwind load, a finite elementmodel of the two-span
transmission tower line system was established. The birth and death element
methods are used to simulate the icing and shedding of the line. Tensile failure
strength is the shedding criterion for ice coating. The fluctuating wind speed
time history of the tower line system is first simulated, and then the fluctuating
wind and the average wind are superimposed to generate the instantaneous
wind speed and converted into wind load. The dynamic response of the
transmission tower line system under iced coupling with different wind speeds
and different thicknesses of ice coating was studied. This is the first attempt
that the coupling dynamic response of the icing shedding and wind load for
the transmission tower-line system is discussed in this paper. In addition,
the dynamic characteristics of wind are included. In particular, the limiting
mechanical conditions are considered. According to the simulation results,
it is found: because of the ice shedding, the stress of the conductor changes
obviously in the first 20 seconds, and the ground wire changes sharply in the
first two seconds; the icing of the conductor (ground) wire is gradually deicing
under the action of wind vibration; the displacement of tower top increases
with the increase of wind speed and icing thickness.

Keywords: Tower line system; fluctuating wind; ice shedding; dynamic
response; wind-induced ice shedding

1 Introduction

At present, the operation status of long-distance ultra-high voltage (UHV) transmission lines
mainly based on overhead transmission lines is closely related to the external meteorological
conditions. Most transmission lines are built in the wild, often passing through mountains and
plains, and exposed to the external environment for a long time. It is inevitable to suffer from
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the continuous impact of the natural environment, including lightning strike, temperature change,
strong wind, freezing rain, conductor icing and the weight of overhead line. Under the influence
of these factors, the line will be overloaded to cause wire breakage, collapse, etc., and may also
cause the vibration of the tower-line system and the fatigue damage of the various components of
the structure even its strength decreasing. There are various forms of safety accidents occurring
on the line, but all of them affect the normal operation of the line and are not conducive to the
safety of the power grid.

Ice is formed when moisture in the air or rainfall freezes on the surface of the structure. In
practical engineering, the density, thickness, shape, type and position of icing will change with
time, and the ice attached to the tower line system will shed evenly or unevenly when subjected
to external forces such as wind load, natural melting or artificial de-icing. Based on the analysis
of all kinds of ice accidents on transmission lines, the safety accidents caused by icing can be
divided into the following categories:

(1) Due to the excessive thickness of the icing, the amount of icing exceeds the ultimate load
that transmission lines can bear, resulting in wire breakage, foundation subsidence, collapse
of transmission tower, wire flashover and so on.

(2) The instantaneous uniform or uneven de-icing of the line is to jump and cause the wire to
be broken or short-circuited, and the insulator and the crossarm collide to cause damage.

(3) The uneven ice-covered line will gallop under the action of wind force. The galloping of
transmission lines is an important factor affecting the safety of transmission lines in power
grid for a long time. It can cause the transmission lines to trip, the bolts of the cross-arm
of the tower to fall off and damage to the tower cross-arm, jumping line, insulator and
fittings, which make the operation situation of the power grid extremely severe.

In the following section, the methods of field measurement, physical experiments, numerical
simulation and the model of coupling effect of wind load and icing investigating dynamical
characteristics of ice-adhesion transmission tower-line system under effect of wind-induced ice
shedding will be reviewed.

1.1 Field Measurements and Physical Experiments of Wire Icing and Icing Shedding
McComber et al. [1] carried out field measurements of two transmission lines on Laurentian

Mountain, Quebec City, Canada. The elevation of the line is 902 m and the span of the line is
96.5 m and 32.6 m, respectively. The maximum ice thickness of the two conductors is 35 mm and
8 mm, respectively. The conclusion shows that the icing degree of the conductors is closely related
to the elevation and wind speed, the final icing load is well predicted by temperature, wind speed
and the icing rate. Druez et al. [2] studied the icing and deicing process of conductors, described
the icing shedding as melting, sublimation and mechanical vibration deicing of conductors. The
effects of five factors on deicing were studied: average wind speed in deicing process, initial ice-
covering quality, average temperature in deicing process, average temperature and average wind
speed in the process of deicing, and average temperature and average wind speed in the process
of ice-covering formation. Savadjiev et al. [3] recorded 57 icing events at the test site in Quebec,
Canada, and obtained the relationship between the icing rate of conductors and meteorological
conditions such as environmental temperature, wind direction and wind speed of wind load,
freezing rain and precipitation rate.

Morgan et al. [4] firstly studied icing and deicing of transmission lines. In 1964, the icing
shedding was simulated by applying the method of concentrated load. A series of experiments
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on icing shedding were made, and the jumping height of the de-icing lines were studied. In order
to study the static and dynamic effects of ice shedding on the tower, Jamaleddine et al. [5] have
carried out a series of laboratory tests on a two-span scale device, which has two horizontal
and equal spacing and is suspended in the middle by an insulator string. In these experiments,
the ice load is simulated by dropping a dead weight suddenly from the conductor. At the
same time, a nonlinear finite element model is established by ADINA. The static and transient
responses of the physical model are simulated numerically. The predicted results are compared
with the experimental results of a typical case. The comparison shows that ADINA has good
performance in simulating the static and transient dynamic response of this highly nonlinear
engineering phenomenon. Meng et al. [6] has established a full-scale multi-span physical model
to simulate icing by using concentrated loads suspended on conductors, and the actual dynamic
response of conductor displacement and tension under different deicing modes is obtained. In
addition, a multi-span and multi-degree-of-freedom dynamic model is established for the analysis
of ice shedding. The calculated results are in good agreement with the experimental results,
which proves the validity of the application of concentrated load in the test and the numerical
simulation program.

1.2 Numerical Simulation of Icing Shedding in Transmission Tower-Line System
McClure et al. [7] conducted shape finding analysis on transmission lines, and studied the

dynamic response of transmission lines under external excitations such as sudden failure of the
structure and de-icing impact load. The damage criterion of icing was defined by Kálmán et al. [8]
in 2003. The dynamic analysis of icing shedding during mechanical deicing was studied, and the
applicability of the damage criterion was discussed. Mirshafiei et al. [9] used equivalent density
to simulate line icing, and the phenomenon of deicing when conductor and ground line was
broken was studied. Du et al. [10] established the finite element model of 4 towers and 5 spans
transmission line by numerical method, and simulated the ice with the additional ice element
method. The dynamic response of the structure was analyzed when the ice on the middle span
conductor fell off at the same time, different time and different thickness. The results show that
the maximum rebound height, unbalanced tension and wire tension caused by ice shedding at
one time are 24%, 17% and 14% lower than those caused by ice shedding at different times.
The effects of damping ratio, deicing ratio, shedding method and ice thickness on the dynamic
response of the insulator jump height, unbalanced tension and vertical load after icing off were
discussed by Yang et al. [11]. According to the results, the design values of unbalanced tension
and vertical load of UHV suspension tower in large area covered by ice were proposed. Yan
et al. [12] proposed a numerical simulation method for transmission line icing and deicing. The
dynamic response of multi-span transmission lines under the influence of span length, span num-
ber, elevation difference between icing span and suspension end, length of suspension insulator
string, number of secondary conductors in split conductors and conductor types was analyzed.
A three-dimensional finite element model of the transmission tower-line coupling system was
established by Zhang et al. [13]. The dynamic responses of the tower-line coupling system under
different wind speeds and directions were investigated. An failure criterion for icing of conductors
shedding is proposed to study the transient dynamics of line systems subjected to shock loads
by Ji et al. [14]. Then, considering the effect of the initial natural ice shedding, the ice shedding
induced by initial shocks in finite element analysis was studied by Ji et al. [15].
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1.3 Coupling Effect Studies of Wind Load and Icing
AI-Bermani et al. [16] simulated and predicted the ultimate strength and behavior of trans-

mission towers under static load conditions. Hartog [17] proposed the galloping theory for the
first time to explain the obvious vibration mechanism of iced conductor caused by wind load, and
the size of spacing and tension in conductor do not affect the galloping principle characteristics.
Through numerical experiments, Du et al. [18] established finite element model to analyze the
dynamic response of transmission line system with and without icing shedding when galloping
occurs across the mid-span conductor, and studied the difference of two kinds of loads under
different wind speeds. The results show that the unbalanced tension at the tower head and
the transverse amplitude of the adjacent span increase with the increase of wind velocity. The
transverse vibration frequency of adjacent transverse conductors caused by ice shedding increases
obviously and the vertical rebound height decreases relatively. Tian et al. [19] and Fu et al. [20]
studied the failure mechanism of the tower under extreme wind load from full-scale test and
finite element numerical simulation. The loads are applied through riggings of reaction frames
in full-scale test. Tian et al. [21] established the finite element model of the power transmission
towers to simulate its failure process subjected to broken-line load and wind-ice load, respectively.
A good agreement of the simulated results was found in comparison with experimental results.
The influences of the wind velocity and ice thickness on aerodynamic parameters and conductor
galloping were investigated by Lu et al. [22]. Rezaei et al. [23] proposed a structural reliability
analysis of transmission lines considering the uncertainties of climatic variables such as, wind
speed, ice thickness and wind angle, and of the resistance of structural elements. Based on a
nonlinear finite element method, Yan et al. [24] discussed the galloping of iced bundle conductor
transmission lines in steady and stochastic wind fields, respectively. Gani et al. [25] pointed out
the importance of the dynamic response of guyed towers for transmission lines under wind
loading. The simplified static-equivalent method was applied and compared with the transient
dynamic analysis employing finite element method, considering loading two cases, bare and iced
transmission lines structures. In transient dynamic analysis, the turbulent wind is considered and
defined by its power spectral density (PSD). It was found that the static-equivalent method
may underestimate the possible dynamic response. Kim et al. [26] established a lumped mass-
spring-damper system to simulate galloping phenomenon with fluctuating wind velocity of the
iced power transmission line. The fluctuating wind velocity was regenerated with time history
by using Kaimal spectrum. Yang et al. [27] established finite element model and proposed the
transforming density method and 10 m/s of wind velocity to analyze the unbalanced tensions of
UHV transmission towers in heavy icing areas. The wind loads were applied to the conductor
nodes by the means of equivalent concentrated forces.

As mentioned, previous studies mainly focused on the dynamic response of tower-line system
under wind load, icing shedding of the line or coupling response of the line icing and wind
load. In this paper, the coupling dynamic response of the wire icing shedding and wind load
for the three-towers-two-lines system with effect of dynamic characteristics of wind is considered.
The fluctuating wind speed time history of the tower line system is converted into wind load.
The tower line system is established, and the birth-death-element method is used to simulate the
icing shedding of the line. The dynamic response of the transmission tower line system under
iced coupling with different wind speeds and different thicknesses of icing is studied.
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2 Finite Element Model of Tower-Line System

2.1 Engineering Background and Design Parameters
The double circuit 500 kV high-voltage DC transmission line overhanging corner tower in

this paper is located in border area between Sichuan Province and Yunnan Province, China. The
transmission towers have the height of 63 m with cross arm 30∼54 m above ground. The corner
degree of the conductors and ground wires are 3◦∼15◦, and the standard span length is 500 m.
The transmission towers are angle steel towers. The material of main members is Q420 steel, and
the material of other members is Q345 steel. The design wind speed at a reference altitude of
10 m is 27 m/s.

2.2 Transmission Tower-Line System Modeling
The three-dimensional finite element model of the two-span transmission tower-line system

is established using ANSYS software and shown in Fig. 1. Ruling span is 500 m, the angle of
the line is 15 degrees, each conductor and ground wire are divided into 50 parts on average. The
boundary conditions in transmission tower-line system: all degrees of freedom are constrained at
the four base of transmission tower, and three degrees of freedom of rotation are constrained at
each node of conductor and ground line. Ground wires are hinged with transmission towers, and
insulators are hinged with conductors and transmission towers.

Figure 1: Finite element model of transmission tower-line system

2.3 Tower Modeling
The BEAM188 element is used in the finite element model of transmission tower, which has

two nodes, and include six degrees of freedom at each node. It can be well applied to the analysis
of linear and nonlinear large strain problems. The finite element model of transmission tower
consists of 1,499 units, 547 nodes and 33 sectional types. The six degrees of freedom of the
four legs of the tower are fully constrained. The detailed materials parameters are as follows: the
elastic modulus is 2.06× 105 MPa, the Poisson ratio is 0.3, the density is 7850 kg/m3. The finite
element analysis model of the transmission tower is shown in Fig. 2, and the parameters of the
main members of the transmission tower are listed in Tab. 1.
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Figure 2: Finite element analysis model of the transmission tower

2.4 Conductors and Ground Wires Modeling
The transmission line is a typical flexible structure. It is subjected to tensile force under

normal conditions but does not bear bending moment and pressure. It has high nonlinearity,
small stiffness and large span. Therefore, it is usually treated as a cable structure. The LINK10
element is to simulate the conductor and ground wire in this paper. The LINK10 element with
translational degrees of freedom in X, Y and Z directions. When the element is compressed, its
stiffness will disappear, which is used to simulate the relaxation of transmission lines.

At the initial moment, under the influence of its own gravity, the transmission line gradually
reaches equilibrium from the relaxation state and produces a certain sag. In this process, a small
initial strain is generated, which leads to the initial stress and tension in the transmission line. The
initial shape and initial stress of the cable structure are two interacting and unknown quantities.
To satisfy both the assumed initial geometry and the assumed initial stress, only iteration method
can be used to find the shape of transmission line. In this paper, the direct iteration method
is used to finding the shape of conductors and ground wires. The direct iteration method is to
establish the finite element model in the direction of connecting the two suspension points, a very
small initial strain of the element is given, the other parameters such as elastic modulus, density,
and cross-sectional area employ actual values, and the self-weight load along the direction of arc
is applied. Physical parameters of conductor and ground wire are shown in Tab. 2. The iteration
calculation is carried out with the known horizontal tension of the transmission line as the
convergence condition, and the finite element model is updated repeatedly. When the convergence
condition is satisfied, the shape of the model is the initial shape of the transmission line under
its own gravity.

2.5 Icing Modeling
In this paper, the method of additional ice element is used to simulate the icing. In the

numerical simulation of icing, it is impossible to completely reflect the icing situation of transmis-
sion lines. Therefore, it is generally assumed that the icing uniformly distributes on the surface of
transmission towers and lines, and the icing is equivalent to a hollow tube with equal thickness.
The BEAM188 element is used to simulate icing, the simulation principle of icing is shown in
Fig. 3. The sketch of transmission line icing is shown in Fig. 4. The interface between the icing
and the conductor is simulated by using the conode of the icing element and the conductor. At
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present, scholars usually adopt the method of assuming icing thickness to describe conductor
icing. The icing element is established after the shape of the wire construction. Then the static
analysis is also carried out under the action of icing, in order to determine the final shape of the
wire under the icing.

Table 1: Parameters of the main members of the transmission tower

1

L40 × 3
L45 × 4
L50 × 4
L50 × 5
L56 × 4
L56 × 5
L63 × 5
L70 × 5
L70 × 6
L75 × 6

Cross arm bracing, 
diaphragm bracing at the 
tower legs 

2

L75 × 5
L80 × 6
L80 × 7
L90 × 7
L90 × 8
L100 × 7
L100 × 8
L110 × 8
L125 × 10
L140 × 10

Cross arm oblique 
members, tower bracing, 
diaphragm at the tower 
legs  

3
L140 × 12
L160 × 12
L160 × 14

Cross arm, tower head 
main members, main 
members of upper tower

4

L110 × 10
L125 × 8
L180 × 14
L200 × 20
L200 × 24
L220 × 22

Tower main members
and oblique members, 
tower bracing, tower 
legs

Numbering
Members 
specification 
(mm)

Applications in the
tower

Distribution diagram

Petrovic [28] and Druez et al. [29] studied the mechanical properties of icing and obtained
some mechanical parameters: Young’s modulus is 9.7–11.2 GPa, Poisson’s ratio is 0.29–0.32,
tensile strength is 0.7–3.1 MPa, and compressive strength is 5–25 MPa. In this paper, the
criterion of tensile failure strength is adopted, elastic modulus E = 1.0 × 109 N/m2, density
ρ = 0.9× 103 kg/m3, tensile failure strength ξ0 = 0.9 MPa.
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Table 2: Physical parameters of conductor and ground wire

Conductor LGJ-900/75 Ground wire LBGJ-100-20AC

Section area (mm2) 973.16 100.88
Diameter (mm) 40.6 13
Weight per unit length (kg/m) 3.0672 0.674
Young’s modulus (MPa) 65380 139500
Breaking force (kN) 219.74 121.66
Maximum working stress (MPa) 92.10 482.78
Average annual operating stress (MPa) 57.56 301.74
Design safety factor 2.5 2.5

Figure 3: Simulating principle of icing element

Figure 4: The sketch of transmission line icing

3 Wind Load

According to a large number of measured experiments and record analysis, the impact of
near-earth wind on buildings can be divided into two parts: fluctuating wind and average wind.
In this chapter, MATLAB is used to simulate the time history of the fluctuating wind speed of
the tower line system. The fluctuating wind speed superimpose the average wind speed to get the
instantaneous wind speed, and the instantaneous wind speed is converted to wind load.
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The total wind velocity at a point in the structure is:

v (x,y, z, t)= v (z)+ vf (x,y, z, t) (1)

where, v (z) is the mean wind speed, and its change period in structure is much larger than the
natural vibration period of the structure, and the effect on the structure is static; vf (x,y, z, t) is
the fluctuating wind, its change period in structure is smaller than the period of natural vibration
of structure, and its effect on structure can be not simplified to static force, so dynamic action
must be considered.

3.1 Mean Wind
In the atmospheric boundary layer, the wind velocity at the surface is zero, in general, because

of the friction resistance of the surface morphology. With the increase of altitude, the influence of
surface morphology on wind speed is gradually reduced, and the average wind speed is gradually
increased. The effect of ground friction on wind speed is negligible at a height of 300–500 m
above the ground. This change law is called the wind velocity gradient, or wind profile, as
shown in Fig. 5. The gradient law of mean wind velocity can be expressed by exponential laws,
as follows:

v
vs

=
(
z
zs

)α
(2)

where, zs is a reference altitude of 10 m, vs is mean wind velocity at reference altitude, z is the
altitude, α is ground roughness index and it is shown in Tab. 3. According to the environment
of transmission tower, the topography category is B.

Figure 5: Mean wind profile

Table 3: Ground roughness index

Ground roughness index Topography category

A B C D

α 0.12 0.16 0.22 0.3

3.2 Fluctuating Wind and Its Time-History Simulation
The intensity of the pulsating wind changes with time. Many experts have studied the wind

power spectrum and obtained different forms of pulsating wind velocity spectrum expressions.
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The Davenport [30] wind velocity spectrum expression is widely recognized:

Sv (n)= 4kv2s
x2

n
(
1+x2

) 4
3

(3)

where, x= 1200n
vs

; n is frequency (Hz); k is ground resistance coefficient.

The autoregressive model of linear filter method is used to simulate the fluctuating
wind. M related fluctuating wind velocity time histories vf (x,y, z, t) can be simulated by the
following formula:

vf (x,y, z, t)=−
p∑

k=1

ψkvf (x,y, z, t− kΔt)+N (t) (4)

where, ψk is autoregressive coefficient matrix; N (t) is M-dimensional independent normal distri-
bution random process vector; p is autoregressive order; Δt is time step.

According to the environment of transmission tower-line system, the parameters related to
fluctuating wind simulation are as follows: ground roughness coefficient α = 0.12, total time
t= 100 s, ground resistance coefficient k= 0.003, time step Δt= 0.1 s. The mean wind velocity at
10 m above the ground is selected from three grades, namely 10, 15 and 27 m/s, respectively.

Due to the complex structure and many nodes of transmission tower line system, it is
impossible to simulate the time history of pulsating wind at all points. According to the height
and structural characteristics of the transmission tower, it is divided into 6 sections along the
vertical direction, and the center of each section is a simulation point. The time history of
fluctuating wind speed at each loading point can be obtained by calculating the wind speed at
each section. The vertical division of sections on transmission tower is shown in Fig. 6, and the
height of the simulation point and the windward area of transmission tower are listed in Tab. 4.

Figure 6: Vertical division of sections on transmission tower
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Table 4: Height of the simulation point and windward area of transmission tower

Segment numbering The height of the simulation point (m) Projected area (m2)

1 6.00 8.32896
2 17.61 10.5365
3 28.17 9.67178
4 39.05 6.53141
5 49.50 5.52828
6 62.42 4.06778

The time-history of fluctuating wind velocity of tower-line system can be obtained by Eq. (4).
To save space, the time-history curve of fluctuating wind velocity at simulated point 6 (that is the
top of the tower) when the wind velocity is 27 m/s is given only, as shown in Fig. 7.
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Figure 7: Time history of fluctuating

The accuracy of wind velocity time history simulation results directly affects the structural
analysis of transmission tower line system. Therefore, the simulated fluctuating wind velocity
should be tested. The most direct method is to compare the simulated pulsating wind velocity
power spectrum characteristics with the target wind velocity spectrum (Davenport) curve calcu-
lating by Eq. (3) to see if the two curves are consistent. Fig. 8 shows the comparison between
the power spectrum characteristics of fluctuating wind velocity and the target wind velocity
spectrum at simulated point 6 when the wind velocity is 27 m/s. From the Fig. 8, it can be seen
that the power spectrum characteristics of simulated fluctuating wind velocity coincide with the
target power spectrum curve very well, which verifies the validity and rationality of the program
compiled by autoregressive method. That is to say the time history of simulated fluctuating wind
velocity in this paper conforms to the real law and can be applied to structural analysis.

3.3 Simulation of Wind Load
The near-earth wind is composed of mean wind and fluctuating wind. Therefore, the wind

velocity time course of the near-earth wind should also be added with the mean wind. The mean
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wind velocity is calculated by using Eq. (2), the wind load time history of tower-line system can
be calculated by Eqs. (5) and (6) after adding the two parts together.
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Figure 8: Comparison of power spectrum wind velocity

The wind load calculation formula of transmission tower is as follows:

F =μsAsV (t)2 /1.63 (5)

where, μs is the shape coefficient of structural components, take 2.5; As is windward area of
transmission tower (m2); V (t) is near-earth wind velocity with reference altitude of 10 m (m/s).

The calculation formula of transmission line wind load is as follows:

WL = αμscβcAμzV (t)2 sin2 θ/1.6 (6)

where, α is the inhomogeneity coefficient of wind pressure, the value is shown in Tab. 5; μsc is
wire shape coefficient, when the wire diameter less than 17 mm or ice cover (regardless of wire
diameter) should be taken μsc = 1.2, when the diameter is greater than or equal to 17 mm, take
μsc = 1.1; βc is the adjustment coefficient of wind load, the value under different wind speed
conditions is shown in Tab. 5; A is the windward area of transmission lines; μz is the height
coefficient of wind pressure, according to class B of ground roughness, the values are shown in
Tab. 6; θ is the angle between the wind and conductor direction.

Table 5: Wind pressure non-uniformity coefficient α and wind load adjustment coefficient βc

Wind speed V (m/s) V < 20 20≤V < 27 27≤V < 31.5 V > 31.5

α 1.00 0.85 0.75 0.70
βc 1.00 1.10 1.20 1.30

The wind load time history of each simulation point of the transmission tower line system
can be obtained by Eqs. (5) and (6). Due to space limitations, only the wind load time history
curve at simulated point 3 (the middle part) and simulated point 6 (the top of the transmission
tower) are given in Fig. 9.
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Table 6: Height variation factor of wind pressure

Height above ground (m) 5 10 15 20 30 40 50 60 70

μz 1.00 1.00 1.14 1.25 1.42 1.56 1.67 1.77 1.86
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Figure 9: Wind load time history. (a) The middle part of the tower. (b) The top of the tower

4 Theory of Wind-Induced Ice Shedding in Finite Element Analysis

4.1 The Incremental Equilibrium Equation of Nonlinear Dynamic Analysis
Because of the large deformation of the transmission tower line system, geometric nonlin-

earity must be considered in the dynamic response calculation. The derivation of the equation is
as follows:

(1) Discretization of continuous region and construction of interpolation function:

The solution domain is discretized with isoparametric elements, and the interpolation function
of displacement within the element can be expressed as:

tui =
n∑

k=1

Nk
tuki (i= 1, 2, 3) (7)

where, Nk is the interpolation function corresponding to nodal point, tuki is the displacement
component of nodal point k corresponding to direction i at time t, n is the number of element
nodal points.

It can be expressed as a matrix
tU=N tu (8)

(2) The solution equation of the dynamic system:

The configuration at time t is used as the reference point, the equilibrium equation at time
t+Δt is:
t+Δt

tσ ij, j+ t+Δt
t f i−ρ t+Δtui, tt−μ t+Δtui, t= 0 (9)
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where, t+Δt
tσij is Cartesian components of the 2nd Piola-Kirchhoff stress tensor, “, j” is the partial

derivative with respect to the independent coordinate xj, the subscript “ij, j” satisfy summation

convention; t+Δt
t f i represents the component of the volume force per unit volume in the i direc-

tion; ρ is mass density, μ is damping coefficient; t+Δtui, tt and
t+Δtui, t represents the acceleration

and velocity in the i direction respectively. All the variables correspond to the configuration at
time t+Δt but measured in the configuration at time t.

The boundary condition of the force is:
t+Δt

tσ ij nj =t+Δt
t Ti (10)

where, nj is the direction cosine of the normal line outside the boundary, t+Δt
tTi is the surface

force at the boundary.

Galerkin’s formulation in the equivalent integral form of the equilibrium equation and the
boundary condition of the force can be expressed as:∫
tV
δui

(
t+Δt

tσ ij, j+t+Δt
t f i−ρ t+Δtui, tt−μ t+Δtui, t

)
tdV =

∫
tSσ

δui
(
t+Δt

tσ ij nj−t+Δt
t Ti

)
tdS (11)

where δui is the variation of the current displacement component t+Δtui, that is, the variation

from time t to time t+Δt of the displacement increment component ui, where ui = t+Δtui− tui.

Integrate by parts for the first term of Eq. (11):∫
tV
δ t+Δt

tεij
t+Δt

tσ ij+ δui ρ t+Δtui, tt+ δuiμ t+Δtui, t
tdV =

∫
0V
δui

t+Δt
t f i

tdV +
∫
tSσ

δui
t+Δt

tTi
tdS (12)

where, t+Δt
tεij in the above formulas is Green-Lagrange strain tensor. The stresses t+Δt

tσ ij and

strains t+Δt
tεij are unknown.

To obtain the incremental equilibrium equation of dynamic analysis, the incremental decom-
position of Kirchhoff stress tensor and Green strain tensor at time t + Δt is introduced:

t+Δt
tσ ij = tτ ij+ tσ ij (13)

t+Δt
tεij = tεij (14)

where, tσ ij and tεij are the increment of stress and strain from the configuration at time t to

the configuration at time t+Δt respectively, tτ ij is known Cartesian components of the Cauchy
stress tensor.

It is assumed that the relationship of the increment of stress and the increment of strain
is linear:

tσ ij = tDijkl tεkl (15)

where, tDijkl is the tangent constitutive tensor corresponding to the configuration at time t.

The Green strain increment is:

tεij = teij+ tηij (16)
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where,

teij =
1
2

(
tui, j+ tuj, i

)
(17)

tηij =
1
2 t
uk, i tuk, j (18)

The nonlinear geometric equation is obtained by substituting into the first term of the
Eq. (12), and approximately take δtεij = δteij, then, the first term of the Eq. (12) can be

expressed as∫
tV

t+Δt
tσ ij δtεij

tdV =
∫
tV

tDijkl tekl δteij
tdV +

∫ t

tV
τ ij δ tηij

tdV +
∫ t

tV
τ ij δ teij tdV (19)

Substitute Eq. (19) into Eq. (12):∫
tV
ρ t+Δtui, tt δui

tdV +
∫
tV
μ t+Δtui, t δui

tdV +
∫
tV

tDijkl tekl δteij
tdV +

∫ t

tV
τ ij δtηij

tdV

=
∫
tV

t+Δt
t f i δui

tdV +
∫
tSσ

t+Δt
tTi δui

tdS−
∫ t

tV
τ ij δteij

tdV (20)

Using Eq. (8) and according to the arbitrariness of node displacement variation δui, the
solution equation of dynamic system equation is finally obtained:
t
tM

t+Δtü+ t
tC

t+Δtu̇+ t
tK u= t+ΔtQ− t

tF (21)

where, t+Δtü and t+Δtu̇ are the acceleration and velocity vectors of element nodes at time t+Δt,
u is the displacement increment vector; ttM, ttC and t

tK are the mass, damping and stiffness matrix
corresponding and referring to the configuration at time t; t+ΔtQ is the external applied nodal
load vector at time t+Δt, t

tF is the vector of the nodal load equivalent to the element stresses
corresponding and referring to the configuration at time t.

t
tM=

∑
e

∫
tVe

ρNTN tdV (22)

t
tC=

∑
e

∫
tVe

μNTN tdV (23)

t
tK= t

tKL+ t
tKNL (24)

where,

t
tKL =

∑
e

∫
tVe

t
tB

T
L tD

t
tBL

tdV (25)

t
tKNL =

∑
e

∫
tVe

t
tB

T
NL

tτ ttBNL
tdV (26)
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t+ΔtQ=
∑
e

∫
tVe

NT t+Δt
tf
tdV +

∑
e

∫
tSeσ

NT t+Δt
tT

tdV (27)

t
tF=

∑
e

∫
tVe

t
tB

T
LdV τ̂

tdV (28)

where, the symbol T at the top-right corner represents the transpose of the matrix, for example,
NT represents the transposition of the interpolation function matrix N; ttBL and t

tBNL are linear
and nonlinear strain-displacement transformation matrices; tD is the incremental material prop-
erty matrix correspond to the configuration at time t; tτ is a matrix and tτ̂ is a vector of Cauchy
stresses in the configuration at time t. All above matrix elements correspond to the configuration
at time t and are defined with respect to the configuration at time t. t+Δt

tf and t+Δt
tT are the

volume force matrix and surface force matrix at time t+Δt and respect to the configuration at
time t.

4.2 Calculation of Damping
Barbieri et al. [31] studied the damp of conductors by using experimental and numerical

models, Rayleigh damp can be used to describe the damp of conductors was proposed. Rayleigh
damping is a linear combination of mass matrix and stiffness matrix, and the expression is:
t
tC= α t

tM+β t
tK (29)

where, α is the mass damping coefficient and β is the stiffness damping coefficient, which can be
calculated by the vibration mode damping ratio:

α= 2wiwj
(
εiwj− εjwi

)
w2
j −w2

i

, β = 2
(
εjwj − εiwi

)
w2
j −w2

i

(30)

where, wi and wj are the i and j order frequencies of the structure, respectively; εi and εj are the
damping ratios of the i and j modes, respectively. Since the low-order frequency can better reflect
the characteristics of the structure, it is generally taken as i= 1 and j= 2.

4.3 Criteria for Icing Shedding
In this paper, the icing element is considered to subject the horizontal wind load, gravity and

inertia forces. The free body diagram of the icing element is shown in Fig. 10.

Figure 10: The free body diagram of the iced line
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The equivalent plastic strain failure criterion proposed by Kalman [32] based on strain and
the tensile strength failure criterion proposed by Druez et al. [33] based on strength are two kinds
of ice-shedding criteria that have been applied in numerical analysis. Phan et al. [34] and Laforte
et al. [35] tested the bending strength and compression strength of the ice coating on the outside
of the conductor (ground) wire, it is found that the shear deformation of the ice coating on the
outside of the conductor (ground) wire could be ignored. They believed that the maximum tensile
stress theory was more reasonable for the failure of the icing, so the failure criterion of tensile
strength was adopted in this paper:

ξe ≥ ξ0 (31)

where, ξe is the stress generated by wind load Fwind, gravity load G and inertia force F inertia of
the icing element, ξ0 is the tensile strength of the icing element.

Then, the implementation of the finite element analysis criteria is as follows:

(1) At the beginning of each time step, the finite element model of the wind-induced
ice-adhesion transmission tower-line system is solved to obtain the stress ξe of all
icing element.

(2) The stress results ξe of all icing element should be extracted in this paper, and compare
with the critical tensile stress ξ0. If the result satisfies the condition Eq. (31), the icing
element will be “killed.” Note that, when an element is “killed,” the “DEATH” element is
not really deleted from the model, but the stiffness of the element multiplies by a small
reduction factor. The stiffness is reduced to a low value, the mass, damping and stress
stiffness matrix, element stress and strain of the element are all reset to zero.

(3) The above two steps are repeated until all time steps of the specified solution time
are completed.

5 Dynamic Analysis of Wind-Induced Deicing of Tower Line System

In order to study the dynamic characteristics of icing shedding of transmission tower-line
system under wind load, a finite element model of two-span angle tower-line system with line
rotation angle of 15◦ is established in this paper. Additional ice element method is used to
simulate icing of transmission line. The dynamic response of wind-induced ice shedding is com-
pared and analyzed when the wind velocity is 10, 15 and 27 m/s (design wind velocity), and the
line icing thickness is 0, 10, 20 and 30 mm, respectively. The dynamic response of the tower
line system under several working conditions are compared and analyzed from several aspects,
which include the displacement and stress at the midpoint of the conductors and ground wires,
the maximum stress at the conductors and ground wires, the displacement at the top point
of the transmission tower, the base reaction of the tower, and the maximum equivalent stress
of the tower.

5.1 Stress Response of Conductor and Ground Wire
In the wind-induced icing shedding dynamic response analysis, the maximum stress time

history of the conductor and the ground wire when the wind velocity is 27 m/s is shown in
Fig. 11. The maximum stress values of the conductor and the ground wire under various working
conditions are shown in Tabs. 7–9. Due to the influence of icing shedding, the stress of conductor
varies obviously in the first 20 seconds, and the stress of ground wire varies sharply in the
first two seconds. The graphs and tables show that: (1) When the wind velocity is constant,
the maximum stress of the line increases with the icing thickness; when the icing thickness is
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constant, the maximum stress of the line increases with the wind velocity. (2) When the wind
velocity is 15 m/s and the icing thickness is 20 mm and 30 mm, the axial stress of the ground
wire is 575.9896 MPa and 753.3430 MPa respectively, both of which have exceeded the maximum
working stress of the ground wire. (3) When the wind velocity is 27 m/s and the icing thickness
is 20 mm, the axial stress of the ground wire at t= 1.2 s is 1104 MPa, which reaches two times
of the breaking stress of the ground wire. (4) When the wind velocity is 27 m/s and the icing
thickness is 30 mm, the axial stress of the ground wire exceeds the tensile stress at t= 0.7 s, the
ground wire is broken, and the calculation is terminated.

Figure 11: Maximum stress time history curve of conductor and ground wire at wind velocity of
27 m/s. (a) Stress time history of conductor. (b) Stress time history of ground wire

Table 7: Maximum stress of conductor and ground wire at wind velocity of 27 m/s (MPa)

b= 0 mm b= 10 mm b= 20 mm b= 30 mm

Conductor 66.4414 75.2828 77.2538 –
Ground wire 592.6363 919.5480 1104.5135 –

Table 8: Maximum stress of conductor and ground wire at wind velocity of 15 m/s (MPa)

b= 0 mm b= 10 mm b= 20 mm b= 30 mm

Conductor 48.7836 54.7589 59.2100 66.5082
Ground wire 210.0323 391.8077 575.9896 753.3430

Table 9: Maximum stress of conductor and ground wire at wind velocity of 10 m/s (MPa)

b= 0 mm b= 10 mm b= 20 mm b= 30 mm

Conductor 46.54 52.42 58.78 64.58
Ground wire 201.44 228.94 351.62 451.89
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5.2 Displacement Response of Conductor and Ground Wire
Figs. 12 and 13 are the time history curves of the lateral and vertical displacement of the

conductor and ground wire when the icing shedding occured by wind-induced vibration at the
wind velocity is 27 m/s. Where the displacement in X direction represents lateral displacement,
and the displacement in Z direction represents the displacement in vertical direction.

Figure 12: Time history of midpoint displacement of conductor at wind velocity of 27 m/s.
(a) Lateral displacement. (b) Vertical displacement

Figure 13: Time history of midpoint displacement of ground wire at wind velocity of 27 m/s.
(a) Lateral displacement. (b) Vertical displacement

Under the action of wind vibration, the icing on the conductor is gradually deicing, and
its lateral displacement and vertical displacement vary significantly in the first 20 seconds; while
the ground wire is de-icing instantly under the action of wind, and its lateral displacement
and vertical displacement vary significantly in the first 5 seconds. Subsequently, the influence of
deicing of the guide wire is gradually smaller. Due to the existence of damping, the vibration
amplitude of the line gradually decreases. However, due to the continuous effect of wind, the
conductor and ground wire will not tend to be stable, but to a small amplitude of vibration.
Tabs. 10–12 show the maximum amplitude of the line at wind velocity of 27, 15 and 10 m/s. It
can be seen from the table that the lateral and vertical amplitude of the line is larger due to
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the influence of the wind-induced icing shedding, while the amplitude of the guide wire without
icing is smaller. As the thickness of icing increases, the maximum amplitude of ground guide line
increases. For example, when the wind velocity is 27 m/s and the ice thickness is 20 mm, the
maximum vertical displacement of the ground line is 35.2450 m, which is 4.7847 m higher than
that without ice, and the lateral displacement is 34.5700 m, which is 6.9567 m higher than that
without ice.

Table 10: Maximum amplitude of conductor and ground wire at wind velocity of 27 m/s (m)

Direction b= 0 mm b= 10 mm b= 20 mm b= 30 mm

Conductor X direction 27.4820 27.3496 37.9332 –
Z direction 12.1451 15.0844 26.4774 –

Ground wire X direction 27.6133 32.1772 34.5700 –
Z direction 30.4603 34.1570 35.2450 –

Table 11: Maximum amplitude of conductor and ground wire at wind velocity of 15 m/s (m)

Direction b= 0 mm b= 10 mm b= 20 mm b= 30 mm

Conductor X direction 10.2420 11.2668 17.1347 26.9841
Z direction 1.4548 2.2344 6.0584 12.1614

Ground wire X direction 19.5688 24.9479 28.1039 32.1582
Z direction 11.8118 26.8054 33.1591 34.2201

Table 12: Maximum amplitude of conductor and ground wire at wind velocity of 10m/s (m)

Direction b= 0 mm b= 10 mm b= 20 mm b= 30 mm

Conductor X direction 4.8250 5.2384 7.2684 9.0475
Z direction 0.3664 0.4135 1.6466 2.6397

Ground wire X direction 12.9885 19.7607 23.3929 25.7087
Z direction 4.1247 14.0651 23.7848 30.8696

5.3 Displacement Response of Tower Top
As shown in Fig. 14, the time history curve of the displacement of the top of the tower

in dynamic analysis of wind-induced ice shedding is presented. Tab. 13 shows the maximum
displacement of the top of the tower under different working conditions. We can see that the
displacement of the top of the tower increases with the increasing wind velocity and ice thickness.
According to the operation procedure for overhead transmission line, the maximum inclination of
angle steel towers is 0.005. In this paper, the height of the tower is 63 m, and the displacement
of the top of the tower should not exceed 0.315 m. When the wind velocity is 27 m/s and the
icing thickness is 10 mm and 20 mm, the maximum displacement of the top of the tower is
0.3380 m and 0.3910 m respectively, which are 1.073 times and 1.241 times of the critical value,
and both exceed the allowable value of the top displacement. Therefore, the structure is not safe
under these conditions.
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Figure 14: Time-history curve of tower top displacement under different working conditions.
(a) Wind velocity is 27 m/s. (b) Wind velocity is 15 m/s. (c) Wind velocity is 10 m/s

Table 13: Maximum displacement of tower top under different working conditions (m)

Wind velocity b= 0 mm b= 10 mm b= 20 mm b= 30 mm

10 m/s 0.0959 0.1250 0.1332 0.1646
15 m/s 0.1092 0.1496 0.1978 0.2193
27 m/s 0.2900 0.3380 0.3910 –

6 Conclusions

To the best of our knowledge, this is the first attempt that the coupling dynamic response
of the icing shedding and wind load for the transmission tower-line system is discussed in this
paper, in addition, the dynamic characteristics of wind is included. The results of the constructor
(ground) line stress, displacement of the constructor (ground) line and displacement of tower
top under various wind speeds and icing thicknesses are discussed, and the conclusion are
as follows:

(1) Because of the ice shedding, the stress of the conductor changes obviously in the first
20 seconds, and the ground wire changes sharply in the first two seconds. The maximum
stress of the conductor (ground) wire increases with the increase of icing thickness and
wind speed. When the wind speed is 15 m/s and the icing thickness is 20 mm, the axial
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stress of the ground line exceeds the maximum service stress. When the wind speed is
27 m/s and the icing thickness is 30 mm, the axial stress of the ground line exceeds the
tensile stress at t= 0.7 s and the ground line is broken.

(2) The icing of the conductor (ground) wire is gradually deicing under the action of wind
vibration. The lateral displacement and vertical displacement of the conductor change
significantly in the first 20 seconds, while the ground line changes significantly in the first
5 seconds. Due to the existence of damping, the vibration amplitudes of the conductor
(ground) wire are gradually reduced, however, oscillation is generated slightly as the wind
continues to work.

(3) The displacement of tower top increases with the increase of wind speed and icing thick-
ness. When the wind speed is 27 m/s, and the ice thickness exceeds 10 mm, the maximum
displacement of the tower top exceeds the allowable displacement of the tower top.
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