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Abstract: For structures that only the predicted bounds of uncertainties are
available, this study proposes a Bayesianmethod to logically evaluate the non-
probabilistic reliability of structures based on multi-ellipsoid convex model
and performance test data. According to the given interval ranges of uncer-
tainties, we determine the initial characteristic parameters of a multi-ellipsoid
convex set. Moreover, to update the plausibility of characteristic parameters,
a Bayesian network for the information fusion of prior uncertainty knowl-
edge and subsequent performance test data is constructed. Then, an updated
multi-ellipsoid set with the maximum likelihood of the performance test data
can be achieved. The credible non-probabilistic reliability index is calculated
based on the Kriging-based surrogate model of the performance function.
Several numerical examples are presented to validate the proposed Bayesian
updating method.

Keywords: Convex model; Bayesian method; non-probabilistic reliability;
information fusion

1 Introduction

In the modern industries, the consideration of uncertainties in the structural analysis and
design is very important since even a little fluctuation of uncertain variables may result in struc-
tural performance failure. Therefore, there is a growing emphasis on the study of a quantitative
mathematical model that fully characterizes aleatory or epistemic uncertainties. In general, the
approaches of quantifying uncertainties can be divided into two categories: the probabilistic and
non-probabilistic methods [1].

The probabilistic model that describes aleatory uncertainties to be probability distributions,
has been extensively utilized because of its complete theory system [2]. However, in practical
engineering applications, the production of precise probability distributions requires sufficient
samples of a suitable quality that may be frequently unavailable [3]. In addition, the probabilistic
reliability is very sensitive to the probability distributions of uncertain variables [4]. Therefore,
for the circumstances of the structural systems suffering from epistemic uncertainties, in which
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the sample information is limited, the non-probabilistic method that describes uncertainties by
utilizing a convex model, such as interval set and multi-ellipsoid set, has been developed as an
attractive complementary tool [5,6]. Note that the interval model can be considered as a specific
instance of the multi-ellipsoid model if each ellipsoid set comprises only one uncertain parameter.
Based on the convex set model, Ben–Haim first introduced the concept of non-probabilistic
reliability [7,8]. Over the past decades, numerous studies have been conducted for quantifying
uncertainties and assessing the reliability in the non-probabilistic framework for various engineer-
ing problems involving incomplete information [9–19]. Moreover, for structures exhibiting both
aleatory and epistemic uncertainties, structural reliability assessment and optimization methods
based on probabilistic and convex set mixed models have also been substantially discussed by
numerous researchers [10–20,25].

In the convex set-based non-probabilistic reliability theory, the multi-ellipsoid model has
become one of the most realistic, and general descriptions of epistemic uncertainties. Therefore,
based on experimental data, how to accurately construct the multi-ellipsoid convex model is
critically important. By employing a transformation matrix for a rotating n-dimensional coordi-
nate system, Zhu et al. [26] typically determined the minimum-volume ellipsoid that contains all
uncertain inputs. Jiang et al. [27] used the inverse correlation matrix as the characteristic matrix
to construct the ellipsoid model. This correlation matrix comprised variances and co-variances
calculated by utilizing each pair of uncertainties that fail to enclose all the sample points in
the constructed ellipsoids in some cases. Based on measured uncertainties, Kang et al. [28]
recently proposed a general framework for constructing an ellipsoid convex model. This method
transforms the ellipsoidal convex model construction problem into a semi-definite programming
(SDP) optimization formulation that can be solved by applying a standard SDP optimizer. It
is noteworthy that the aforementioned methods are completely based on the measured data of
uncertain variables.

However, in many practical engineering problems, the available information of uncertainties is
rather limited. In these situations, it is not only the probabilistic distribution of uncertainties but
also the constructed convex model, as well as their corresponding reliability assessment, may be
inaccurate and unjustified. In some cases, the performance test data, such as displacements, and
stresses of structures, may be much more easily obtained when compared with the direct measure-
ment of uncertain variables. Therefore, studies on predicting the uncertainties from performance
test data have been carried out by using the inverse problem analysis method [29–35]. Based
on the derivation of forward formulas and prior uncertainty knowledge, the inverse problem
can be constructed driven by performance test data and iterative regularization and solved by
the optimization method to yield the final solution. However, a reasonable inverse problem may
be hardly obtained for some practical engineering applications with limited cognition of their
forward problems. As revealed by the literature survey, the systematical method that fuses prior
uncertainty knowledge and subsequent performance test data for a reasonable assessment of non-
probabilistic reliability has not been discussed to the best in previous related publications, and it
is the main novelty of this paper.

To this end, we develop a new Bayesian updating method for the multi-ellipsoid convex
model based on performance test data in this study. The Bayesian method has been extensively
utilized to solve updating problems driven by data in numerous research fields, such as structural
health monitoring system [36], model validation [37], structural identification [38], and machine
learning [39]. In addition, since the Bayesian method does not require numerous information for
the maximum likelihood estimation, it is also useful for reliability analysis with a small number
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of samples [40,41]. By employing the Bayesian network, we establish the inherent relationship
between the plausibility of convex model parameters and performance evidence herein, and we
then achieve an updated index of non-probabilistic reliability. Besides, to deal with the highly
nonlinear performance function, the Kriging surrogate model is adopted.

As illustrated in Fig. 1, this study mainly evaluates the structural non-probabilistic reliability
based on the multi-ellipsoid convex model and the information fusion method of the Bayesian
network. By applying the prior knowledge information about uncertainties, the initial parameter-
ized multi-ellipsoid model, and the initial ranges of characteristic parameters are first constructed.
Then, the available performance test samples are inserted into a Bayesian network to update
the plausibility of each characteristic parameter and further determine the multi-ellipsoid model
with maximum likelihood. Based on the updated ellipsoidal convex model, the credible non-
probabilistic reliability index can be obtained. Finally, several numerical examples are presented
to validate the proposed Bayesian updating method.

Figure 1: Information fusion of prior uncertainty knowledge and subsequent performance test
data Jones et al.

2 The Multi-Ellipsoid Convex Model Used for Bayesian Updating

Assume there are a set of uncertain variables xj (j = 1, 2, . . . ,N) and their mean value x̂j.
Then, the uncertain variables xj can be transformed as dimensionless variables δj as follows:

δj =
xj − x̂j
x̂j

, (j= 1, 2, . . . ,N) (1)

The uncertainties may arise from multiple sources in practical applications. For such a situ-
ation, the group that comprises uncertainties from the same or similar sources can be described
by one ellipsoid set; thus several ellipsoid sets are constructed based on various uncertain
sources [18]. The so-called multi-ellipsoid convex model can be defined as follows:

�=
{
δ

∣∣∣ δiTWiδi ≤ 1
}

(i= 1, 2, . . . ,NE) (2)
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where δ = {δ1, δ2, . . . , δN}T denotes the vector of dimensionless uncertain variables, Wi denotes the
characteristic matrix of the ith ellipsoid set, and NE denotes the total number of ellipsoid sets.

2.1 Parameterization of Multi-Ellipsoid Convex Model
Characteristic matrix Wi contains the mixed information of direction and size of the ith

ellipsoidal set. To update the convex model by employing a Bayesian method, it is convenient
to express the multi-ellipsoid convex model by several characteristic parameters. An eigenvalue
decomposition for matrix Wi is performed by applying the following equation:

Wi =Qi
T�iQi (i= 1, 2, . . . ,NE) (3)

where �i denotes a diagonal matrix, in which the diagonal elements are the eigenvalues of
the matrix Wi, and Qi denotes the eigenvector matrix that indicates the direction of the ith
ellipsoid set.

For the ith ellipsoid set that includes Ni uncertain parameters, the Ni × Ni characteristic
matrix Wi can be directly related to the semi-axis lengths rk (k= 1, 2, . . . ,Ni) and the angles
θk (k= 1, 2, . . . ,Ni− 1) of the ith ellipsoid based on the Gramm–Schmidt orthogonalization
procedure [21] as follows:

�i=diag
(
r1, r2, . . . , rNi

)
Qi=

[
U1,U2, . . . ,UNi

] (4)

where

U1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos θ1

sin θ2 cos θ2

...

sin θ1 sin θ2 . . . sin θNi−2 cos θNi−1

sin θ1 sin θ2 . . . sin θNi−2 sin θNi−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, Uk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0k−2

− sin θk−1

cos θk−1 cos θk

...

cos θk−1 sin θk . . . sin θNi−2 cos θNi−1

cos θk−1 sin θk . . . sin θNi−2 sin θNi−1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k= 2, 3, . . . ,Ni (5)

and vector 0k−2 comprises k−2 zero elements. Here, θk denotes the angle between the major axis
of the ellipsoid and the kth Cartesian coordinate axis.

As depicted in Fig. 2, a two-dimensional ellipsoid model can be typically represented by
the above-parameterized expressions with the following three characteristic parameters: (r1, r2, θ).
After the parameterization in Eq. (4), the multi-ellipsoid convex model is determined by utilizing
a total of 2Ni− 1 characteristic parameters (rk and θk) as follows:

�=
{
x
∣∣∣ δiTQi

T�iQiδi ≤ 1
}

(i= 1, 2, . . . ,NE) (6)



CMES, 2020, vol.125, no.2 781

Figure 2: The parameterization of a two-dimensional ellipsoid

2.2 Construction of the Initial Ellipsoid Convex Model
It is assumed that the dimensionless uncertain variables δj(j= 1, 2, . . . ,N) are within the given

intervals, namely δj ∈
[−Δj,Δj

]
, where −Δj and Δj denote the lower bound and the upper bound

of the uncertain variables δj, respectively. In this study, we selected the initial ith ellipsoid convex
set to be the minimum circumscribed ellipsoid of the given intervals of the ith group of the
uncertain variables. Then, the semi-axis lengths r0j of the initial ith ellipsoid set can be calculated
by employing the following equation:

r0k =
√
NiΔk, (k= 1, 2, . . . ,Ni) , (7)

while the corresponding characteristic angles are given by θ01 = 0, θ0k = π/2, (k= 2, . . . ,Ni− 1).

During the updating process of the multi-ellipsoid convex model, the allowable ranges of the
characteristic parameters rk and θk are defined as follows:

rk ∈
[
δk, r0k

]
(k= 1, 2, . . . ,Ni)

θk ∈
[
θ0k −

π

4
, θ0k +

π

4

]
(k= 1, 2, . . . ,Ni− 1)

(8)

3 Assessment of Non-Probabilistic Reliability Based on Kriging Surrogate Model

We define the normalized vectors of uncertain variables as follows:

qi =�i
1/2Qi

Tδi i= 1, 2, . . . ,NE, (9)

The multi-ellipsoid domain Ω in Eq. (6) is mapped into the normalized q-space and a
multiple spheres of a unit radius in each sub-dimensional space spanned by qi is defined
as follows:

EM =
{
q
∣∣∣∣
√
qiTqi ≤ 1

}
, i= 1, 2 . . . ,NE (10)

After the aforementioned normalization of uncertain variables, the normalized performance
function can be denoted by G (q) in q-space. By considering that the performance function
G (q) may be highly nonlinear and multi-peak, the Kriging surrogate model associated with a
training point strategy is applied to provide good approximates and error estimates. In addition,
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the Kriging surrogate model [42] is assumed as a Gaussian process, and the approximation
performance function is constructed as follows:

G (q)≈ h (q)T β +Z (q) (11)

where β denotes the vector of undetermined coefficients, h (q)T can be set as any function of q,
and the stochastic error Z (q) is defined by a Gaussian process with the mean of zero and the
variance of σ 2.

The correlation between two errors at the points of q(a) and q(b) can be defined as follows

Cov
[
Z
(
q(a)

)
, Z

(
q(b)

)]
= h2 exp

[
−

N∑
k=1

pk
(
q

(a)

k
− q

(b)

k

)2]
(12)

where N denotes the dimensionality of q, while h and pk are parameters to be determined by the
maximum likelihood estimation. To obtain a relatively accurate surrogate model, we perform two
steps in this study. First, an initial surrogate model is constructed based on samples generated by
the orthogonal-maximin Latin hypercube sampling method [43]. Second, several training points
are added into the model point by point to obtain a more accurate model, which is called the
efficient global optimization method [44]. Here, two expected improvement functions are given as
the rule for adding training points.

The first expected improvement function enables the surrogate model to be more accurate
in the whole design domain. A new sample point qσ

∗ is defined as the maximum depar-
ture of the model in the whole design domain. It can be obtained by solving the following
optimization problem:

Max
[
σ 2 (q)

]
s.t. q≤ q≤ q̄ (13)

where q and q̄ denote the lower and upper bounds of variable q, respectively.

The second expected improvement function enables the prediction to be more accurate near
the failure surface where the performance function G (q) is equal to zero inside the design domain.
Therefore, the improvement function, F , can be defined as follows [45]:

F = ε−
∣∣∣G̃ (q)

∣∣∣ , G̃ (q) ∈ [−ε, +ε] (14)

where G̃ (q) denotes the predicted response of q, and ε can be taken as 2σ based on [44]. Solving
the following problem yields a new sample point qEF ∗:

Max E [F (q)]

s.t. q≤ q≤ q̄
(15)

When the cumulative variance (EISE) of M test samples is less than the given criterion, the
process of adding sample points ends:

EISE = 1
M

M∑
m=1

(
G (qm)− G̃ (qm)

)2
(16)
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where qm denotes the mth test sample, while G (qm) and G̃ (qm) denote the actual and predicted
responses of qm, respectively.

Additionally, based on the multi-ellipsoidal convex model EM and the performance function
G (q), the safety margin of structures can be evaluated by utilizing both the non-probabilistic
reliability index η [20] and the non-probabilistic reliability Rc [10]. As depicted in Fig. 3, the
non-probabilistic reliability index is defined as the minimum distance from the origin of the
coordinates to the boundary of the failure domain in q-space. This index can be obtained by
solving the following min–max optimization problem:

η = sgn ·minq
{
max

(√
qiTqi

)}
i= 1, 2, . . . ,NE

s.t. G (q)= 0

sgn=

⎧⎪⎪⎨
⎪⎪⎩
1 if G (0) > 0

0 if G (0)= 0

−1 if G (0) < 0

(17)

Figure 3: A schematic representation of the non-probabilistic reliability assessment

The non-probabilistic reliability Rc is defined as the multi-dimensional volume ratio of the
reliable domain to the whole multi-dimensional spherical domain [9], while the corresponding
dangerous degree can be defined as Fc = 1 − Rc. As shown in Fig. 3, by considering the case
of a single three-dimensional ellipsoid convex model in q-space, the convex set is equally divided
into as follows: mr small lengths (Δr) in the polar radius direction, mθ

1 small angles (Δθ), and mθ
2

small angles (Δθ) in the polar angle directions. The whole uncertainty domain is thus divided into
M =mr×mθ

1×mθ
2 element regions. The performance function responses inside the element region

can be represented by the response of its center point. Thus, the non-probabilistic reliability
can be calculated by utilizing the ratio of the element region within the reliable domain to the
whole convex set region. Obviously, the non-probabilistic reliability can be easily extended to an
n-dimensional convex model defined as follows:

Rc = 1− ΩG<0

Ω
= 1−

∑
G<0 (rm ·Δθ)n−1 ·Δr∑M
m=1 (rm ·Δθ)n−1 ·Δr

= 1−
∑

G<0 rm
n−1∑M

m=1 rmn−1
(18)
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where Ω denotes the whole convex set domain, ΩG<0 denotes the failure domain, and rm denotes
the polar radius of the mth element region in the polar coordinate system.

For the case of a multi-ellipsoid convex model, the non-probabilistic reliability can be easily
evaluated by

Rc = 1− ΩG<0

Ω
= 1−

∑
G<0

[∏NE
i=1

(
ri,m ·Δθ

)Ni−1
Δr
]

∑M
m=1

[∏NE
i=1

(
ri,m ·Δθ

)Ni−1
Δr
] = 1−

∑
G<0

[∏NE
i=1 ri,m

Ni−1
]

∑M
m=1

[∏NE
i=1 ri,m

Ni−1
] (19)

where the subscript i denotes the ith ellipsoid model among the NE ellipsoid models, and Ni is
the number of uncertain parameters included in the ith ellipsoidal set.

4 Bayesian Updating Method for Multi-Ellipsoid Convex Model

4.1 Bayesian Network
In this study, we assume that the uncertain variables are uniformly distributed within the

multi-ellipsoid convex model. In this case, the definition of non-probabilistic reliability Rc in
Eq. (19) coincides with that of the reliability concept in the probabilistic framework. Moreover,
the probability of an event or performance function G (q) can be considered depending on the
uncertainty of the characteristic parameters X = (r1, r2, . . . , rN , θ1, θ2, . . . , θN−1), which denotes
the variation of the multi-ellipsoid convex model. Thus, based on the Bayesian’ rule, one can
develop the inverse statistical inferences from the observation data of E to the prior knowledge
of characteristic parameters X as follows:

p (X |E )= p (X)p (E |X)

p (E)
(20)

where p (X) denotes the prior distribution obtained from the prior knowledge, p (X |E ) denotes the
posteriori distribution that can be interpreted as the amended prior knowledge based on observed
data, p (E |X ) denotes the data distribution in terms of the given X based on the observed data
E, and p (E)=∑X p (X)p (E |X ).

Herein, we adopt the concept of plausibility of the characteristic parameters, which is defined
as the probability of the characteristic parameter X falling within the subinterval I as follows:

Pl (X ∈ I)= Pr (X |X ∈ I) (21)

Based on the Bayesian theory, the updating process of the convex model can be considered
as the plausibility inferences of the ellipsoidal characteristic parameters driven by performance
test data. For the case of a multi-ellipsoid model with multiple characteristic parameters, the
updating problem can be described as a multi-hierarchical Bayesian network, as demonstrated in
Fig. 4. In the proposed Bayesian network, the leaf node E denotes the evidence variable that
represents the test data information. Additionally, the second level node EMi denotes the ith
ellipsoid convex set. The root nodes (Xi,1,Xi,2, . . . ,Xi,2Ni−1) denote the characteristic parameters
of the ith ellipsoid convex model. Therefore, the plausibility of the root nodes can be updated by
applying the multi-hierarchical Bayesian calculation when the leaf node information is inputted.

4.2 Prior Probability and Conditional Probabilities
During the updating process, the allowable range of each root node variable is divided into

m subintervals. For the cases with limited prior knowledge about the characteristic parameters,
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the prior probability of the jth characteristic variable Xi,j of the ith ellipsoid convex set falling

within the qth subinterval Iq =
(
Xl
i,j,X

u
i,j

]
can be calculated as follows,

Pr
(
Xi,j

∣∣Xi,j ∈ Iq)= 1
m

(22)

In addition, any other distribution of the plausibility of the characteristic parameters with
available prior knowledge can be used.

Figure 4: A schematic diagram of a Bayesian network

Moreover, if the root node variable Xi,j is determined, the ellipsoid convex model EMi can
be uniquely determined, yielding the following conditional probability:

Pr
(
EMi

∣∣Xi,j )= 1, (i= 1, 2, . . . ,NE ; j= 1, 2, . . . ,Ni) (23)

In addition, the evidence variable E can be defined as follows. If the structural performance
test fails to satisfy the specified requirements, then E = 0; otherwise, E = 1, that is,{
E = 0 if G (qK) < 0

E = 1 if G (qK)≥ 0
(24)

where qK denotes the Kth performance test sample.

Thus, the conditional probability expression can be defined as follows:

Pr (E = 0 |EM )= Fc; Pr (E = 1 |EM )=Rc (25)

4.3 Bayesian Updating Process
To achieve the initial plausibility of the characteristic parameters, the range of each char-

acteristic parameter is divided into m subintervals before the Bayesian updating process. Then,
based on the Bayesian network, the posteriori distribution of each root node variable Xi,j can be
calculated by the input evidence variable E. Moreover, the current prior distribution is considered
as the posteriori distribution in the former step as follows:

Prκ+1
(
Xi,j ∈

(
Xl
i,j,X

u
i,j

])
= Prκ

(
Xi,j ∈

(
Xl
i,j,X

u
i,j

]∣∣∣E = 0
)

Prκ+1
(
Xi,j ∈

(
Xl
i,j,X

u
i,j

])
= Prκ

(
Xi,j ∈

(
Xl
i,j,X

u
i,j

]∣∣∣E = 1
) (26)

where the superscript κ denotes the κth iteration process.
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When the updated plausibility of the characteristic parameters is obtained by applying
Eq. (26), the allowable range of characteristic parameters can be reduced by ignoring the subin-
tervals with small plausibility (e.g., lower than 1

m ). Thus, the processes of updating plausibility
and reducing the range of characteristic parameters are repeated until the convergence condition
is satisfied. The convergence criterion is given as follows: the characteristic parameter range(
Xl
i,j,X

u
i,j

]
for the next iteration step is actually small, or the difference between the maximum

and minimum plausibilities of the subintervals within the present characteristic parameter range
is actually small, that is,⎧⎨
⎩

ζ1 =
(
Xu
i,j−Xl

i,j

)
/I0 ≤ ε

ζ2 =max
[
Pl
(
Xi,j ∈ Iq

)]−min
[
Pl
(
Xi,j ∈ Iq

)]≤ ε, q= 1, 2, . . . ,m
(27)

where I0 denotes the initial allowable range of the characteristic parameters, Iq denotes the qth
subinterval within the present characteristic parameter range, m denotes the total number of the
subintervals, and ε = 0.01 is a small number. Finally, by taking the characteristic parameters as
the mean value of the subinterval with the maximum plausibility in the last updating step, an
updated ellipsoidal convex model can be achieved.

The main computational cost of the updating procedure is the calculation of non-probabilistic
reliabilities based on various multi-ellipsoid convex models. However, the calculation of Rc based
on each multi-ellipsoid convex model is independent with others, so the parallel computing can
be carried out to reduce the computational time tremendously.

It is noteworthy that the proposed Bayesian updating method is effective only when the
initial non-probabilistic reliability index is less than 1. However, if the initial non-probabilistic
reliability index is greater than 1, there is no unreliable point inside the ellipsoid domain. In
general, whichever characteristic parameters are taken within the characteristic parameter ranges,
the structural performance failure possibility is identically equal to zero, resulting in an invalid
updating of the proposed Bayesian method. In this case, a new performance function Gnew =
G−Δ and its corresponding performance test data are used to update the convex model. Here, the
parameter Δ is determined by setting the initial non-probabilistic reliability index of Gnew to be
equal to the given value of η = 0.99. Furthermore, after the final updated convex set is obtained,
the non-probabilistic reliability index of G can be determined by solving the optimization problem
of Eq. (17).

5 Programming Procedure

The flow chart of the proposed method is shown in Fig. 5. Additionally, a detailed algorithm
for the Bayesian updating method is the following.

Step 1: The initial parameterized multi-ellipsoidal model is constructed as the minimum circum-
scribed ellipsoid of the given intervals of uncertainties. Based on the given intervals of
uncertainties, the bounds of the characteristic parameters that comprise semi-axis lengths
and directions are calculated, as shown in Section 2.

Step 2: Based on the initial multi-ellipsoidal convex model obtained in Step 1, the ini-
tial non-probabilistic reliability index can be calculated by solving the min–max
optimization problem.
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Step 3: If the non-probabilistic reliability index η is greater than η, the new performance function
is determined by moving the failure surface. Then, return to Step 2; otherwise, move on
to Step 4.

Step 4: The Kriging surrogate model used for approximating the performance function is con-
structed. First, based on the samples given by orthogonal-maximin Latin hypercube
sampling, an initial Kriging model is constructed, and the subsequent samples are added
to enable the surrogate model to be more accurate based on the two sampling criteria
expressed in Eqs. (13) and (15).

Step 5: As demonstrated in Section 4, a Bayesian network is constructed to update the plausibility
of the characteristic parameter driven by the performance test data. The final subintervals
of characteristic parameters that satisfy the convergence condition defined by Eq. (26)
are achieved. Then, the updated characteristic parameters and the updated convex model
are produced.

Step 6: Based on the updated ellipsoidal convex model obtained in Step 5, the non-probabilistic
reliability index can be calculated.

Figure 5: A flow chart of the proposed method

6 Numerical Examples

6.1 A Cantilever Beam with an Initial Non-Probabilistic Reliability Index Less Than 1
As demonstrated in Fig. 6, we consider a cantilever beam with the inertia moment of the

cross section Im = 118.6× 106 mm4 under a uniformly distributed load. The uncertain variables
are the uniformly distributed load and the Young’s modulus of the material. The available
information about the uncertain variables are their bounds, namely, P ∈ [20, 30] KN/m and
E ∈ [195, 205] Gpa.

If the angle displacement α of node 1 exceeds 0.0015 Rad, the structure is deemed to have
failed. Then, the performance function is expressed as follows: g= 0.00152−α2. After generating
the uncertain variables within their interval ranges respectively, the performance test samples
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(including 30 angular displacement samples of node1) can be obtained by numerical simulations
which are presented in Tab. 1.

Figure 6: A cantilever beam

Table 1: Performance test samples
(×10−3 Rad

)
1.144 1.290 1.244 1.197 1.414 1.115 1.135 1.279 1.146 1.186
1.261 1.275 1.209 1.233 1.272 1.254 1.151 1.413 1.127 1.246
1.128 1.279 1.209 1.122 1.105 1.287 1.116 1.190 1.262 1.228

As demonstrated in Section 2, a two-dimensional ellipsoid convex model is constructed
as follows:(
E

P

)T [cos θ sin θ

sin θ − cos θ

][
r−2
E 0

0 r−2
P

][
cos θ sin θ

sin θ − cos θ

]T (E
P

)
≤ 1 (28)

where rE , rP, and θ denote characteristic parameters to be determined by the Bayesian updating
method. The initial non-probabilistic reliability index is calculated based on the initial ellipsoidal
convex model, ηInitial= 0.8589, meaning that the structure design is unreliable with the considered
uncertainties. To incorporate the performance test data into the inference, we performed the
Bayesian network based on the method demonstrated in Section 4 by making the three parameters
(rE , rP, and θ) as root variables and the performance test data as evidence variables. The range
of the root variables is first divided into four subintervals, and the prior distribution is defined
based on the method illustrated in Subsection 4.1. Moreover, the calculation result of the first
iteration step is demonstrated in Fig. 7.

According to Eq. (27), we can observe that the characteristic parameter rE satisfies the
convergence condition. Thus, it is unnecessary to take a further iteration step to obtain a more
precise subinterval of rE , and rE can be set as the mean value of the subinterval with the
maximum plausibility in the first update step. For the characteristic parameter rP, the plausibilities
of the subinterval (0.1341, 0.1456] and (0.1456, 0.1571] are both lower than 0.25, which can be
ignored in further iteration steps. Therefore, a new range [0.1111, 0.1314] is used for the next
step. Analogously, a new range (−π/4, 0] of the characteristic parameter θ is used for the next
iteration step. After dividing the new ranges into four subintervals, the second iteration step is
performed; the calculation result is shown in Tab. 2. Both characteristic parameters rP and θ

satisfy the convergence condition in the second iteration step, and rP and θ can be set as the
mean value of the subintervals (0.1111, 0.1341] and (−3π/16, −π/8], respectively. As depicted in
Fig. 8, the updated ellipsoidal convex model is constructed by the final characteristic parameters.
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Based on the updated ellipsoidal convex model, the calculated non-probabilistic reliabil-
ity index is greater than 1. Thus, rather than the initial assessment of judging the structure
performance as a failure, the actual structure performance is much more likely to be safe when the
structure performance test information is involved in the inference. Therefore, to apply the pro-
posed method, the variable uncertainties can be determined by fusing the performance function
test data in the inference, thereby yielding a more credible structural reliability assessment.
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Figure 7: The plausibility calculation result of first iteration step. (a) rE (b) rP (c) θ

Table 2: The calculation result of the second iteration step

rP Subinterval (0.1111, 0.1169] (0.1169, 0.1226] (0.1226, 0.1284] (0.1284, 0.1341] ζ1 ζ2
Plausibility 0.2505 0.2505 0.2505 0.2485 0.3761 0.0020

θ Subinterval (−π/4, −3π/16] (−3π/16, −π/8] (−π/8, −π/16] (−π/16, 0] ζ1 ζ2
Plausibility 0.2504 0.2508 0.2503 0.2485 0.5000 0.0020

6.2 A Cantilever Beam with an Initial Non-Probabilistic Reliability Index Greater Than 1
A mechanical model, which is defined in Subsection 6.1, is used in this numerical example

with a reliable initial assessment. The bounded intervals of the uniformly distributed load and
the Young’s modulus are P ∈ [18, 26] KN/m and E ∈ [195, 225] Gpa, respectively. Although the
test data are all reliable as presented in Tab. 3, a relatively more credible ellipsoidal model can
be achieved by applying the proposed method.
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Table 3: Performance test samples
(×10−3 Rad

)
1.235 1.356 1.190 1.148 1.006 1.277 1.280 1.138 1.078 1.083
1.139 1.114 1.201 1.430 1.178 1.096 1.234 1.147 1.495 1.383
1.401 1.103 1.212 1.345 1.076 1.151 1.121 1.193 1.191 1.291
1.035 1.086 1.068 1.157 1.372 1.430 1.351 1.286 1.304 1.154
0.992 1.230 1.085 1.023 1.391 1.069 1.328 1.126 1.239 1.096

Figure 8: The updated ellipsoidal convex model

First, the performance function is moved to the boundary of the uncertain domain, achieving
the initial non-probabilistic reliability index as 0.99 s, the original test data can be disposed as
shown in Subsection 4.3, achieving one failure sample. Then, the Bayesian update programming
can be performed to obtain the most credible characteristic parameters driven by the test data.
The calculation result in the first iteration step is shown in Fig. 9.

By removing the insensitive characteristic parameters and reducing the range of the sen-
sitive characteristic parameters according to Eq. (27), we performed the subsequent iteration
steps. The results are presented in Tabs. 4–6. The characteristic parameters rP and θ satisfy the
convergence condition in the third and sixth steps, respectively. As shown in Fig. 9, when the
19th sample is inputted in the Bayesian updating program, the plausibility of each parameter
changes significantly. It is because the 19th sample is a failure sample after moving the per-
formance function, and then the occurrence of the failure sample makes the plausibility of the
combination of the parameters which can make the failure occur in a relative higher proba-
bility increase, simultaneously, making the plausibility of other combinations of the parameters
decrease suddenly.

Finally, by taking the characteristic parameters as the mean value of the subintervals with
the maximum plausibility, we achieved the updated ellipsoidal convex model illustrated in Fig. 10.

6.3 The Reliability Analysis of a Frame Structure
We consider a frame structure in which the uncertain variables are the elasticity modulus of

each beam and the uniformly distributed load applied on each beam, as shown in Fig. 11. The
bounded intervals of the Young’s modulus of each beam (E1, E2, E3) are [2.9, 3.1]× 1011 Pa,
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while their uniformly distributed loads are P1 ∈ [3800, 4400] N/m,P2 ∈ [2500, 3000] N/m, and
P3 ∈ [2500, 3000] N/m.
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Figure 9: The plausibility calculation result of the first iteration step. (a) rE, (b) rP, (c) θ

Table 4: The calculation result of the second iteration step

rP Subinterval (0.1818, 0.1912] (0.1912, 0.2006] (0.2006, 0.2101] (0.2101, 0.2195] ζ1 ζ2
Plausibility 0.2517 0.2635 0.2531 0.2317 0.3758 0.0318

θ Subinterval (−π/8, −π/16] (−π/16, 0] (0,π/16] (π/16, π/8] ζ1 ζ2
Plausibility 0 0.3412 0.3682 0.2907 0.5890 0.3682

Table 5: The calculation result of the third iteration step

rP Subinterval (0.1818, 0.1889] (0.1889, 0.1959] (0.1959, 0.2030] (0.2030, 0.2101] ζ1 ζ2
Plausibility 0.2515 0.2564 0.2528 0.2394 0.2815 0.0170

θ Subinterval (−π/16, −π/64] (−π/64, π/32] (π/32, 5π/64] (5π/64, π/8] ζ1 ζ2
Plausibility 0.0960 0.3353 0.3027 0.2660 0.2188 0.3682

When the angle displacement α of node 1 exceeds 0.0015 Rad, the structure is regarded as a
failure. A total of 30 performance test samples are presented in Tab. 7.
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Table 6: The calculation result of the characteristic parameter θ in subsequent iteration steps

Step 4 Subinterval (−0.0491, 0.0614] (0.0614, 0.1718] (0.1718, 0.2823] (0.2823, 0.3927] ζ1 ζ2
Plausibility 0.2620 0.2737 0.2432 0.2211 0.1406 0.0526

Step 5 Subinterval (−0.0491, 0.0061] (0.0061, 0.0609] (0.0609, 0.1166] (0.1166, 0.1718] ζ1 ζ2
Plausibility 0.1937 0.2601 0.2767 0.2696 0.1055 0.0830

Step 6 Subinterval (0.0061, 0.0476] (0.0476, 0.0890] (0.0890, 0.1304] (0.1304, 0.1718] ζ1 ζ2
Plausibility 0.2328 0.2556 0.2591 0.2524 0.0790 0.0263

Figure 10: The updated ellipsoidal convex model

Figure 11: A frame structure

Table 7: Performance test samples
(×10−3 Rad

)
1.441 1.220 1.432 1.425 1.498 1.358 1.441 1.174 1.310 1.407
1.437 1.486 1.278 1.274 1.433 1.338 1.285 1.231 1.323 1.430
1.462 1.285 1.259 1.443 1.263 1.360 1.432 1.289 1.472 1.316



CMES, 2020, vol.125, no.2 793

0 5 10 15 20 25

0.15

0.20

0.25

0.30

0.35

0.40

Evidence variables 

rE1∈(0.0333, 0.0368]

 rE1∈(0.0368, 0.0402]

rE1∈(0.0402, 0.0437]

 rE1∈(0.0437, 0.0471]

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30

0.15

0.20

0.25

0.30

0.35

0.40

Evidence variables 

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30

0.24

0.25

0.26

0.27

Evidence variables 

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Evidence variables 

rP1∈(0.0732, 0.0807]

 rP1=(0.0807, 0.0883]
rP1=(0.0883, 0.0959]

 rP1=(0.0959, 0.1035]

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30

0.2

0.3

0.4

0.5

Evidence variables 

rP2∈(0.0909, 0.1003]

 rP2=(0.1003, 0.1097]

rP2=(0.1097, 0.1192]

 rP2=(0.1192, 0.1286]

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Evidence variables 

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30

0.15

0.20

0.25

0.30

0.35

0.40

Evidence variables 

θ1∈(−π/4,−π/8]
θ1∈(−π/8,0]
θ1∈(0,π/8]
θ1∈(π/8,π/4]

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30

0.15

0.20

0.25

0.30

0.35

0.40

Evidence variables 

θ2∈(π/4, 3π/8]
θ2∈(3π/8, π/2]
θ2∈(π/2, 5π/8]
θ2∈(5π/8, 3π/4]

Pl
au

si
bi

lit
y

rE2∈(0.0333, 0.0368]

 rE2∈(0.0368, 0.0402]

rE2∈(0.0402, 0.0437]

 rE2∈(0.0437, 0.0471]

rE3∈(0.0333, 0.0368]
 rE3∈(0.0368, 0.0402]
rE3∈(0.0402, 0.0437]
 rE3∈(0.0437, 0.0471]

rP3∈(0.0909, 0.1003]

 rP3=(0.1003, 0.1097]

rP3=(0.1097, 0.1192]

 rP3=(0.1192, 0.1286]

(a) (b)

(c) (d)

(e) (f)

(g) (h)



794 CMES, 2020, vol.125, no.2

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Evidence variables 

Pl
au

si
bi

lit
y

0 5 10 15 20 25 30

0.15

0.20

0.25

0.30

0.35

0.40

Evidence variables 

Pl
au

si
bi

lit
y

θ3∈(−π/4,−π/8]
θ3∈(−π/8,0]
θ3∈(0,π/8]
θ3∈(π/8,π/4]

θ4∈(π/4, 3π/8]
θ4∈(3π/8, π/2]
θ4∈(π/2, 5π/8]
θ4∈(5π/8, 3π/4]

(i) (j)

Figure 12: The plausibility calculation results of the first iteration step. (a) rE1, (b) rE2, (c) rE3,
(d) rP1, (e) rP2, (f) rP3, (g) θ1, (h) θ2, (i) θ3, (j) θ4

In this example, the uncertain variables of Young’s modulus and loads are classified into
two ellipsoidal sets, and the allowable range of each characteristic parameters for the convex
model is divided into four subintervals. The plausibility of the characteristic parameters in the
first iteration step is depicted in Fig. 12. By removing the insensitive characteristic parameters
and reducing the range of the sensitive characteristic parameters, the subsequent iteration steps
are performed as demonstrated in Tab. 8, while the updated ellipsoidal convex model is illustrated
in Fig. 13.

Table 8: The calculation result of the subsequent iteration steps

Iteration step Mean of the subinterval Convergence criterion Convergence criterion
with the maximum plausibility ζ1 ζ2

rP1 rP2 θ3 rP1 rP2 θ3 rP1 rP2 θ3

1 0.0997 0.1239 −0.3927 0.2508 0.2493 0.5000 0.6232 0.1147 0.4337
2 0.1026 0.1251 −0.4909 0.0627 0.1857 0.3750 0.2036 0.1807 0.2659
3 0.1019 0.1201 −0.5645 0.0165 0.0451 0.0937 0.1669 0.1525 0.1822
4 0.1017 0.1203 −0.5829 0.0165 0.0133 0.0234 0.1669 0.1168 0.2586

6.4 The Buckling Reliability Assessment of a Hull Stiffening Plate
The stiffened panel is the basic composite of the hull structure. In addition, the global

deformation of the hull structure under wave load is mainly hogging or sagging. Decks above and
below the neutral surfaces are suffered press loads undergoing sagging and hogging deformations,
respectively. Decks comprise several stiffening plate elements. As shown in Fig. 14, the evaluation
of the buckling strength of the stiffening plate is a significant component of the hull structure
strength assessment.

For this numerical example, there are four uncertain variables (wave bending moment, still
water bending moment, as well as the thickness of the plate and stiffeners) that exist from two
sources, which are load moment and structural inherent uncertainties. Two ellipsoid convex mod-
els are constructed to contain two sources of uncertain variables. The first ellipsoid convex model
contains the wave bending moment variable (P1 ∈ [1.8, 2.0]×105 N/m) and the still water bending
moment variable (P2 ∈ [7.5, 8.0] × 105 N/m). Additionally, the second ellipsoid convex model
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contains the thickness variables of plate (T1 ∈ [8, 12] mm) and stiffeners (T2 ∈ [11, 13] mm).
The performance function is defined as that the critical buckling factor is greater than 1. Besides,
the performance test sample set comprises 30 samples that are all reliable without the buckling
phenomena. According to the method proposed in this study, three iteration steps are performed
during the Bayesian updating process. The calculation result of the first iteration step is depicted
in Fig. 15, while the calculation results of the second and third iteration steps are presented in
Tabs. 9 and 10, respectively.

(a) (b)

Figure 13: The updated multi-ellipsoidal convex model. (a) initial ellipsoid set, η = 0.9883, (b)
updated ellipsoid set, η = 1.1420

Figure 14: A hull stiffening plate
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Figure 15: The plausibility calculation results of the first iteration step. (a) rP1 (b) rP2 (c) rT1 (d)
rT2 (e) θ1 (f) θ2

Table 9: The calculation result of the second iteration step

rT1 Subinterval (0.2414, 0.2518] (0.2518, 0.2621] (0.2621, 0.2725] (0.2725, 0.2828] ζ1 ζ2
Plausibility 0.2423 0.2415 0.2570 0.2592 0.2500 0.0177

rT2 Subinterval (0.1006, 0.1049] (0.1049, 0.1093] (0.1093, 0.1136] (0.1136, 0.1179] ζ1 ζ2
Plausibility 2537 0.2469 0.2497 0.2497 0.1250 0.0068

θ1 Subinterval (−π/4, −7π/32] (−7π/32, −3π/16] (−3π/16,−5π/32] (−5π/32, −π/8] ζ1 ζ2
Plausibility 0.5919 0.2229 0.1091 0.0761 0.0625 0.5158
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Table 10: The calculation result of the third iteration step

θ1 Subinterval (−0.7854,−0.7609] (−0.7609,−0.7363] (−0.7363,−0.7118] (−0.7118,−0.6872] ζ1 ζ2
Plausibility 0.2388 0.2586 0.2533 0.2493 0.0313 0.0208

By considering the characteristic parameters as the mean value of the subintervals with the
maximum plausibility, the updated ellipsoidal convex model is achieved, as shown in Fig. 16.
Based on the updated multi-ellipsoidal convex model, the non-probabilistic reliability index cal-
culation is 1.1037. When compared with the initial non-probabilistic reliability index (0.9964), the
actual structure may be more reliable than that of the initial assessment.

Figure 16: The updated multi-ellipsoidal convex model

7 Conclusions

In this study, we proposed a Bayesian updating method for making more credible non-
probabilistic reliability assessments through the fusion of the information about the bounds of
uncertainties and the performance test data. Based on the parameterization of multi-ellipsoidal
convex models, a Bayesian network was established to update the plausibility of the characteristic
parameters driven by evidence variables. This method can be applied to obtain the most credible
convex model according to the performance test data. Based on the most credible convex model,
a more credible non-probabilistic reliability index compared with the initial non-probabilistic reli-
ability index can be achieved which is modified by the performance test samples. It would be very
helpful in the safety assessment of practical engineering structures when considering the uncer-
tain variables with less cognition. Future work will focus on extending the proposed Bayesian
updating method to the topology optimization or novel design of some practical problems [46–48]
considering uncertainties.

Replication of Results: Code and data will be made available on request.
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