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Abstract: It is important for regional water resources management to know
the agricultural water consumption information several months in advance.
Forecasting reference evapotranspiration (ET0) in the next few months is
important for irrigation and reservoir management. Studies on forecasting
of multiple-month ahead ET0 using machine learning models have not been
reported yet. Besides, machine learning models such as the XGBoost model
has multiple parameters that need to be tuned, and traditional methods can
get stuck in a regional optimal solution and fail to obtain a global opti-
mal solution. This study investigated the performance of the hybrid extreme
gradient boosting (XGBoost) model coupled with the Grey Wolf Optimizer
(GWO) algorithm for forecasting multi-step ahead ET0 (1–3 months ahead),
compared with three conventional machine learning models, i.e., standalone
XGBoost, multi-layer perceptron (MLP) and M5 model tree (M5) models in
the subtropical zone of China. The results showed that the GWO-XGBmodel
generally performed better than the other three machine learning models in
forecasting 1–3 months ahead ET0, followed by the XGB, M5 and MLP
models with very small differences among the three models. The GWO-XGB
model performed best in autumn, while the MLP model performed slightly
better than the other three models in summer. It is thus suggested to apply the
MLP model for ET0 forecasting in summer but use the GWO-XGB model in
other seasons.

Keywords: Reference evapotranspiration; extreme gradient boosting; Grey
Wolf Optimizer; multi-layer perceptron; M5 model tree

1 Introduction

Reference evapotranspiration (ET0) as well as the soil and plant canopy characteristics are
usually the main input parameters for soil water balance models. Accurate estimation of ET0
plays an important role in water resource management and crop irrigation requirement determi-
nation, supporting the irrigation scheduling, regional water management decisions, drought early

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmes.2020.011004


700 CMES, 2020, vol.125, no.2

warning assessments, hydrological models and climate change impact models. The international
standard method for calculating ET0 is the Penman–Monteith equation in irrigation and drainage
No. 56 published by the Food and Agriculture Organization. This method (hereinafter called
FAO 56 PM) is considered to be one of the best methods for estimating daily and monthly
ET0 under different climatic conditions [1]. However, the FAO 56 PM equation requires many
meteorological variables and high data quality, which includes meteorological data such as air
temperature, wind speed, solar radiation and relative humidity [2]. Since weather stations are
usually tens to hundreds of kilometers apart, it is not easy to obtain accurate meteorological data
in desolate and rural areas, given that meteorological elements vary largely from place to place.

Due to the strong capability of searching for nonlinear relationship unknown to human
beings from big data [3], soft computing models have recently started to attract people’s interest
in hydrological and agricultural fields, e.g., modeling runoff [4], precipitation [5], drought [6],
solar radiation [7–9], evaporation [10–12] and crop yield [13], also including ET0 and actual ET
prediction/forecasting [14,15]. Especially, modeling ET0 with limited historical meteorological data
is the most popular approach. Artificial Neural Network (ANN) has been the most popular soft
computing algorithm applied for ET0 simulation. The traditional multilayer perceptron neural
network (MLP) has the advantages of simple model structure, fast training speed and strong
applicability [16]. The latest deep learning strategies are also based on neural network architecture.
Khoob [17] evaluated the ANN model for estimating ET0 in South Iran, and the evaporation and
temperature of type A evaporator were used as input parameters. The results showed that the
ANN model was much better than the traditional method of multiplying evaporation coefficient
by evaporation amount of evaporation. Based on the ANN model, Martí et al. [18] explored
how to estimate ET0 in unknown regions when lack of local meteorological data. The relations
of ET0 and geographic information were also studied by using geographic information as inputs
and ANN model as the tool [19]. Huo et al. [20] used the ANN model for prediction of ET0
in the Shiyanghe Basin of North China. They also found ANN models overestimated ET0 from
August to December and underestimated in the other months. Antonopoulos et al. [21] assessed
the performances of ANN and Priestley–Taylor, Makkink, Hargreaves and mass transfer models
for estimating ET0 in northern Greece. They found the ANN model performed best among
the models.

Another type of popular model is the fuzzy system which received extensive attention.
Cobaner [22] investigated the performance of two type of neuro-fuzzy inference systems, e.g.,
grid partition based fuzzy inference system (G-ANFIS) and subtractive clustering based fuzzy
inference system (SC-ANFIS) for predicting ET0 in Los Angeles, USA. They confirmed that SC-
ANFIS had higher accuracy and less computational time than the other models. Kisi et al. [23]
also compared G-ANFIS and SC-ANFIS model at Adana Station, Turkey. They found the G-
ANFIS model was less affected by missing data and training data length than the SC-ANFIS
model. Shamshirband et al. [24] developed a hybrid model based on the ANFIS model and
cuckoo search algorithm (CSA) at twelve meteorological stations in Serbia. They found the
ANFIS-CSA model yielded higher accuracy. Keshtegar et al. [25] developed a subset model based
on ANFIS for estimation of ET0 in three cities of Turkey. The results showed that the new
model was superior to the ANN, single ANFIS and M5 models. The advantages of ANFIS have
also been reported in North India [26]. Furthermore, the performances of ANFIS and ANN
models can be improved by the wavelet transform technology [27]. A recent study in Burkina
Faso using the firefly algorithm (FFA) to optimize ANFIS was also reported [28]. The GEP
model is another soft computing method with explicit expression and it has better precision than



CMES, 2020, vol.125, no.2 701

traditional empirical models. Karimi et al. [29] evaluated GEP and SVM as well as empirical
models for predicting ET0 in a humid region of Korea. They found that GEP was superior
to SVM when cross-station application of the developed models was applied. Kiafar et al. [30]
compared the GEP models and different types of empirical models for prediction of ET0 in
distant humid and arid regions. They found the new model outperformed the other three models,
i.e., ANN, M5 and ANFIS models. The GEP model has also been applied in other areas, e.g.,
island of Iran [31] and Egypt [32], and appropriate results have been achieved.

The kernel-based model is another powerful soft computing method, such as support vector
machine (SVM), least squares support vector machines (LSSVM), extreme learning machine
(ELM) and kernel-based nonlinear extension of Arps decline model (KNEA). Abdullah et al. [33]
firstly introduced ELM as a new method for ET0 prediction. The highest R2 yielded by the ELM
model was 0.991 in Iraq and the corresponding value was 0.985 by the ANN model. For the
same purpose, Gocic et al. [34] evaluated the performance of ELM for predicting ET0, as well
as three empirical models in Nis and Belgrade stations of Serbia. Their results confirmed that
ELM was a stable and reliable model. Feng et al. [35] compared three soft computing approaches
(ELM, GANN and WNN) for predicting ET0 in Sichuan of China. The result showed that ELM
model outperformed the other models under different input combinations. Feng et al. [36] also
compared the ELM with GRNN model with only temperature data as input in the same region.
They found the ELM model performed better than GRNN in the local application scenario and
the opposite result was obtained in the cross-station scenario, both of which were superior to the
empirical Hargreaves model. Wen et al. [37] evaluated the performance of SVM in extreme arid
regions of China and compared it with ANN and three empirical models. It was concluded that
SVM was superior to the other models. Since the parameters of ELM and SVM models are not
always easy to obtain optimal values, the evolution algorithms have been used to optimize the
parameters, and the results of the optimized models were better than the original models [38,39].

Decision tree-based model is another type of soft computing method, which is supported by
mathematical theory. These methods are based on the idea of binary tree, which incorporate the
theories of bagging or boosting and has been widely used in many fields. Pal et al. [40] firstly used
M5 model for ET0 estimation at Davis station, USA. Rahimikhoob [41] assessed the accuracy of
ANN and M5 models for ET0 estimation with temperature data, air humidity and extraterrestrial
radiation as inputs. The results showed that ANN had slighter better accuracy than M5 model
and they both performed well. On this basis, the accuracy of the former two models using the
temperature data from satellite images as inputs was further evaluated, and M5 was proved to be
superior to ANN model [42]. In general, the accuracy of mass transfer methods was low. In order
to solve this problem, Shiri [43] used the hybrid of wavelet transfer with RF model to improve
the accuracy. Wang et al. [44] used data from 24 stations in a karst region of Southwest China to
develop generalized model based on RF and GEP models. They found RF model was superior
to GEP model under different input combinations. Similar work has also been done in Central
Florida, where four soft computing models, i.e., M5, Bagging, RF and SVM were used [45]. Fan
et al. [14] evaluated the performances of four tree-based model (M5, GBDT, XGBoost and RF)
as well as ELM and SVM in different climatic regions of China. The results showed that the
tree-based models had less computing time and suitable accuracy [46].

However, the above studies have mainly focused on ET0 estimation based on the known
data in the past, and these methods are difficult to be used for future water resources planning.
Many scholars are interested in how to estimate future ET0, so as to plan and allocate water
resources in advance to deal with potential water crisis. In recent years, outputs of numerical
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weather prediction outputs have been used in estimating ET0 in Australia [47]. Traore et al. [48]
compared four kinds of ANN models for forecasting ET0 in large irrigation areas of Texas and
MLP achieved the highest accuracy. Similar work has been conducted in six cities of China, where
the daily outputs of public weather forecasts were empirically converted into PM models, which
yielded RMSE values of 0.65–1.08 mm d−1 and MAE values of 0.63–0.84 mm d−1 in the future
7 days. Zhao et al. [49] attempted to use the GCMs output to forecast ET0 for the next 1–3
months in Australia, but the accuracy of this method needed to be improved. I drawback of this
approach is that it requires a lot of meteorological knowledge, because the output of numerical
meteorological forecast usually includes dozens of variables. How to select effective meteorological
factors is a complicated and arduous work. On the other hand, using time-series data to forecast
possible future results is also an interesting way to solve this problem. Karbasi [50] coupled GPR
with wavelet transfer technology to forecast 1–30 days ahead ET0 in Zanjan, Iran. The results
showed that new approach was better than the single GPR model. Mehdizadeh [51] compared
the accuracies of history weather data-based and lagged ET0 data-based models based on MARS
and GEP models in Iran. The found the lagged ET0 data-based models outperformed the former
one. Mohammadi et al. [52] developed a couple model based on SVM coupled with the whale
optimization algorithm (WOA) for ET0 prediction at three stations of Iran and found that it was
better than other models.

Floods and droughts have brought severe challenges to the sustainable economic development
in southern China, often causing losses to the personal safety and property of millions of people.
In terms of time, flood occurs mainly in spring and summer, while drought occurs mainly in late
summer and autumn. For example, in June 2019, rainfall-triggered floods have affected a total of
201.4 million people in the nine cities divided into districts in Jiangxi, with 231,000 people in need
of emergency relocation and living assistance. Crops have been affected by 137.2 thousand ha2,
with a total area of 15.6 million ha2 of crop died. Meanwhile, thousands of houses collapsed.
However, the droughts occurred in autumn and winter, which caused more than 5 million people
to be affected. Due to the drought, 845,000 people needed to be saved due to the lack of drinking
water. Crops were affected by 472.5 million ha2, and 85.6 million ha2 were lost, resulting in a
direct economic loss of 0.7 billion dollars.

As the best knowledge of the authors, studies on forecasting ET0 for the next season have
not been reported yet. The XGBoost model has multiple parameters that need to be tuned, and
traditional methods can get stuck in a regional optimal solution and fail to obtain a global
optimal solution. However, reports on optimizing XGBoost model parameters are also very lim-
ited, especially those using gray wolf optimization (GWO) [53], which is a powerful optimization
algorithm and has been used to optimize MLP [54], ANFIS [55], SVM [56], ELM [57] and Grey
model [58].Therefore, the objectives of this study are: (1) To evaluate whether it is feasible to
use historical time-series ET0 data for forecasting ET0 in the next 1–3 months in a humid region
of China based on four soft computing models, i.e., ANN, M5, XGB and GWO-XGB; (2) To
verify whether the GWO algorithm can improve the accuracy of standalone XGBoost model for
forecasting ET0.

2 Case Study

In this study, monthly meteorological data were collected from nine weather stations in South
China operated by the China Meteorological Administration (CMA) (Fig. 1). This region is char-
acterized by a subtropical monsoon climate [8]. Meteorological data including air temperature,
relative humidity, sunshine hours and wind speed were used to calculate ET0 using the FAO No.
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56 Penman–Monteith formula. Detailed information on meteorological data at the nine weather
stations can be found in Tab. 1. It is not difficult to see from Tab. 1 that the average ET0
at Station 58238 fluctuated greatly during training, testing and validation periods. Especially,
the validation period was significantly lower than the other two periods, which may affect the
prediction accuracy of the model. In addition, ET0 in South China has undergone drastic changes
from 1966 to 2015, mainly showing that ET0 was significantly lower than that in the 1960s and
1970s before and after 1990, and rebounded after 2000 [59], which may also have some impact
on ET0 forecasting.

Figure 1: Locations of the nine weather stations in South China

Table 1: Statistical results of ET0 (mm d−1) during various periods at the nine stations selected
for this study

ID Latitude
◦N

Langitude
◦E

Altitude
m

Rs MJ
m−2

d−1

Tmax
◦C

Tmin◦C
RH
%

U2
ms−1

ET0
mm d−1

57461 30.42 111.13 134.3 10.77 21.51 13.55 75.04 0.98 2.28
57494 30.37 114.06 27 12.03 21.36 13.23 76.68 1.38 2.45
57957 25.19 110.18 166.2 11.26 23.32 16.07 74.87 1.78 2.67
58238 31.93 118.49 12.5 12.47 20.49 11.88 74.93 1.86 2.50
58606 28.37 115.56 45.7 0.00 21.84 14.80 76.16 2.66 2.64
58847 26.05 119.17 85.4 12.09 24.61 17.00 75.16 1.92 2.89
59287 23.09 113.2 4.2 11.60 26.53 18.99 76.72 1.32 2.65
59316 23.24 116.41 7.3 13.69 25.53 18.98 79.26 1.81 2.95
59431 22.46 108.18 73.7 12.48 26.32 18.55 79.26 1.07 2.72
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3 Machine Learning Models for Monthly Reference Evapotranspiration Forecasting

3.1 Extreme Gradient Boosting (XGBoost)
XGBoost, proposed by Chen et al. [60], is a scalable soft computing algorithm for CART type

tree boosting. XGBoost model consists of multiple decision trees, each of which pays attention
to the residuals of the previous tree and USES the gradient algorithm to find a new decision
tree establishment method to reduce the residuals of model training. As seen in Fig. 2, previous
predictors are redeveloped to decrease the residuals during each iteration. The algorithm can
independently determine the types of loss functions used for model evaluation. To reduce the risk
of overfitting, different types of regular terms, e.g., L1 and L2 can be selected. The mean score
of each tree is used as the predictive value for classification or regression.

Figure 2: The structure of XGB model

For the m-th decision tree, its calculation formula can be expressed as:

ŷi =
m∑
i=1

fm (xi) , fm ∈W (1)

where m is the number of CART trees; fm is a function in the functional space W, and W is the
space of all CART trees.

The objective function of the model at the t-th iteration is written as follow:

Θ (t)=Φ (t)+Ω (t) (2)

Θ (t)=
n∑
i=1

Φ
(
yi, ŷi

)+
t∑

k=1

Ω (fm) (3)
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where n is the n-th prediction, and ŷ(t)
i can be given as:

ŷ(t)
i =

t∑
m=1

fm (xi)= ŷ(t−1)
i + ft (xi) (4)

The regularization term Ω (fk) for a CART tree is added by Chen et al. [60] as follows:

Ω (fk)= γT + 1
2
λ

T∑
j=1

w2
j (5)

where γ is the complexity of each leaf; T is the number of leaves in a tree; λ is a parameter to
scale the penalty and w is the vector of scores on the leaves. Then, the first-order as well as the
second-order Taylor expansions are taken to the loss function in XGBoost. Assuming that the
loss function is MSE, then the objective function can be written as:

Θ(t) ≈
n∑
i=1

[
giwq(xi) +

1
2

(
hiw2

q(xi)

)]
+ γT + 1

2

T∑
j=1

w2
j (6)

where q (·) is a function can assign data points to corresponding leaves; gi and hi are the first
and second derivative of MSE loss function respectively. In the formula (6), the loss function is
determined by the sum of loss values for each data sample. Since each data sample corresponds
to only one leaf node, the loss function can also be expressed as the sum of loss values for each
leaf node, which is:

Θ(t) ≈
T∑
j=1

⎡
⎣

⎛
⎝∑
i∈Ij

gi

⎞
⎠wj+ 1

2

⎛
⎝∑
i∈Ij

hi+λ

⎞
⎠w2

j

⎤
⎦+ γT (7)

where Ij represents all data samples in the leaf node j. Obviously, the objective function is equiv-
alent to finding the minimum value of the quadratic function. In short, the model performance
change caused by a node splitting in the CART tree can be evaluated according to the change
of objective function value. That is to say, if the model performance of decision tree after node
splitting is improved, then it is adopted; otherwise, the splitting will stop.

3.2 Gray Wolf Optimization
The gray wolf optimization (GWO) algorithm is a meta-heuristic optimization algorithm

proposed by Mirjalili et al. [53], which reflects the social system and group of gray wolf families
in nature body hunting behavior. The gray wolf community has a very strict social hierarchy. In
the system, wolves are usually divided into four levels: α, β, δ and ω, in which α wolf is the first
level, mainly responsible for overall decision-making; β is the second level, assisting α wolf to
make decisions; δ wolf is the third level, and needs to obey the decisions of α and β. The lowest
ranking wolves ω in the pack are the d wolves and they have to obey the higher ranking wolves.
According to the social hierarchy and hunting process of wolves, the mathematical model can be
defined and the optimal solution can be found.
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The optimal solution is defined as α and the second and third optimal solution are defined
as β and δ, respectively. The rest candidate solutions are defined as ω. The distance between the
individual and the prey in the Wolf pack is defined as D.

D= |CXP (t)−X | (8)

C = 2r1 (9)

where D is the current number of iterations, C is step length coefficient, XP (t) is prey location,
X is the location of a grey Wolf, r1 is a random number ranged in (0,1).

To shorten the distance between themselves and their prey, individuals in a pack are
constantly updated according to the following formula:

X (t− 1)=XP (t)−A ·D (10)

A= 2ar2− a (11)

where A is the convergence influence factor, which increases with the number of iterations from
2 to 0 by linear decrease; r2 is a random number ranged in (0,1).

Because α, β and δ have a high level in the wolves, so that they can carry more prey location
information, lead the pack gradually close to the hunting. They will now have three optimal
solutions to save and ignore other solution, and according to the three optimal solutions on the
location information to update the wolves, gradually finds the global optimal solution, the process
of updating is defined as follows:

Dα = |C1Xα (t)−X | (12)

Dβ = ∣∣C2Xβ (t)−X
∣∣ (13)

Dδ = |C3Xδ (t)−X | (14)

Based on the calculated distance α, β and δ carry out itself by the following formula which
correction of position as:

X1 =Xα −A1 ·Dα (15)

X2 =Xβ −A2 ·Dβ (16)

X3 =Xδ −A3 ·Dδ (17)

The remaining individuals in the pack will then be based on the joint decision of α, β and
δ. The next step to move the position shown in:

X (t− 1)= X1+X2+X3

3
(18)

To sum up, Grey Wolf Optimizer algorithm continuously updates the location search solution
space during the optimization process, and finally finds the optimal solution (Fig. 3).

3.3 Multi-Layer Perceptron (MLP)
Neural Networks architectures are the general term for a series of machine learning methods

based on the activation and transmission of information by simulated neurons. Most neural
networks have an input layer, certain hidden layers and an output layer. Among them, the most
popular is the single-hidden-layer neural networks, and one layer to another layer using activation
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function and summation function connection. In this study, we used a multilayer perceptron
(MPL) neural networks model, and the activation function used the sigmoid function [61].

Figure 3: The flow chart of the hybrid GWO-XGB model

3.4 M5 Model Tree (M5)
M5 model tree is a kind of decision tree that adopts linear regression function at leaf

node. This technique is very successful in predicting continuous values. It can be implemented
by adopting a standard method of transforming a classification problem into a functional opti-
mization problem. The model tree represents a piecewise linear function. Like a typical regression
equation, it predicts the value of a variable (called a class) by a set of independent variables called
attributes. The training data in table form can be directly used to construct the decision tree [62].
For a given data set, a typical linear regression algorithm can only give a single regression
equation, but the model tree divides the sample space into rectangular areas with parallel edges,
and determines a corresponding regression model for each partition.

The structure of the model tree is generated recursively, starting with the entire training
sample set. At each level of the model tree, the most discriminative attribute is selected as the
root node of the subtree, and the samples arriving at this node are divided into several subsets
according to the value of node attributes. Model tree algorithm is a global model combined with
a series of piecewise linear models. It differs from linear regression in that the input space is
divided automatically by the algorithm. It has the advantages of high efficiency, good robustness,
can be effective learning, can handle the input attributes up to several hundred dimensions.
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3.5 Model Setup and Parameter Optimization
In this study, the data were first divided into three groups, the first (1966–1995) for training

the models, the second (1996–2005) for testing the models, and the third (2006–2015) for vali-
dation and forecasting. The input meteorological combination consisted of Tmax, Tmin and ET0
during the previous period. Different from finding extremum of curve, error of ET0 simulation
cannot approach 0 in most cases, which will lead to overfitting problem. Normally, with other
parameters unchanged, the accuracy of XGBoost model will gradually decrease during the train-
ing period as the number of trees increases, while that of testing will first decrease and then
increase. Therefore, we chose the minimum MSE error during the test period as the objective
function to establish the model, and considered that the corresponding parameter value was the
most suitable parameter value at this time. Then, we used the data in the third part (2006–
2015) to evaluate the prediction ability of the model. We used the R3.4.2 platform with packages
named RSNNS, Rpart, and xgboost for model implementation. Three parameters were optimized,
including the number of trees (nrounds), [50, 1500]; the ratio of sub datasets to all data for
training the model (subset), [0.5, 1]; and the minimum sum of instance weight needed in a child
(min_child_weight), (1, 15). The GWO algorithm had only two parameters, namely the number
of population and the number of iterations, which were set as 50 and 500, respectively.

3.6 Performance Criteria
The performance of the four soft computing model’s efficiency, including accuracy and agree-

ment, was evaluated using statistical criteria, such as RMSE, NSE and MAE. The evaluation
criteria of RMSE and MAE are common mean error indicators that indicate how close data
points are to a best fit line. The main difference between RMSE and MAE is that the point with
large error has more weight than the point with small error, while MAE pays more attention to
the average error performance. According to Nash et al. [63], “the NSE is defined as the sum of
the absolute squared differences of the observed and estimated data normalized by the variance
minus one.” As determined by Krause [64], the NSE value ranges 1 to −∞. When NSE is close
to 1, it means that the model performs well.

RMSE =

√√√√ n
Σ
i=1

(PMET0−ET0s)
2

n
(19)

NSE = 1−
n
Σ
i=1

(ET0PM −ET0s)
2

n
Σ
i=1

(
ET0PM −ET0PM

)2 (20)

MAE =
n
Σ
i=1

|PMET0 −ET0s|
n

(21)

where ET0s, ET0PM are model estimated ET0 and ET0 calculated by the FAO56 PM equation,
respectively. ET0PM is the average of ET0 calculated by the FAO56 PM equation.

4 Results and Discussion

The forecasting ability of the hybrid GWO-XGB model for reference evapotranspiration at
different time steps (1, 2 and 3-month) was evaluated. The GWO-XGB model was compared by
three models, i.e., M5, MLP and XGB models.
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Table 2: Statistical indicators of four soft computing models for 1-month ahead reference evapo-
transpiration forecasting at nine meteorological stations

Station Model Training Testing Validation

RMSE NSE MAE RMSE NSE MAE RMSE NSE MAE
mm d−1 mm d−1 mm d−1 mm d−1 mm d−1 mm d−1

57461 M5 0.372 0.890 0.274 0.378 0.878 0.296 0.385 0.868 0.291
MLP 0.418 0.862 0.314 0.366 0.886 0.287 0.371 0.878 0.286
XGB 0.349 0.904 0.258 0.371 0.883 0.295 0.371 0.878 0.285
GWO-XGB 0.368 0.893 0.274 0.350 0.896 0.278 0.370 0.878 0.286

57494 M5 0.446 0.879 0.314 0.424 0.871 0.315 0.430 0.885 0.311
MLP 0.480 0.865 0.342 0.386 0.892 0.296 0.431 0.885 0.317
XGB 0.380 0.915 0.271 0.419 0.874 0.299 0.437 0.882 0.319
GWO-XGB 0.450 0.882 0.324 0.373 0.900 0.287 0.435 0.883 0.319

57957 M5 0.392 0.849 0.300 0.486 0.771 0.368 0.430 0.833 0.335
MLP 0.448 0.808 0.342 0.470 0.786 0.355 0.431 0.832 0.344
XGB 0.357 0.878 0.276 0.433 0.819 0.321 0.405 0.852 0.323
GWO-XGB 0.358 0.877 0.277 0.411 0.836 0.310 0.401 0.855 0.317

58238 M5 0.392 0.892 0.273 0.411 0.876 0.304 0.546 0.803 0.416
MLP 0.437 0.868 0.307 0.372 0.899 0.278 0.507 0.830 0.374
XGB 0.350 0.916 0.247 0.441 0.857 0.324 0.566 0.788 0.430
GWO-XGB 0.384 0.898 0.271 0.409 0.877 0.308 0.539 0.808 0.412

58606 M5 0.415 0.889 0.298 0.513 0.806 0.371 0.475 0.856 0.359
MLP 0.521 0.828 0.388 0.536 0.789 0.385 0.525 0.825 0.381
XGB 0.376 0.911 0.284 0.476 0.833 0.348 0.438 0.878 0.340
GWO-XGB 0.384 0.907 0.284 0.465 0.841 0.339 0.445 0.874 0.345

58847 M5 0.417 0.865 0.319 0.474 0.825 0.356 0.473 0.832 0.368
MLP 0.540 0.773 0.405 0.523 0.786 0.377 0.542 0.779 0.410
XGB 0.382 0.887 0.299 0.516 0.792 0.386 0.472 0.832 0.365
GWO-XGB 0.389 0.883 0.303 0.467 0.830 0.347 0.441 0.854 0.349

59287 M5 0.361 0.787 0.284 0.395 0.724 0.298 0.439 0.724 0.349
MLP 0.453 0.673 0.373 0.407 0.708 0.320 0.429 0.736 0.341
XGB 0.330 0.827 0.265 0.386 0.738 0.289 0.435 0.729 0.349
GWO-XGB 0.348 0.807 0.282 0.360 0.771 0.280 0.423 0.743 0.338

59316 M5 0.348 0.840 0.266 0.489 0.716 0.387 0.496 0.744 0.386
MLP 0.413 0.776 0.316 0.427 0.782 0.314 0.453 0.786 0.349
XGB 0.316 0.869 0.246 0.463 0.745 0.345 0.442 0.797 0.332
GWO-XGB 0.330 0.857 0.260 0.437 0.772 0.329 0.422 0.814 0.321

59431 M5 0.354 0.882 0.272 0.364 0.852 0.281 0.398 0.849 0.304
MLP 0.392 0.855 0.313 0.375 0.843 0.296 0.359 0.877 0.277
XGB 0.328 0.899 0.252 0.344 0.868 0.268 0.374 0.866 0.292
GWO-XGB 0.346 0.887 0.260 0.339 0.872 0.262 0.388 0.856 0.310

4.1 1-Month Ahead Forecasting
Tab. 2 shows the statistical indicators of the GWO-XGB hybrid model as well as the three

single soft computing models (M5, MLP and XGB) for forecasting 1-month ahead reference
evapotranspiration. The results during training and testing periods were compared to observe
whether the model was over-fitted or under-fitted. The validation period was used to evaluate
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the prediction ability of the model for independent datasets. Overall, RMSE, NSE and MAE
values of the four soft computing models ranged 0.316–0.540 mm d−1, 0.673–0.916, 0.246–
0.405 mm d−1 in the training stage, and corresponding values ranged 0.339–0.536 mm d−1,
0.708–0.900, 0.262–0.387 mm d−1 in the testing stage, respectively. It can be concluded that there
were no significant over-fitting or under-fitting. In addition, for the forecasting of 1-month ahead
ET0, GWO-XGB model provided the best result with RMSE= 0.350 mm d−1, NSE= 0.896 and
MAE = 0.278 mm d−1 in the testing stage at Station 57461. However, MLP, XGB and GWO-
XGB models had similar performances with average RMSE = 0.370 mm d−1, NSE = 0.878 and
MAE= 0.286 mm d−1. On the other hand, the M5 model was slightly worse than the other three
models with RMSE= 0.385 mm d−1, NSE= 0.868 and MAE= 0.291 mm d−1. At Station 57494,
the GWO-XGB model also attained the best result among the four models in the testing stage
(RMSE = 0.373 mm d−1, NSE = 0.900 and MAE = 0.287 mm d−1), while the M5 model was
slightly better than the other models in the validation stage with RMSE= 0.430 mm d−1, NSE=
0.885 and MAE= 0.311 mm d−1. At Stations 57957, 58606, 58847 and 59287, GWO-XGB model
was superior to the other models, with RMSE ranging 0.360–0.467 and 0.401–0.445 mm d−1,
NSE ranging 0.771–0.840 and 0.743–0.874, MAE ranging 0.280–0.347 and 0.317–0.349 mm d−1

in the testing and validation stages, respectively. In addition, the GWO-XGB model yielded the
best results at Station 59316 in the validation stage with RMSE = 0.422 mm d−1, NSE = 0.814
and MAE = 0.321 mm d−1. However, the MLP model had the best results at Stations 58238
and 59431.

The comparison of forecasted ET0 value and PM ET0 values by different soft computing
models in each month and the error fluctuation of each month are presented in Figs. 4–7. It can
be seen that all the four models well described the fluctuation of ET0 in different seasons. The
errors of each model mainly came from the underestimation of peak values. It should be noted
that this underestimation was common in all four models, with an error of up to 1.5 mm d−1

in extreme years, and may increase water stress in use. Overall, it can be concluded that the
GWO-XGB model performed better than the other models, followed by the MLP model.

4.2 2-Month Ahead Forecasting
Tab. 3 shows the statistical indicators of the GWO-XGB hybrid model as well as three single

soft computing models (M5, MLP and XGB) for forecasting 2-month ahead reference evapotran-
spiration. As shown in Tab. 3, similar to the forecasting of 1-month ahead ET0, there were no
obvious over-fitting and under-fitting problems in the four soft computing models for forecasting
2-month ahead ET0. At Station 58238, MLP model yielded the best accuracy with RMSE= 0.383
mm d−1, NSE = 0.983 and 0.284 mm d−1 in the testing stage, and the corresponding values in
the validation stage were 0.532 mm d−1, 0.813 and 0.398 mm d−1, respectively. Besides, the M5
model showed the same RMSE and NSE as well as slightly worse MAE than the MLP model
in the validation stage. At Stations 57494 and 58606, XGB model was superior to the other
models with RMSE= 0.443 and 0.432 mm d−1, 0.878 and 0.881, 0.315 and 0.333 mm d−1 in the
validation stage. At the other six stations, the GWO-XGB model was more accurate in both the
testing and validation stages with RMSE ranging 0.327–0.459 mm d−1 and 0.355–0.454 mm d−1,
NSE ranging 0.778–0.901 and 0.733–0.888, MAE ranging 0.254–0.345 mm d−1 and 0.276–0.360
mm d−1. It can be concluded that the GWO-XGB model performed best, followed by the
XGB model.
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Figure 4: Comparison of forecasted ET0 value and the PM ET0 values by ANN model in each
month and the error fluctuation of each month
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Figure 5: Comparison of forecasted ET0 value and the PM ET0 values by M5 model in each
month and the error fluctuation of each month
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Figure 6: Comparison of forecasted ET0 value and the PM ET0 values by XGB model in each
month and the error fluctuation of each month
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Figure 7: Comparison of forecasted ET0 value and the PM ET0 values by GWO-XGB model in
each month and the error fluctuation of each month
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Table 3: Statistical indicators of four soft computing models for 2-month ahead reference evapo-
transpiration forecasting at nine meteorological stations

Station Model Training Testing Validation

RMSE NSE MAE RMSE NSE MAE RMSE NSE MAE
mm d−1 mm d−1 mm d−1 mm d−1 mm d−1 mm d−1

57461 M5 0.392 0.877 0.287 0.371 0.883 0.287 0.365 0.882 0.271
MLP 0.429 0.855 0.314 0.369 0.884 0.281 0.384 0.869 0.291
XGB 0.361 0.897 0.265 0.374 0.881 0.281 0.362 0.883 0.277
GWO-XGB 0.383 0.884 0.283 0.341 0.901 0.264 0.355 0.888 0.276

57494 M5 0.469 0.867 0.325 0.407 0.881 0.298 0.423 0.889 0.307
MLP 0.510 0.848 0.367 0.386 0.893 0.288 0.481 0.857 0.352
XGB 0.415 0.899 0.299 0.374 0.899 0.278 0.443 0.878 0.315
GWO-XGB 0.447 0.883 0.319 0.367 0.903 0.276 0.448 0.876 0.319

57957 M5 0.390 0.851 0.298 0.459 0.796 0.350 0.404 0.853 0.318
MLP 0.469 0.790 0.361 0.489 0.769 0.358 0.472 0.799 0.388
XGB 0.364 0.873 0.278 0.461 0.795 0.349 0.411 0.847 0.318
GWO-XGB 0.358 0.877 0.274 0.447 0.807 0.345 0.406 0.851 0.319

58238 M5 0.412 0.881 0.288 0.404 0.880 0.304 0.532 0.813 0.414
MLP 0.447 0.862 0.315 0.383 0.893 0.284 0.532 0.813 0.398
XGB 0.366 0.908 0.258 0.406 0.879 0.300 0.563 0.790 0.424
GWO-XGB 0.395 0.892 0.279 0.398 0.884 0.302 0.543 0.805 0.416

58606 M5 0.409 0.892 0.303 0.520 0.801 0.375 0.445 0.874 0.340
MLP 0.534 0.820 0.399 0.515 0.805 0.365 0.514 0.831 0.383
XGB 0.394 0.902 0.288 0.484 0.827 0.344 0.432 0.881 0.333
GWO-XGB 0.429 0.884 0.309 0.459 0.844 0.329 0.452 0.870 0.351

58847 M5 0.483 0.819 0.349 0.532 0.779 0.386 0.525 0.792 0.411
MLP 0.601 0.720 0.452 0.572 0.745 0.422 0.584 0.743 0.447
XGB 0.399 0.877 0.305 0.504 0.802 0.378 0.493 0.817 0.389
GWO-XGB 0.421 0.862 0.323 0.459 0.836 0.342 0.445 0.851 0.360

59287 M5 0.346 0.804 0.268 0.390 0.732 0.308 0.439 0.724 0.366
MLP 0.448 0.681 0.359 0.365 0.765 0.285 0.450 0.710 0.382
XGB 0.326 0.831 0.252 0.366 0.763 0.286 0.459 0.698 0.378
GWO-XGB 0.353 0.801 0.280 0.327 0.811 0.254 0.432 0.733 0.358

59316 M5 0.373 0.816 0.284 0.482 0.724 0.368 0.490 0.750 0.372
MLP 0.437 0.749 0.334 0.454 0.754 0.348 0.488 0.752 0.393
XGB 0.338 0.850 0.259 0.475 0.731 0.364 0.472 0.768 0.363
GWO-XGB 0.361 0.829 0.279 0.432 0.778 0.326 0.454 0.785 0.355

59431 M5 0.392 0.877 0.287 0.371 0.883 0.287 0.365 0.882 0.271
MLP 0.429 0.855 0.314 0.369 0.884 0.281 0.384 0.869 0.291
XGB 0.361 0.897 0.265 0.374 0.881 0.281 0.362 0.883 0.277
GWO-XGB 0.383 0.884 0.283 0.341 0.901 0.264 0.355 0.888 0.276

4.3 3-Month Ahead Forecasting
Tab. 4 shows the statistical indicators of the GWO-XGB hybrid model as well as three

single soft computing models (M5, MLP and XGB) for forecasting 3-month ahead ET0. Similar
to the forecasting of 1, 2-month ahead ET0, there were no obvious over-fitting and under-
fitting problems in the four soft computing models for forecasting 3-month ahead. Based on the



716 CMES, 2020, vol.125, no.2

tabulated results, the GWO-XGB model performed best at Station 57461 in the testing stage, while
the MLP model had the highest accuracy in terms of statistical indicators in the validation stage.
Similar results occurred at Station 57957, where the M5 model performed slightly better than the
GWO-XGB model based on the MAE value in the validation stage. At the other stations, the
GWO-XGB model was generally superior to the other three models with RMSE ranging 0.388–
0.540 mm d−1, NSE ranging 0.734–0.872, 0.303–0.423 mm d−1 at the validation stage. Overall,
the GWO model performed best, while the other three models were close to each other.

Table 4: Statistical indicators of four soft computing models for 3-month ahead reference evapo-
transpiration forecasting at nine meteorological stations

Station Model Training Testing Validation

RMSE NSE MAE RMSE NSE MAE RMSE NSE MAE
mm d−1 mm d−1 mm d−1 mm d−1 mm d−1 mm d−1

57461 M5 0.356 0.881 0.270 0.381 0.838 0.280 0.458 0.800 0.337
MLP 0.398 0.851 0.320 0.385 0.835 0.288 0.380 0.862 0.307
XGB 0.333 0.895 0.257 0.361 0.855 0.277 0.407 0.841 0.315
GWO-XGB 0.374 0.868 0.280 0.337 0.874 0.259 0.398 0.848 0.322

57494 M5 0.389 0.879 0.277 0.393 0.869 0.303 0.361 0.884 0.279
MLP 0.429 0.855 0.309 0.361 0.889 0.284 0.363 0.883 0.279
XGB 0.360 0.898 0.264 0.384 0.874 0.297 0.355 0.888 0.270
GWO-XGB 0.388 0.881 0.284 0.358 0.891 0.278 0.351 0.891 0.270

57957 M5 0.477 0.862 0.326 0.420 0.873 0.312 0.451 0.874 0.324
MLP 0.510 0.848 0.361 0.417 0.875 0.330 0.453 0.873 0.337
XGB 0.434 0.890 0.301 0.421 0.873 0.312 0.446 0.877 0.326
GWO-XGB 0.509 0.848 0.354 0.365 0.904 0.274 0.451 0.874 0.331

58238 M5 0.420 0.827 0.315 0.440 0.813 0.342 0.426 0.836 0.339
MLP 0.542 0.719 0.409 0.550 0.707 0.415 0.502 0.773 0.409
XGB 0.387 0.856 0.291 0.444 0.810 0.336 0.401 0.855 0.310
GWO-XGB 0.384 0.859 0.290 0.432 0.820 0.329 0.388 0.865 0.303

58606 M5 0.406 0.884 0.280 0.423 0.869 0.316 0.550 0.800 0.417
MLP 0.440 0.866 0.311 0.403 0.881 0.297 0.545 0.804 0.414
XGB 0.362 0.910 0.259 0.421 0.870 0.302 0.546 0.803 0.423
GWO-XGB 0.361 0.910 0.257 0.402 0.881 0.293 0.540 0.807 0.423

58847 M5 0.439 0.876 0.321 0.515 0.805 0.366 0.532 0.820 0.388
MLP 0.523 0.827 0.394 0.539 0.786 0.395 0.495 0.844 0.376
XGB 0.389 0.905 0.290 0.506 0.811 0.352 0.452 0.870 0.346
GWO-XGB 0.421 0.888 0.311 0.475 0.834 0.339 0.471 0.859 0.365

59287 M5 0.424 0.860 0.321 0.545 0.768 0.413 0.443 0.852 0.354
MLP 0.528 0.784 0.404 0.500 0.805 0.384 0.494 0.816 0.376
XGB 0.392 0.881 0.299 0.502 0.803 0.381 0.421 0.866 0.335
GWO-XGB 0.416 0.866 0.318 0.477 0.823 0.356 0.412 0.872 0.321

59316 M5 0.355 0.794 0.280 0.425 0.681 0.326 0.471 0.682 0.372
MLP 0.556 0.508 0.433 0.455 0.635 0.369 0.520 0.613 0.422
XGB 0.348 0.808 0.273 0.384 0.740 0.304 0.426 0.740 0.344
GWO-XGB 0.378 0.773 0.297 0.375 0.751 0.300 0.431 0.734 0.341

59431 M5 0.373 0.816 0.281 0.531 0.664 0.424 0.452 0.787 0.348
MLP 0.451 0.733 0.357 0.435 0.775 0.335 0.468 0.772 0.370
XGB 0.343 0.846 0.260 0.511 0.689 0.397 0.454 0.785 0.356
GWO-XGB 0.362 0.828 0.280 0.461 0.747 0.359 0.438 0.800 0.354
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4.4 Model Evaluation in Each Month
Plants have different water requirements in different seasons, especially in summer and

autumn. Therefore, taking RMSE value as an example, we evaluated the performances of various
models for forecasting ET0 in summer and autumn at the nine stations (Fig. 8). As shown in
Fig. 8, the data fluctuated in different models and at various forecasting time steps of monthly
ET0. I MLP model performed best in summer, especially for forecasting 1-month ahead ET0,
where the median values and lower-quartile values of RMSE were significantly lower than those
of the other models. In addition, the median values of RMSE for forecasting 2- and 3-month
ahead ET0 were also lower than those of the other models. However, the MLP model performed
worst in summer; particularly, the upper quartile line of RMSE exceeded 0.7 mm d−1, followed
by the M5 model. The GWO-XGB model attained the lowest RMSE for forecasting 2-month
ahead ET0 in autumn. In other cases, the GWO-XGB model showed similar results to the XGB
model. The inspiration from the above was that different models could be considered for different
seasons, namely, MLP model in summer and GWO-XGB model in autumn. Huang et al. [65]
evaluated the CatBoost model, random forest and support vector machines for prediction of
ET0. In their study, meteorological data from 2001 to 2015 were collected from 12 stations in
humid regions of China and eight input combinations were investigated to find the suitable
model with limited data. The RMSE was 0.35 mm d−1 with maximum temperature, minimum
temperature, global solar radiation as inputs and 0.52 mm d−1 with maximum temperature,
minimum temperature, wind speed and relative humid as inputs. It is worth mentioning that
historical meteorological data are used as inputs, and the errors will further increase if numerical
weather forecasting data are used as inputs. This indicates that the error of this study is within
the appropriate and applicable range.

Figure 8: Accuracy performance of different models in the seasons of summer and autumn at the
nine stations
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5 Discussion

Accurate forecasting of ET0 in the future is of great significance for hydrological simula-
tion, water resource management and agricultural water management. A higher accuracy can
be obtained by using future weather forecasts; however, this method usually increases the error
significantly after 7d [47,66,67]. Karbasi [50] developed a hybrid model of the Gaussian Process
Regression (GPR) and Wavelet-GPR to forecast multi-step ahead daily (1–30 days ahead) refer-
ence evapotranspiration in Iran. I obtained RMSE values by the models ranged from 0.068 mm/d
to 0.816 mm/d from 1 to 30 days. Zhao et al. [49] proposed a post-processing method for 1–3
month ET0 forecasting based on GCM outputs, which has obvious advantages over the original
method. The RMSE dropped from 0.83–0.97 mm/d (GCM) to 0.34–0.76 mm/d with the new
approach at Aero Station in Townsville, Australia. In this study, we proposed a method to predict
1–3 month ET0 ahead based on historical ET0 in a humid region of China, and the method also
obtained good accuracy.

Boosting model is a new method based on decision tree, which uses boosting thought to
integrate decision tree. Compared with the earlier random forest model based on bagging method,
XGBoost model had a great advantage in running speed and a slight improvement in accuracy
and controlling overfitting [14,68–71].

The machine learning model needs parameters based on the dataset. A lot of research
showed that heuristic algorithms can improve the accuracy and stability of machine learning
models [7,72,73]. Similar results have been obtained in this study, where GWO improved the
stability of XGBoost models and slightly improve the accuracy of the GWO model. The dis-
advantage is that it takes more time to adjust parameters. If the standalone XGB model uses
grid search to determine the most appropriate model parameters, only a few hundred parameters
are needed. However, the GWO-XGB model needs 25,000 parameters in this study, which takes
hundreds of times more than the standalone XGB model. The next research goal is to use new
techniques to speed up the efficiency of parameter tuning, such as parallel algorithms, to save the
time required for parameter tuning.

Meteorological factors such as temperature and solar radiation change dramatically in four
seasons of the year, resulting in huge differences in ET0 among the seasons. For models like
MLP, the algorithm itself has only one model, which may be more prone to the problem of
unbalanced performance in different seasons. Similar results also occurred in Sichuan, China as
found by Feng et al. [36]. Models such as XGBoost method, which have multiple sub-models, can
build more specific models for different seasons, and combine all of them together so that the
differences among the seasons are more balanced.

6 Conclusions

The forecasting of several months ahead reference evapotranspiration is helpful in water
resources management and allocation for irrigated areas. This study investigated and compared
the performance of the XGBoost model hybridized with the Grey Wolf Optimization algorithm,
along with three traditional models, e.g., single XGBoost, ANN and M5 models for forecasting
1–3 month ahead ET0. The meteorological data obtained from nine stations in different sub-
tropical zones were used as inputs for training, testing and validating the above models. The
results showed that the newly developed GWO-XGBoost was a reliable and stable approach
for ET0 forecasting. To forecast future 1–3 month ahead, the GWO-XGBoost model had the
smallest error in the validation stage, with RMSE = 0.431 mm d−1, NSE = 0.840 and MAE =
0.335 mm d−1, followed by the XGBoost model with RMSE= 0.438 mm d−1, NSE= 0.842 and
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MAE = 0.338 mm d−1, respectively. The MLP model was the worse model in this study, with
RMSE = 0.465 mm d−1, NSE = 0.811 and MAE = 0.359 mm d−1. However, the error of the
MLP model was the smallest in summer among the four models.
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