
echT PressScienceComputer Modeling in Engineering & Sciences
DOI:10.32604/cmes.2020.09361

Article

An Effective Non-Commutative Encryption Approach with
Optimized Genetic Algorithm for Ensuring Data Protection in

Cloud Computing

S. Jerald Nirmal Kumar1,*, S. Ravimaran2 and M. M. Gowthul Alam3

1Anna University, Chennai, 600025, India
2M.A.M College of Engineering, Trichy, 621105, India

3Sethu Institute of Technology, Virudhunagar, 626115, India
∗Corresponding Author: S. Jerald Nirmal Kumar. Email: jeraldcse@gmail.com

Received: 06 December 2019; Accepted: 24 August 2020

Abstract:Nowadays, succeeding safe communication and protection-sensitive
data from unauthorized access above public networks are the main worries
in cloud servers. Hence, to secure both data and keys ensuring secured data
storage and access, our proposed work designs a Novel Quantum Key Dis-
tribution (QKD) relying upon a non-commutative encryption framework. It
makes use of a Novel Quantum Key Distribution approach, which guaran-
tees high level secured data transmission. Along with this, a shared secret
is generated using Diffie Hellman (DH) to certify secured key generation at
reduced time complexity. Moreover, a non-commutative approach is used,
which effectively allows the users to store and access the encrypted data
into the cloud server. Also, to prevent data loss or corruption caused by
the insiders in the cloud, Optimized Genetic Algorithm (OGA) is utilized,
which effectively recovers the data and retrieve it if the missed data without
loss. It is then followed with the decryption process as if requested by the
user. Thus our proposed framework ensures authentication and paves way
for secure data access, with enhanced performance and reduced complexities
experienced with the prior works.

Keywords: Cloud computing; quantum key distribution; Diffie Hellman;
non-commutative approach; genetic algorithm; particle swarm optimization

1 Introduction

In our day-to-day life, cloud computing is widely used to carry out huge data storage with
varied cloud services. Whereas, the Cloud Service Provider (CSP) enables distributed shared
services in which the shared resources are accessible to its users on a pay-as-you-go basis. The
cloud services are: Platform as a Service (PaaS), Software as a Service (SaaS), and Infrastructure
as a Service (IaaS) [1]. Though it offers tremendous storage to its users, there are several
barriers to protect the data/information that is stored in the cloud, some of them are: vendor
lock-in, reliability, privacy, pricing, interoperability, and the most significant factor to mention,
safety [2]. Security is one of the main issues that decrease the espousal of cloud computing.

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmes.2020.09361


672 CMES, 2020, vol.125, no.2

Organizations that use the cloud for various service designs deployment models are highly suffered
from security threats such as insider attacks, eavesdroppers, etc. The threats are categorized
based on the security problems experienced by cloud providers and security issues experienced by
their clients [3].

The user most agrees that the main issues in this cloud infrastructure are confidentiality,
integrity, and authentication. In several years, many authentication schemes have been introduced.
In this way, most researchers agree that cloud infrastructure needs fresh methods to deliver
security. Public Key Infrastructure (PKI) deployment is currently a major solution [4]. PKI
involving the exchange of keys to an authenticated user in the cloud facilities using certificates via
government channel. However, there is some problem with PKI authentication where the public
key cryptography provides computational security only because PKI is based on Asymmetric
Key Cryptography [5]. Cloud computing offers the next generation of internet-based, extremely
scalable distributed computing systems offering as a service computing resource [6]. Quantum
Key Distribution (QKD) makes use of quantum mechanics to guarantee secure communication.
It is used only to produce and distribute a key. A quantum key can be used with any encryption
algorithm to encrypt and decrypt a message. QKD is simple to use. It requires fewer resources
to maintain it [7]. Quantum Key Distribution (QKD) has characteristics that are uncondition-
ally safe compared to traditional cryptography. However, the conventional QKD suffers from
computational complexity [8,9].

To make the QKD key sharing more quickly, photon detectors and time synchronization
techniques are updated. Concerning key distribution speed, it is accounted for that the quickest
key sharing rate of QKD in a real fiber condition is 304 kbps and adequate for running a
safe TV conference application [10]. Be that as it may, when applications demand higher speed
correspondence or when numerous applications run at the same time, a genuine deficiency of
keys could happen. QKD key sharing is restricted to point-to-point links and the correspon-
dence separation is likewise constrained to many kilometers in light of the trouble of photon
identification [11]. A practical approach for conquering the constraint is to organize QKD to
hand-off key information. This systems administration approach empowers every hub on the
system to trade keys with an arbitrary node on a similar system regardless of the distance.
QKD system field preliminaries and research have been directed around the world, defeating the
distance constraint [12,13].

From the protocol point of view, standard secure communication frameworks utilize standard
protocols, for example, IPsec [14] and Transport Layer Security (TLS) [15] in much of the time.
These protocols perform standard open cryptographic key-based key exchanges, for example, RSA
or Diffie–Hellman (DH). To coordinate QKD into these standard protocols, the keys produced
by QKD ought to be put away and conveniently provided to these protocols.

From the library usage point of view, standard secure communication applications utilize
standard library executions, for example, OpenSSL [16] and APIs. To limit the turn of events
or adjustment cost of the applications, and indistinguishable API ought to be given to the
applications, even for the situation that a safe specialized technique is incorporated with QKD.
It makes it simple to port existing secure communication applications created with the OpenSSL
library to QKD prepared applications.

From the functionality viewpoint, the QKD key sharing rate restriction and the speed variety
relying upon the optical fiber condition ought to be considered [17]. These may cause a lack of
keys, wherein case, the applications need to trust that enough keys will be shared and put away



CMES, 2020, vol.125, no.2 673

by QKD, bringing about serious handling delays for applications. Here, we look at the QKD
key-based secure data storage and standard secure communication. QKD key-based secure data
storage gives profoundly secure communication that can be viewed as data hypothetically secure.
In any case, the QKD key-based secure communication may cause communication postpones
when beginning secure communication for the situation that there is a deficiency of stored keys.
On the other hand, standard secure communication performs key sharing (key exchange) for
each safe communication without a moment’s delay dependent on DH or RSA that isn’t viewed
as data hypothetically secure. Nonetheless, the standard secure communication forces no critical
confinement on key sharing speed. There are practically no handling delays for the applications
beginning secure communication. As clarified above, concerning the data hypothetically secure
element and the real-time element of secure communication, there is an exchange off between the
QKD key-based secure communication and the standard secure communication.

Thus, while on transmitting, storing and retrieving data from the cloud, the cloud fails to
ensure security and privacy. Whenever a user uploads the data, attackers such as malware, Trojans,
virus, etc., play a vital role in destroying or altering the contents/information in the data, which is
uploaded by the user. If the data is successfully uploaded to the cloud without any interruption,
there arises some security issues with the third party, who provides access rights to the user
whenever he/she requests for the stored data/information. Moreover, intruders such as insider
attackers in the cloud may destroy the data and causes data losses too. Hence the researchers
focused on some data recovery techniques such as HSDRT, PCS, ERGOT, Linux Box, Cold and
Hot back-up technique, SBBR, but the thing is the implementation cost for such techniques is
high and complex. Due to these reasons, the cloud has lost its total security and seems to be
unreliable to the user. All these security threats lead the cloud storage as an unreliable one with
high time and cost complexity resulting in poor performance.

Hence to handle those issues discussed above in this section, innovation is required in the
field of cloud computing to ensure security and privacy for the data stored in the cloud. Thus to
tackle the above scenarios, this article seeks to propose a novel Quantum Key Distribution relying
upon a non-commutative encryption framework to ensure secured data storage and accessing of
the varied cloud resources by fixing all those security threats with reduced computation overheads.

The rest of the paper is organized as follows: A detailed review of prior methodologies is
discussed in Section 2; Section 3 describes a brief narration about the proposed methodology and
Section 4 analyses the performance of the proposed framework and compares its efficiency with
the prior techniques to prove its strength against the security threats. Finally, Section 5 concludes
the proposed work, which is followed by references.

2 Related Researches

In this section a detailed review about various non-commutative encryption methodologies is
discussed in detail as follows:

Kumar et al. [18] introduced an Elliptic Curve Cryptography (ECC) utilized on the Non-
Commutative Cryptographic (NCC) standards. The security and qualities of the original copy
were flexible on these two cryptographic suppositions. Theoretically, the proposed approach
is working. The organization’s concerns for applications are on high demand, designing for
accelerating the algorithms, likewise in the tremendous of security, is in gigantic demand.

Misra et al. [19] introduced a three-party key agreement protocol utilizing CSP and BDP
that opposes all the security dangers and gives key confirmation. It is secure and effective for the



674 CMES, 2020, vol.125, no.2

three-party EHR frameworks. Braid groups are stronger than abelian groups for security perspec-
tive and yet, simple to design. This one of a kind component makes them appropriate for the
EHR framework. The future extent of this paper is extremely rich as it proposes security answers
for the most recent issue. The job of cryptography is to keep intruders shocked constantly to
give secure communication. The developed nations have made numerous strides for EHR security
however in India it is in the child stage. The idea is that the protocol itself gives authentication
and key agreement so the wireless exchange of this sensitive data stays secure with no outsider
in any event when the correspondence channel is unsecure.

El-Yahyaoui et al. [20] introduced another practical fully homomorphic encryption scheme. It
is a symmetric, noise-free and probabilistic cryptosystem, for which the cipher-text space is a non-
commutative ring quaternionic based. It is a productive and practical plan whose security depends
on the issue of solving an over-characterized arrangement of quadratic multivariate polynomial
equations in a non-commutative ring. This cryptosystem isn’t execute to confirm its security.

Gu et al. [21] proposed an NTRU-type public key cryptosystem over the binary field, whose
security depends on the computational intractability on the DUSPR issue. The proposed NTRU-
type public key cryptosystem over Z2 is generally practical. Although it neglects to prove the
feasibility and security of digital signature and authentication through leading NTRU-type public
key cryptosystem over the binary field.

Bagheri et al. [22] present an NTRU-like public-key cryptosystem dependent on the quater-
nion algebras and bivariate polynomials. It diminishes the size of the private keys without
violating the framework security and utilize larger messages. Thus, message protection is feasible
through larger polynomials expanding message security. Also, message protection is possible
through larger polynomials and this permits us to acquire a similar security level as other
NTRU-like cryptosystems but utilizing lower dimensions.

Accordingly, during the processes of data transmission, storage and accessing the users
are forced to fall under several authentications oriented issues, which highly affect the sys-
tem reliability and confidentiality. Henceforth, to overwhelm all these issues, a need for novel
secured methodology is raised to achieve effective data storage as well as access throughout the
cloud environment.

3 Novel Quantum Key Distribution Relying Non-Commutative Encryption Framework

In this section, an authentication structure dependent on quantum identity authentication for
cloud computing architecture is proposed. A few authentication protocols for cloud computing
have been proposed, however, utilizing the QKD authentication is novel. In light of the inviolable
laws of quantum mechanics, the proposed protocol is secure as though an eavesdropper watches
the information being transmitted will genuinely change the content of a portion of the bits
and is in this manner, detectable. The proposed protocol comprises of four stages, for example,
Registration, Login, Authentication and data recovery stage.

A Novel Quantum Key Distribution relying on Non-Commutative Encryption framework is
designed in this work to tackle the above-mentioned issues experienced with the prior methodolo-
gies. It effectively guarantees a high level secured data transmission; this in turn simultaneously
reduces the computation as well as communication complexities. For that, a Novel Quantum Key
Distribution approach is utilized. The process flow of our proposed framework is exposed with
the aid of Fig. 1.



CMES, 2020, vol.125, no.2 675

Figure 1: Proposed overall block diagram



676 CMES, 2020, vol.125, no.2

3.1 Registration Phase
To register with the Server Jd user Rd sends a unique identification Gd to the cloud server.

Jd Creates a unique password Qd for users Rd after receiving a registration request from the user.
Fig. 2 shows the user registration procedure. The steps of the registration procedure are described
as follows.

Figure 2: Registration phase

Step 1: User→ Server: The user sends his unique identification to the server via a secure channel.

Rd
unique identification→ Gd (1)

Step 2: After receiving the information, the cloud server Jd computes the parameters of the
user as:

Ld = h (Gd ‖X) ,Pd = h (Gd ⊕N) ,Bd = h (Gd ⊕Pd) (2)

Step 3: Server→User: The server stores the authentication parameter {Ed} and sends a password
Qd to the user via a secure channel.

3.2 Login Phase
The login phase is just the beginning of the experiment. If an unregistered user attempts to

sign in, an error occurs. Only authorized user is active Gd and Qd can log in.

Step 1: The user sends his Gd and Qd to the server Jd .

Step 2: Server checks Gd and then verifies h (Gd ⊕Pd) is equal to the stored Ed . Once the
details are verified, the process then moves on to the verification phase as in Fig. 3. The server
rejects the login request if the result does not match the database.

Figure 3: Login phase



CMES, 2020, vol.125, no.2 677

3.3 Authentication Phase
After the user successfully logs in to the server, the process moved to the authentication phase.

Fig. 5a shows the authentication process. The user is asked to verify that he/she provides all the
relevant information and the private user id Qd generated by sever in the registration section will
apply the pre-shared key in the verification section. The cloud server checks the user’s validity
first by obtaining a DH equivalent to the user id from the server database. When the key matches,
the connection is established by this protocol and the user is logged on to the server.

3.4 Key Distribution Using Diffie Hellman with QKD
Current cryptographic network protocols require multiple handshakes between the server and

the client to establish specific parameters and session discovery policies. This system allows the
client and server to select and adopt various methods and techniques to exchange important
information confidentially and securely. Among many other things, one of these agreements
involves passing a set of preferred key exchange protocols. These key exchange protocols are used
to provide the private keys of remote entities to secretly encrypt their next connection through the
interaction of private key algorithms. When transferring, it was agreed to use the first rule-based
on both sides, as well as the hash function. One of the most widely used key exchange policies
is Diffie–Hellman. Although there are different versions of this protocol, any of them require
multiple message exchanges between the two ends. In this way, both ends share some information
on the public key reproduction channel (private key).

The key agreement for QKD applies in the same way. When two ends are mentioned, one of
them just extract the quantum key and its corresponding key ID into the QKD systems. After
that, it transmits that ID (and other important information) over to the open channel and that
may be unsafe (public information). This process, similar to the Diffie–Hellman protocol, requires
several messages to synchronize keys on both sides of the in and out (text) communications.
Therefore, because of these similarities, the integration of the QKD key agreement process in
conjunction with the Diffie–Hellman protocol can be obtained directly if the exchange messages
are correctly integrated into both processes. Combining these two solutions, Diffie–Hellman mes-
sages are expanded and include new parameters, such as quantum key IDs, to protect against
other secure sessions.

Fig. 4 shows the exchange of Diffie–Hellman messages, which includes important IDs as a
parameter in exchange messages. The workflow is as follows:

• First, the node on the client-side extracts the outgoing communication key from the QKD
programs. It can use the standard API or interface [19] or related ones [20].

• Then, in this example, the client sends the key ID to the server.
• The server extracts the IDs and uses it to find the key for its internal channel.
• Similarly, the server extracts its outbound communication key and sends the correct ID to
the client in the reply message.

• When the client receives these messages, they use the ID to extract the key of their internal
connection.

• Finally, after digesting the generated key using the agreed hash function, the classical key
is generated. Both keys are coupled with XOR (module 2) for use together to protect the
channel, providing hybrid quantum-classical security.



678 CMES, 2020, vol.125, no.2

Figure 4: Diffie–Hellman and QKD key exchange protocol integration

Figure 5a: User authentication procedure



CMES, 2020, vol.125, no.2 679

Figure 5b: Key generation after mutual authentication



680 CMES, 2020, vol.125, no.2

3.5 Authentication
Furthermore, to tackle the man-in-the-middle attack faced by the conventional quantum

cryptography, an authentication scheme has been designed in this work with the aid of the

four possible X-gates
{
x (0) ,x

(
π
2

)
,x (π)and x

(
3π
2

)}
. Authentication is a vital task to secure

communication between users. With this scheme, the private keys owned by both the sender
(
k1

)

as well as the receiver
(
k2

)
along with the secret shared key

(
k3

)
provide mutual authentication

for the cloud users. To achieve mutual authentication, the scheme undergoes four stages, which
are described with the aid of Fig. 5.

At the first stage, the sender creates a binary string (plain text), which is then encrypted
by the shared secret key and is sent to the receiver. There at Stage 2, the receiver decrypts the
ciphertext and holds the result by its side. It then generates another binary string, says (ri) and
with the aid of shared secret as well as the private key, the string is encrypted and forward to
the sender. In Stage 3, the encrypted ciphertext is decrypted by the sender using the shared key.
Finally, the ciphertext is decrypted at the receiver side by the private key and the string acquired
from Stage 2,

(
Dai

)
to make clear that if the decrypted plain text (Vi) is the same as that of the

text created at Stage 2. Thus, the man-in-the-middle attack experienced by the prior methodology
is overwhelmed here with this scheme; whereas, the authentication succeeds only if the plaintexts
are alike, i.e., (Vi = ri).

After achieving the encryption process, the data which is uploaded by the admin is stored
in the cloud server. Cloud Service provider is an entity that provides data storage service and
computational resources dynamically to the data owner and users. But due to the insider attackers
in the cloud, the data get lost which tends to the heavier loss for the data owner and the users.
So there will be a need for security in the cloud while storing the data and also if any data could
be lost by some attackers, it has to be recovered. Henceforth the proposed technique is adopted
which is explained below.

Fig. 5b shows the key generation phase after mutual authentication. After authentication,
both the user and the server agree on the session key. The server takes a random number and
agrees with the session key. The subsequent communication takes place via text message with the
session key generated.

3.6 Repairing of Data by Optimized Genetic Algorithm
Due to probable data exploitation by interior outbreaks i.e., insider attacker adds in clam-

bered data into the encrypted data or even to the encrypted index, the search result can be
a fault result. So there is a need for a security mechanism to verify and retrieve the desirable
file. The Optimized Genetic Algorithm (OGA) is an advanced file hold-up concept that uses
an operative ultra-widely distributed data transmission mechanism and high-speed encryption
technology. The backup sequence and Recovery sequence are used in the proposed system. In
the Backup sequence, it accepts the data to be backed-up and in Recovery Sequence, when some
mischance happens the Cloud Server (constituents of the Optimized Genetic Algorithm) begins
the recovery arrangement. Though there are some restrictions such as security issues. To secure
these issues, the OGA method performed in Fig. 6.



CMES, 2020, vol.125, no.2 681

Figure 6: The secure data streaming with optimized genetic algorithm

3.7 Optimized Genetic AlgorithmMethod
Apply backup GA operation to the top 2N users and create another 2N user.

Step 1 (selection): From the user, select the 2N best user (i.e., non-attackers) according to
fitness.

Step 2 (cross over): Using the 2N best users, apply, compare files crossover to update the best
2N users by the following equations.

ai = uniform (0, 1)ai+ (1− uniform (0, 1))ai+1 i= 1, 2, . . .2n− 1 (3)

ai = uniform (0, 1)ai+ (1− uniform (0, 1)) i= 2N (4)

Step 3: Mutation. Apply mutation with a 20% mutation probability to the best 2N updated
chromosomes according to the equation

ak = ak+ rand×N (0, 1) (5)

Step 4: PSO method. Apply PSO operator (velocity and position updates) for updating the
2N users with the worst fitness.

bnewid = c× bnewid + h1 × rand×
(
uid − aoldid

)
+ h2 × rand×

(
uid − aoldid

)
(6)

Updates. The particles velocities and positions are updated by the following equations

anewid = aoldid + bnewid (7)

where h1 and h2 are the velocity coefficients, rand be the random number in [0, 1] and c= [0.5+
rand/2.0] PSO illustrates that the velocity for each user’s particles is updated according to its
previous velocity bid the best location in the neighborhood about the particle uid. be the particle
velocity. In each dimension is clamped to a max velocity amax and maximum velocity amax is set
to a certain fraction of the range of the search space in each dimension. The above final equation
shows how each particle position (aid) is updated during the search in the solution space.

Thus with our proposed methodology, the security issues in cloud data storage are success-
fully overwhelmed with effective quantum key distribution and authentication schemes, which



682 CMES, 2020, vol.125, no.2

in turn simultaneously enhances the performance of the proposed system that is discussed
in Section 4.

4 Results and Discussion

The proposed framework is implemented using the QKD devices provided by Quantum in the
cloud. The experimental setup is completed with the aid of the local Aneka cloud. As the Cloud
is a dynamic environment accumulating diverse computing resources, the superior of mounting
the intact structure on top of an effective runtime environment. Aneka affords the facility of
providing diverse arrangements for articulating distributed applications by posing diverse software
development prototypes. Aneka is a form of the PaaS service model and can be deployed in both
public as well as private clouds. Here in our work, Aneka is used as a private cloud infrastructure.

4.1 Configuring Private Cloud
The complete process of implementing a private cloud using Aneka is as follows, Aneka

Cloud has two main components, Master Container and Worker Containers. In most cases only
one container and cloud requirement determines the number of container operations. Worker
Containers are registered with Master Container. A large container acts as a gateway to the cloud.
The role of a large container is to take a request from consumers, break it down into smaller
tasks, and then classify them into Customers depending on the resources available to them.

Figure 7: Selecting the node for master container

4.2 Proposed Simulation Results
Aneka is established on the .net platform with the support of Windows OS and all that thing

imposts it unique commencing a technology statistic of vision as conflicting to the extensively



CMES, 2020, vol.125, no.2 683

accessible. Here user access interface is an Aneka management studio that provides compute and
storage services for our research work.

4.2.1 Aneka Cloud Configuration
Initially, the cloud using Aneka is configured by installing the Master Container, in the

selected machine as shown in Fig. 7. To create a cloud, it is a difficult task to decide on a
system that will work as a Master Container. One must choose a system that can process requests
from the expected number of customers, and control the work done by a large number of
worker containers.

After the node selection of the master container, the node configuration is performed as in
Fig. 8. Because the master node is the primary entry point in the Aneka Cloud. It handles the
programming engine and keeps track of all the applications and operations running in the cloud.
Without a master node, it is not possible to set up the Aneka cloud.

Figure 8: Installation wizard for installing the master

Now the basic installation and configuration of Aneka cloud ends. Then we experimentally
verify our proposed framework by following the steps such as Registration, Login, Authentication
and data recovery stage. Which are figured out and discussed in the below sections.



684 CMES, 2020, vol.125, no.2

4.2.2 Registration Phase
This step is used to provide cloud security. The user sends their unique identifier to the

server through a secure channel. After retrieving the information, the cloud server adds user
parameters. After that the server stores the authentication parameter and sends the password
to the user through a secure channel. Fig. 9 shows the user registration through the Aneka
management studio.

Figure 9: User registration

4.2.3 Login and Authentication with DH and QKD
This step is used to configure cloud security. All users have to authenticate using a valid

username and correct password to use any service provided in the cloud as in Fig. 10. Which is
experimentally verified with the help of DH and QKD algorithms. It also ensures that the master
and the worker confirm each other and all information exchanged between them is encrypted.
Ensures data security.

Secret Key is the security key used to ensure cloud security. This is the key that is shared
among all authentication containers and encrypted data transmitted between. For a secure cloud
to work, it is imperative to generate a secret key, and use it for all security purposes. For secure
communication, this button is used by all employees. It is stored in a Key Store shared with some
friendly names.



CMES, 2020, vol.125, no.2 685

Figure 10: Authentication for user management

4.2.4 Data Recovery Stage with OGA
This process is to configure a large container. There is one big container, and this works

like a cloud interface. If this system fails, the cloud stops its function, regardless of the worker’s
performance at any level. This problem can be solved or minimized in Aneka’s cloud with the
feature of providing a backup container using failover configuration through OGA. Following
the failover configuration step, the cloud can find the primary master and backup master. In the
event, the primary master fails, the backup master controls the cloud so that its performance
does not stop, as failure reduces the availability of the cloud. To enable failover configuration,
the cloud must have a very large feature on its network. The failover configuration with OGA is
shown in Fig. 11.

Master container and worker container can be secure by restricting the services configuration
as shown in Fig. 12.

Fig. 13 demonstrates the functioning archetypal of the proposed framework with Aneka
public cloud. Facilities such as persistence and security are transversal to the intact mound of
amenities that are compared by the Container. The contemporary publication of Aneka affords
a storing enactment established on the File Transfer Protocol (FTP) service. Further storing
amenities be able to incorporate into the arrangement through provide a particular enactment
of a data channel. The consumer or sender stores the information by utilizing novel Quantum



686 CMES, 2020, vol.125, no.2

Figure 11: Failover configuration with OGA

Figure 12: Service configuration for security of resources



CMES, 2020, vol.125, no.2 687

Key Distribution relying upon non-commutative encryption and Diffie Hellman (DH) for key
distribution. The encoded information was securely stored in the Aneka cloud through admin
for secret authentication. Both the sender and receiver can communicate with each other through
network communication by sharing their public and private keys. The available resources were
utilized Optimized Genetic Algorithm (OGA) for backup and recovery sequence. Aneka delivers
an infrastructure able to support a diverse set of storage amenities. It is also elastic for the
reason that it is probable to upturn on demand the number of nodes that are part of the Aneka
Cloud affording to the user needs. The incorporation of virtual resources into the Aneka Cloud
does not familiarize unambiguous challenges: once the virtual resource is attained by Aneka it is
solitary essential to have an administrative interpretation and network access to it and organize
the Container on it as it takes place for any other physical node. Aneka has effectively contributed
to resolving the scalability and security concern tackled to upturn the performing of the requests
that influence the Cloud for computation desires.

Figure 13: Working of the proposed framework with Aneka public cloud



688 CMES, 2020, vol.125, no.2

4.3 Performance Analysis for the Proposed Framework
To show the efficiency of the proposed method, the following factors are evaluated.

4.3.1 Encryption Time
In encryption algorithm conversion of the plain text into the ciphertext takes place within

a particular duration which is said to be encryption time. The encryption duration of the data
after encrypting it by the projected framework with an optimized Genetic Algorithm technique is
related to the encryption procedures.

Encryption time= CT
RT

(8)

where Encryption time is the, CT is the computation time of encryption, RT is the response time
of encryption. It is the time difference between submissions of a request until the response begins
to be received.

4.3.2 Decryption Time
In decryption algorithm conversion of the ciphertext into the plain text takes place within

a particular duration which is said to be decryption time. The decryption duration of the data
after decrypting it by the projected framework is related to the decryption procedures.

Decryption time= dT
sT

(9)

where Decryption duration, dT is the computation time of decryption, sT is the response time
of decryption.

From the Tab. 1, it is known that the encryption time for a proposed framework for different
file size File-1, File-2, File-3 and File-4 with the size of 21, 46, 71 and 84 Kb is 293, 302, 312
and 321 ms. The graphical encryption time for the proposed method is given below.

Table 1: Encryption time for the proposed framework

File File Encryption
size (kb) time (ms)

File-1 21 293
File-2 46 302
File-3 71 312
File-4 84 321

The above Fig. 14 shows the encryption time used in various files in the proposed methodol-
ogy. Encryption duration is assessed based on the division of computation time to response time.
The encrypted text is assessed by the ciphertext policy quality based encryption. As encryption
increases the file size also increases.

From Tab. 2, it is known that the decryption time for a proposed framework for different file
size File-1, File-2, File-3 and File-4 with the size of 21, 46, 71 and 84 Kb is 289, 295, 312 and
324 ms. The decryption time for the proposed method is given graphically below in Fig. 15.



CMES, 2020, vol.125, no.2 689

20 30 40 50 60 70 80 90

File Size(kb)

290

300

310

320

330

E
nc

ry
pt

io
n 

T
im

e(
M

ill
is

ec
)

Figure 14: Encryption time

Table 2: Decryption time of proposed framework

File File Decryption
size (kb) time (ms)

File-1 21 289
File-2 46 295
File-3 71 312
File-4 84 324

20 30 40 50 60 70 80 90

File Size(kb)

280

290

300

310

320

330

D
ec

ry
pt

io
n 

T
im

e(
M

ill
is

ec
)

Figure 15: Decryption time of proposed framework

The above Fig. 15 shows the decryption time used in various files in the proposed method-
ology. Decryption duration is assessed based on the conversion of cipher to plain text in the
decryption algorithm. No variation is found in decryption time with file size.



690 CMES, 2020, vol.125, no.2

Fig. 16 represents the error probability that occurs by the influence of eavesdropper in the
transmission channel.

Figure 16: Rate of error observed over eavesdropping

Fig. 17 which represents how the channel overcomes the eavesdropping issue in the channel
with different probabilities. Here, the purple line, green line, and the red line represents the
different possible probability of the attackers. By this the probability of the error can be detected
effectively whereas the eavesdropper has been detected effectively as the number of transmitted
bits is rising; thus the proposed work effectively tackles the security issues during various cloud
services and strengthens the data storage and its access in a highly secured manner.

Figure 17: Probability of eavesdropping perceive the channel

As shown in Fig. 18, the initial bit error rate has been slightly reduced with the proposed
framework. Moreover, the secure key rate Sk is given by,

Sk = Skr {1− (1+ g (x) f (x))} (10)

where, Skr be the shifted key rate, g(x) and f (x) be the binary entropy functions respectively.
During the error rate estimation, the statistical error has been highly reduced by setting a certain
interval of time for each transmission distance. Tab. 3 demonstrates the obtained result with the



CMES, 2020, vol.125, no.2 691

aid of the above equation. Here, secure key rates are calculated using the sifted key rates, error
rates and double click fraction that we obtained experimentally.

Figure 18: Proposed initial bit error rate

Table 3: Mode analysis of network

Distance (loss [in dB]) 0 17 40 85
Effective measurement time [s] 245 230 210 340
Average single count rate [kcps] 50 28 23 7
Total sifted key [bits] 13230 15300 8400 9200
Sifted key rate [bit/s] 460 340 230 56
Error rate 0.012 0.043 0.056 0.052
Secure key rate [bit/s] 230 203 134 43
Run time (M cycles) 406 753 2200 1502
Average latency (ms) 603 1792 17452 700

Here, Tab. 3 describes the mode analysis of the network in our proposed work. For 0 dB
distance loss, the obtained error rate is 0.012, sifted key rate is 460 bits/s, secure key rate is 230
bits/s, the total sifted key rate is 13230 bits and so on. Thus, from this table, it is clear that the
proposed framework acts as an effective barrier against various attacks and provides secured data
storage and its access by handling the security threats in the cloud service provider.

Thus, it is clear from the above analysis that the quantum cryptography provides uncon-
ditional security and the sniffing detection properties to achieve secured data transmission and
access control.

4.4 Comparison Result
The encryption and decryption duration for the novel Quantum Key Distribution relying

on Non-Commutative Encryption Framework is compared with the various existing methods
discussed in Section 2. The comparative results are shown in the following Tab. 4.



692 CMES, 2020, vol.125, no.2

Table 4: Comparison of proposed and existing technique with different parameter

References Encryption Decryption Time Run Average
time (ms) time (ms) complexity (ms) time (ms) latency (ms)

Mishra et al. [9] 389 367 556 567 876
Dinesha et al. [23] 384 360 544 546 786
Li et al. [24] 375 356 531 460 770
Zukarnain et al. [5] 356 350 506 480 700
Proposed 307 305 504 406 603

(a) (b)

(c)

Figure 19: Proposed comparison with prior methodologies. (a) Average latency. (b) Encryption
and decryption time. (c) Time complexity and run time



CMES, 2020, vol.125, no.2 693

Tab. 4 describes the time complexity is the computational complexity, which denotes the
amount of time it takes to run an algorithm. By comparing the proposed framework with
those prior methodologies, the proposed framework works best in providing secured cloud data
storage. The prior methodologies discussed in Mishra et al. [9], Dinesha et al. [23], Li et al. [24]
and Zukarnain et al. [5] achieve encryption within 389 (ms), 384 (ms), 375 (ms) and 356 (ms)
respectively, whereas the proposed work achieves encryption within 307 (ms). Thus the time taken
to encrypt the data is comparatively low when compared with the existing methodologies.

In the above Fig. 19 describes (a) Average Latency, (b) Encryption and Decryption Time (c)
Time complexity and Run Time moreover, the time complexity is also highly reduced to 504 (ms),
where the prior methodologies exhibit 556 (ms), 544 (ms), 531 (ms), and 506 (ms) respectively for
the methodologies discussed in Mishra et al. [9], Dinesha et al. [23], Li et al. [24] and Zukarnain
et al. [5]. It shows that with the proposed work the time complexity is also highly reduced.

Fig. 20 describes that there is a 100 percent failure rate with public cloud implementations.
The success rate for achieving effective main distribution is 98 percent. Another observation with
our experiments is that the generation of keys with QKD devices given by the “Quantum in
Cloud” platform is 100 percent efficient. Thus, from the aforementioned results and comparison
results, it is clear that the proposed framework exhibits better efficacy in providing data security
with less computational time and cost.

Figure 20: Comparison in terms of success/failure rate and key generation efficiency

Tab. 5 shows the throughput comparison values of some existing methodologies with the
proposed technique. Which is figured out in below Fig. 21. The experiment is conducted for
different encryption techniques with different file sizes. From these, we analyze that our proposed
methodology provides a maximum average throughput of 0.3449, which is higher than other
existing methodologies.

Tab. 6 shows the Avalanche effect values with different file sizes for some existing method-
ologies with the proposed technique. Which is figured out in below Fig. 22. This shows
that our proposed methodology achieves an efficient avalanche value when there is a 1-bit
change in its key value. Which ensures the security of our proposed technique in the Aneka
cloud environment.



694 CMES, 2020, vol.125, no.2

Table 5: Throughput comparison of proposed and existing methodology with different file sizes

File size 100 200 300 400 500 600 Average

DESC 0.6971 0.3537 0.2074 0.1272 0.0924 0.0666 0.2574
AESC 0.7136 0.35028 0.2027 0.1191 0.0881 0.0410 0.2525
Blowfish 0.7338 0.4208 0.2894 0.1411 0.1177 0.0738 0.3051
Proposed 0.8215 0.5320 0.3032 0.1613 0.1563 0.0954 0.3449

Figure 21: Throughput comparison with different file sizes

Table 6: Avalanche effect with different file sizes when 1-bit change in key

File size 100 200 300 400 500 600

DESC 46.26 46.28 46.37 46.76 46.22 46.22
AESC 46.41 46.18 46.5 46.56 46.19 53.85
Blowfish 62.12 62.15 62.13 62.13 62.1 62.12
Proposed 64.16 64.12 64.25 64.27 64.11 64.59

Tab. 7 demonstrates the Avalanche effect values when there is a bit of change occur in
plain text. Values for the different methodologies with different file sizes are drawn graphically in
below Fig. 23. From these, we analyze that our proposed methodology provides different values
when there is a little bit of change in plain text. All these comparisons show the effectiveness
and quickness of our proposed technique, which is sufficiently higher than the other existing
algorithms and ensures the security of our proposed technique in the Aneka cloud environment.



CMES, 2020, vol.125, no.2 695

Figure 22: Avalanche effect comparison with different file sizes when 1-bit change in key

Table 7: Avalanche effect with different file sizes when 1-bit change in plaintext

File size 100 200 300 400 500 600

DESC 50.14 50.15 50.13 46.67 50.12 50.15
AESC 47.19 48.15 48.05 48.1 48.15 48.2
Blowfish 46.16 46.21 46.62 46.06 49.9 57.01
Proposed 56.94 57.15 56.13 56.67 57.14 58.17

Figure 23: Avalanche effect with different file sizes when 1-bit change in plaintext



696 CMES, 2020, vol.125, no.2

5 Conclusion

In this work, a novel Quantum Key Distribution relying on a non-commutative encryption
framework is proposed. In which the files are uploaded by the admin, whereas authentication for
an authorized user by novel DH technique prevents the influence of man-in-the-middle attack as
well as the eavesdropper in the transmission channel. Moreover, for secure data retrieval, OGA
has utilized in our proposed work. Thus with this proposed work, the security threats are highly
arrested, which ensures a secured data storage and transmission with reduced computational time
and cost. To show the efficacy of the proposed work, the framework is compared with the prior
methodologies.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Dinh, H. T., Lee, C., Niyato, D., Wang, P. (2013). A survey of mobile cloud computing: architecture,

applications, and approaches. Wireless Communications andMobile Computing, 13(18), 1587–1611. DOI
10.1002/wcm.1203.

2. Nedelcu, B., Stefanet, M. E., Tamasescu, I. F., Tintoiu, S. E., Vezeanu, A. (2015). Cloud computing
and its challenges and benefits in the bank system. Database Systems Journal, 6(1), 44–58.

3. Suthar, F., Khanna, S., Patel, J. (2019). A survey on cloud security issues. International Journal of
Computational Science and Engineering, 7, 120–123.

4. Basin, D., Cremers, C., Kim, T. H. J., Perrig, A., Sasse, R. et al. (2016). Design, analysis, and imple-
mentation of ARPKI: an attack-resilient public-key infrastructure. IEEE Transactions on Dependable
and Secure Computing, 15(3), 393–408. DOI 10.1109/TDSC.2016.2601610.

5. Zukarnain, Z. A., Khalid, R. (2014). Quantum key distribution approach for cloud authentica-
tion: enhance tight finite key. International Conference on Computer Science and Information Systems,
pp. 28–33. Dubai (UAE).

6. Almorsy, M., Grundy, J., Müller, I. (2016). An analysis of the cloud computing security problem.
arXiv preprint arXiv: 1609.01107.

7. Broadbent, A., Schaffner, C. (2016). Quantum cryptography beyond quantum key distribution. Designs,
Codes and Cryptography, 78(1), 351–382. DOI 10.1007/s10623-015-0157-4.

8. Bennett, C. H., Brassard, G. (2020). Quantum cryptography: public key distribution and coin toss-
ing. International Conference on Computers, Systems & Signal Processing, Vol. 560(Part 1), pp. 7–11.
Bangalore, India, arXiv preprint arXiv: 2003.06557.

9. Mishra, D., Kumar, V., Mukhopadhyay, S. (2013). A pairing-free identity based authentication frame-
work for cloud computing. International Conference on Network and System Security, pp. 721–727.
Berlin, Heidelberg: Springer.

10. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K. et al. (2011). Field test of quan-
tum key distribution in the Tokyo QKD network. Optics Express, 19(11), 10387–10409. DOI
10.1364/OE.19.010387.

11. Tysowski, P. K., Ling, X., Lütkenhaus, N., Mosca, M. (2018). The engineering of a scalable multi-site
communications system utilizing quantum key distribution (QKD). Quantum Science and Technology,
3(2), 024001.

12. Tanizawa, Y., Takahashi, R., Sato, H., Dixon, A. R. (2017). An approach to integrate quantum key
distribution technology into standard secure communication applications. Ninth InternationalConference
on Ubiquitous and Future Networks, pp. 880–886. Milan, Italy: IEEE.

http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/TDSC.2016.2601610
http://dx.doi.org/10.1007/s10623-015-0157-4
http://dx.doi.org/10.1364/OE.19.010387


CMES, 2020, vol.125, no.2 697

13. Polnik, M., Mazzarella, L., Di Carlo, M., Oi, D. K. L., Riccardi, A. et al. (2020). Schedul-
ing of space to ground quantum key distribution. EPJ Quantum Technology, 7(1), 802. DOI
10.1140/epjqt/s40507-020-0079-6.

14. Aboba, B., Simon, D., Arkko, J., Eronen, P., Levkowetz, H. (2005). Extensible authentication protocol
(EAP) key management framework. Work in Progress.

15. de Fuentes, J. M., Hernandez-Encinas, L., Ribagorda, A. (2018). Security protocols for networks and
internet: a global vision. In: Daimi, K., (Eds.), Computer and network security essentials. pp. 135–151.
Cham: Springer.

16. Viega, J., Messier, M., Chandra, P. (2002). Network security with openSSL: cryptography for secure
communications. O’Reilly Media, Inc.

17. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J. et al. (2009). The SECOQC
quantum key distribution network in Vienna. New Journal of Physics, 11(7), 075001. DOI
10.1088/1367-2630/11/7/075001.

18. Kumar, G., Saini, H. (2020). An ECC with probable secure and efficient approach on noncommutative
cryptography. In: Jain, L., Tsihrintzis, G., Balas, V., Sharma, D., (Eds.), Data Communication and
Networks. pp. 1–11. Singapore: Springer.

19. Misra, M. K., Chaturvedi, A., Tripathi, S. P., Shukla, V. (2019). A unique key sharing protocol
among three users using non-commutative group for electronic health record system. Journal of Discrete
Mathematical Sciences and Cryptography, 22(8), 1435–1451. DOI 10.1080/09720529.2019.1692450.

20. El-Yahyaoui, A., El Kettani, M. D. E. C. (2017). A verifiable fully homomorphic encryption scheme
to secure big data in cloud computing. International Conference on Wireless Networks and Mobile
Communications, pp. 1–5. Rabat, Morocco: IEEE.

21. Gu, Y., Xie, X., Gu, C. (2019). A new NTRU-type public-key cryptosystem over the binary field.
Computers, Materials & Continua, 60(1), 305–316.

22. Bagheri, K., Sadeghi, M. R., Panario, D. (2018). A non-commutative cryptosystem based on quater-
nion algebras. Designs, Codes and Cryptography, 86(10), 2345–2377. DOI 10.1007/s10623-017-0451-4.

23. Dinesha, H. A., Agrawal, V. K. (2012). Multi-level authentication technique for accessing cloud
services. International Conference on Computing, Communication and Applications, pp. 1–14. Dindigul,
Tamilnadu, India: IEEE.

24. Li, X., Li, W., Shi, D. (2015). Enterprise private cloud file encryption system based on tripar-
tite secret key protocol. International Industrial Informatics and Computer Engineering Conference,
pp. 166–169. Atlantis Press.

http://dx.doi.org/\hbox {10.1140/epjqt/s40507-020-0079-6}
http://dx.doi.org/\hbox {10.1088/1367-2630/11/7/075001}
http://dx.doi.org/10.1080/09720529.2019.1692450
http://dx.doi.org/10.1007/s10623-017-0451-4

