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Abstract: Equipped with a two-dimensional topological structure, a group
of masses, springs and dampers can be demonstrated to model the internal
dynamics of a thin-film transistor (TFT). In this paper, the two-dimensional
Mass-Spring-Damper (MSD) representation of an inverted staggered TFT
is proposed to explore the TFT’s internal stress/strain distributions, and the
stress-induced effects on TFT’s electrical characteristics. The 2DMSDmodel
is composed of a finite but massive number of interconnected cellular units.
The parameters, such as mass, stiffness, and damping ratios, of each cellular
unit are approximated from constitutive equations of the compositematerials,
while the electrical properties of the inverted staggered TFT are characterized
by utilizing an electro-mechanical coupling relationderived from the quantum
mechanics. TFTs are often used in biomedical sensors/transducers attached to
human skins, and, for the purpose of simulation and validation, the bound-
ary conditions on the interface between the TFT and the human skin were
modeled as a spatially distributed sinusoidal excitation with a frequency of
50 Hz, assuming the TFT thickness is more than tens of microns. The fidelity
of the 2D MSD structure in the modeling of an inverted staggered TFT is
verified by comparing its simulated total displacement fieldwith that of a finite
element analysis (FEA) model. The advantages of the MSD model include
a dramatic reduction in memory use by up to 60% and faster computation
times that are up to 80% lower. More importantly, the MSD model is better
suited than FEA to many problems in accurate tissue modeling for medical
applications, for which FEA is becoming a bottleneck. This work develops a
novel modeling approach, which can be extended to other types of flexible
thin film transistors.

Keywords: Mass-spring-damper structure; inverted staggered thin-film
transistor; electro-mechanical coupling relation; quantum mechanics; finite
element analysis

1 Introduction

The manufacturing of flexible electronics highly depends on smart selection of materials,
correct process designs and accurate experimental setup [1]. Flexible electronics is getting more
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commonplace as wearables, soft robotics and medical devices become more mainstream. These
developments are getting to the point that soft circuit boards and bendable electronics are soon to
require higher performance modeling as the physical flexibility causes direct impacts on the electri-
cal characteristics of the circuit—changing its behavior. As we integrate more and more complex
functionality into multi-physics modelers with deeper and deeper interactions, the computational
complexity and accuracy of modeling is resurfacing as a limiting bottleneck. We present a new
method of modelling flexible circuit elements using MSD models as a replacement for traditional
FEA. On a simple TFT, we show our model achieves equivalent accuracy, while reducing memory
usage and computational time by 60% and 80%, respectively.

As a representative flexible electronic component, the thin-film transistor (TFT), has attracted
much attention in its manufacturing as well as applications. TFT is mainly composed of three
terminals, source, drain and gate, as well as two additional layers, namely semi-conductive and
dielectric layers. In the general structure, the gate island is separated from the semi-conductive
layer by dielectric insulator, while the source and drain islands are aligned on the two sides of the
semiconductor. There are four commonly used TFT layouts. As shown in Fig. 1, the TFT is called
staggered if the gate electrode and the source/drain electrodes are on the opposite sides of the
semi-conductive layer, and the TFT is called coplanar when they are on the same side. Moreover,
if the gate terminal is configured on the bottom of the dielectric insulator, the TFT is considered
in an inverted layout [2]. The choice of the design is often influenced by fabrication constraints,
such as the availability of chemicals and processes, as well as interaction of individual layers [3].
Among these four layouts, the inverted staggered TFT showed improved performance over other
TFT layouts in the field effect mobility and the Ion/Ioff ratio [4], and it has also been instrumental
in our understanding of the multiphysics modeling and the associated manufacturing limitations
for flexible electronics. Therefore, we place our interest in the characterization of mechanical and
electrical properties of the inverted staggered TFTs.

Figure 1: Four most commonly used configurations of TFTs

Multiple modeling approaches have previously been explored by researchers. For example,
stochastic partial differential equation (SPDE), which is widely employed to predict the random
variations of the market price for financial assets, has been applied to model the deposition
process of thin films [5,6]. Several comprehensive SPDE models, such as Edwards–Wilkinson
model, Kardar–Parsi–Zhang model, and ballistic deposition model, consider relaxation effects on
the deposition surface, improving the precisions in predicting the printed surface roughness, the
optical reflectivity, electrical conductivity and physical porosity of the thin films [7]. However,
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these SPDE models lose their fidelity when more important TFT’s electrical properties, such
as charge carrier mobility, and threshold voltage, need to be characterized. For an inverted
staggered TFT, the increased thickness, the bonding effects and inhomogeneity among different
layers will influence its stress distributions, and therefore will cause strained effects on its electrical
properties as well. In order to precisely characterize the TFT’s electrical properties, much of
the current research pays particular attention to compact modeling of Silicon-based MOSFETs.
For example, Sheu [8] comprehensively investigated the layout-dependent effects on Nano-scale
MOSFET and proposed a stress-dependent dopant diffusion model for its numerical simulations.
Wacker et al. [9] presented a DC circuit simulation using BSIM3v3 transistor model to explore
variable uniaxial mechanical stress effects on CMOS transistors. A similar study in this area is the
work of Alius et al. [10], who expressed the strained variations on electrical parameters as a linear

function of the stress, i.e.,
Δ(parameter)
parameter

= sensitivity × stress, and used bent-chip experiments

to verify this linear relationship. In a follow-up study, Heidari et al. [11] proposed a bendable
MOS compact model and experimentally verified that the stress-induced sensitivity coefficients
for the drain current and the threshold voltage are both equal to the modified piezoresistive
coefficients of the doped Silicon. This observation contributes to many more experimentally
identified statistical formulas developed for TFT’s modeling research, and a detailed review work
which discussed the bending induced electrical response variations on TFTs was reported by
Heidari et al. [12]. Although these compact models of the Silicon-based MOSFETs accurately
examine additional electrical characteristics in contrast to SPDE models, there is still very little
scientific understanding of the relationship between strained variations on electrical properties and
the stress distributions in the semiconductor channel of the TFT. In addition, up to now there
has only been a very limited number of simulation studies of TFTs under dynamic boundary
conditions. Most of previous research on TFT’s electrical characterizations solely focused on the
bending case. However, more complicated scenarios, such as compressing, stretching and twisting,
were not discussed. It is our motivation to fill this knowledge gap by proposing a two-dimensional
mass-spring-damper (MSD) structure and generalizing the boundary conditions on the MSD
boundary layers to develop a holistic modeling of the inverted staggered ZnO TFT.

The MSD structure is widely used in studies for phonetics and vibration systems. However,
recent research demonstrated that when the stiffness, mass, damping coefficients and the topology
of the MSD structure are chosen prudently, the MSD structure can be applied for modeling soft
tissues, buffered damping systems, running and hopping process of a human body [13–15]. It
has also been demonstrated in these applications that in contrast to FEA models, MSD models
exhibit better modeling accuracy, especially for coping with viscoelastic and nonlinear materials
in flexible and microscale structures. Besides that, it is also reported by Chen et al. [16] that MSD
model has simpler formulation, faster calculating speed and more realistic rendering performance
for modeling soft tissues than FEA. This further proves the validness of MSD model in the
applications for TFT modeling. In this paper, each material layer of the inverted staggered TFT
is divided into a number of cellular units in repetitive patterns. The cellular unit is formed by
concentrating mass to the center with four spring-damper pairs extending radially from the center
with 0◦, 45◦, 90◦ and 135◦ respectively. The topology of the mass-spring-damper structure is
determined by the quantities of the concentrated masses, the orientations of spring-damper pairs
and the connection density of the mass center (i.e., the number of spring-damper pairs connecting
to the same mass center divided by the geometric volume of a cellular unit). As depicted in
Fig. 2, the tension and vibration on the skin surface are two sources of external excitations on
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the TFT’s bottom layer. For a substrate with thickness around tens of microns, its adhesions to
the skin surface is very small [17], which also makes the effects of surface tension negligible. In
order to investigate the stress/strain distributions induced by boundary vibrations, the frequency
of 50 Hz, which was provided as a typical frequency value for vibrations on human skin surface
by Kandel et al. [18], is simulated in our study. Meanwhile, the electro-mechanical coupling
relation, i.e., the linear relationship between strained variations on electrical parameters and the
stress distributions, are fully explained from the perspective of quantum mechanics, while other
typical electrical properties, such as threshold voltage (Vth) and drain-current (ID) of the inverted
staggered ZnO TFT, are characterized to reflect the simulated sinusoidally-developed excitations
on the TFT and human skin interface. In a comparison study with FEM, it is revealed that the
total displacement distributions in the two-dimensional MSD structure will approach the total
displacements in the FEM model as the longitudinal and transversal number of cellular units
increases several times over. The evaluation of MSD model highly depends on the accuracy of the
simulation results from the control group, i.e., the FEA simulations. The mesh refinement study
verifies the convergence of FEA simulation results as the mesh size is properly tuned. Within the
scope of simulation, this observation is sufficient to demonstrate the acceptable accuracy of the
FEA simulations. Accordingly, the comparison study between MSD and FEA simulations further
confirms the validity of the two-dimensional MSD structure applied for modeling the mechanical
deformations in the TFTs.

Figure 2: 3D and 2D structure of an inverted staggered thin film transistor and its two
major sources of boundary excitations (surface tension and surface vibration) when adhered to
skin surface

2 Mathematical Model of an Inverted Staggered TFT

In solid mechanics and FEA models, it is generally assumed that the underpinned materials
in the structures are linearly elastic and inviscid [19]. Due to this fact, the following assumptions
should be presumed:

• The material is homogeneous and isotropic, and a linear constitutive relation (Hooke’s law)
is satisfied, the fourth-order stiffness tensor (elastic moduli) s is symmetric;

• The electrical properties in the thin film are independent of temperature variations (i.e., the
electrical system is decoupled from thermal system);

• There is no body force (b= 0), and no heat source (ϕ = 0) in the TFT.

The two-dimensional MSD model can deal with viscoelastic, nonlinear and flexible materials
by varying its damping coefficients and structural topologies, therefore we only assume that there
is no body force, no heat source in the MSD model.
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2.1 Mechanical Model Derived from Solid Mechanics
For an archetypical solid mechanics system (in Eulerian description), there are 23 unknown

scalar variables to be determined in each spatial point: mass density ρ, displacement variables
ui, i = 1, 2, 3., second-order stress tensor σij, i, j = 1, 2, 3., second-order strain tensor εij, i, j =
1, 2, 3., and temperature T . In solid mechanics, these 23 unknowns are determined by a group
of interrelated partial differential equations. The tensor forms of these equations are presented
in Eqs. (1)–(6). The first four equations are basic balance laws for mass, linear momentum,
angular momentum and energy. Eq. (5) provides strain-displacement relationship and Eq. (6) is
the materials’ constitutive equation,

ρ̇+ρu̇i;i = 0 (1)

ρüi− σji;j = 0 (2)

σij = σji (3)

ρcvṪ + σiju̇i;j+ kT;kk = 0 (4)

εij = 1
2

(
ui;j+ uj;i

)
(5)

σij = sijklεkl −βij (T −T0) (6)

where all these equations satisfy Einstein’s indicial summation convention, cv is the constant-
volume specific heat of the material, k is the material’s heat conductivity, sijkl is the fourth-order
stiffness tensor, and βij is the thermal-stress coupling coefficients in Duhamel–Neumann rela-
tion [20]. Consider the symmetry of σ , ε and s, if we let βij = 0, Eq. (6) for homogeneous and
isotropic materials can be rewritten as Eq. (7),⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1
E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2 (1+ ν) 0 0

0 0 0 0 2 (1+ ν) 0

0 0 0 0 0 2 (1+ ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where E is the Young’s modulus and ν is the Poisson’s ratio, Eqs. (1)–(7) are the close-form of
governing equations to solve all those 23 scalar variables for a continuum body. If the domain has
simple geometry and special boundary conditions, the analytical solutions can be solved [21,22].
For complex geometry and boundary conditions, Eqs. (1)–(7) are solved by FEA.

2.2 Mechanical Model Derived from Mass-Spring-Damper Structure
The serial structure of 1D MSD model is shown in Fig. 3. If we take infinite 1D cellular

units in this serial structure, the boundary conditions on the two ends perish. For this infinite
geometrically periodic structure, Bloch theorem implies that the system states should also be geo-
metrically periodic. The dynamics of a 1D mass-spring-damper system with infinite geometrically
periodic structure can be described in Eq. (8),

mjüp+j− cj
(
u̇p+j+1− u̇p+j

)+ cj−1
(
u̇p+j− u̇p+j−1

)− kj
(
up+j+1− up+j

)+ kj−1
(
up+j− up+j−1

) = 0 (8)
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where up+j is the vibration displacement for the j-th cellular unit in the p-th block, mj, cj
and kj are respectively the mass, damping coefficient and spring stiffness constant for the j-th
cellular unit in the p-th block. Jensen proved that Eq. (8) has an analytic sinusoidal-form solution
up+j (t) = Aje(p+j)γ−iωt, where Aj is the vibration amplitude of the j-th cellular unit in the p-th
block, γ is the wave number and ω is the wave frequency [23].

Figure 3: Serial structure of 1D mass-spring-damper model

In a more general situation, where the boundary conditions of the flexible circuitry and the
inhomogeneity of the materials need consideration, the infinite geometrical periodicity in Eq. (8)
does not remain, which results in a finite 1D mass-spring-damper structure in Eq. (9),

mjüj− cj
(
u̇j+1− u̇j

)− kj
(
uj+1− uj

) = fj, j= 1

mjüj− cj
(
u̇j+1− u̇j

)+ cj−1
(
u̇j− u̇j−1

)− kj
(
uj+1− uj

)+ kj−1
(
uj− uj−1

) = fj

∀j= 2, . . . ,N− 1

mjüj+ cj−1
(
u̇j− u̇j−1

)+ kj−1
(
uj − uj−1

)= fj, j=N

(9)

where fj is the external force applied to the j-th cellular unit, N is the number of cellular units
in the 1D serial MSD structure. Consider the external forces have a steady vibrational frequency,

i.e., fj = f̃jeiωt and uj = ũjeiωt, we can write Eq. (9) in a more compact form, as given in Eq. (10),(
−ω2M + iωC+K

)
ũ= f̃ (10)

where M,C and K are N×N matrices in Eqs. (11)–(13),

K =

⎡
⎢⎢⎢⎢⎣
k1 −k1
−k1 k1 + k2 −k2

−k2 k2+ k3 −k3
. . . . . . . . .

−kN−1 kN−1

⎤
⎥⎥⎥⎥⎦ (11)
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C =

⎡
⎢⎢⎢⎢⎣
c1 −c1
−c1 c1+ c2 −c2

−c2 c2+ c3 −c3
. . . . . . . . .

−cN−1 cN−1

⎤
⎥⎥⎥⎥⎦ (12)

M =

⎡
⎢⎢⎢⎢⎣
m1

m2
m3

. . .

mN

⎤
⎥⎥⎥⎥⎦ (13)

The mass, spring stiffness and damping coefficients for each cellular unit are predetermined by
material’s constitutive equation. For example, mj is determind by material’s density and number of
cellular units, kj is proportional to material’s elastic modulus, and cj is determined by viscosity of
the material. Correspondingly, the damping coefficients cj in 1D MSD model is given by Eq. (14),

cj = 2ζj
√
mjk̃j (14)

where k̃j =mjω
2
j is the equivalent stiffness with ω2

j =
kj + kj−1

mj
in 1D case, and ζj is the damping

ratio determined by material’s viscosity.

Figure 4: The structure of a two-dimensional MSD system with its inclusion filled with type-1
material and outer two layers with type-2 material (left), and the corresponding topology of a
cellular unit in the two-dimensional MSD structure (right)

If we analyze the two-dimensional MSD structure shown in Fig. 4, a group of second-order
ODEs as given in Eqs. (15)–(16) can be obtained to describe the displacements at the discrete
cellular units,

mj,küj,k− cj,k,1
(
u̇j+1,k− u̇j,k

)− kj,k,1
(
uj+1,k− uj,k

)− 0.5cj,k,2
(
u̇j+1,k+1− u̇j,k+ v̇j+1,k+1− v̇j,k

)
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− 0.5kj,k,2
(
uj+1,k+1− uj,k+ vj+1,k+1− vj,k

)− 0.5cj,k,4
(
u̇j−1,k+1− u̇j,k− v̇j−1,k+1+ v̇j,k

)
− 0.5kj,k,4

(
uj−1,k+1− uj,k− vj−1,k+1+ vj,k

)− cj−1,k,1
(
u̇j−1,k− u̇j,k

)− kj−1,k,1
(
uj−1,k− uj,k

)
− 0.5cj−1,k−1,2

(
u̇j−1,k−1− u̇j,k+ v̇j−1,k−1− v̇j,k

)− 0.5kj−1,k−1,2
(
uj−1,k−1− uj,k+ vj−1,k−1− vj,k

)
− 0.5cj+1,k−1,4

(
u̇j+1,k−1− u̇j,k− v̇j+1,k−1+ v̇j,k

)
− 0.5kj+1,k−1,4

(
uj+1,k−1− uj,k− vj+1,k−1+ vj,k

) = fj,k,x (15)

mj,kv̈j,k− cj,k,3
(
v̇j,k+1− v̇j,k

)− kj,k,3
(
vj,k+1− vj,k

)− 0.5cj,k,2
(
v̇j+1,k+1− v̇j,k+ u̇j+1,k+1− u̇j,k

)
− 0.5kj,k,2

(
vj+1,k+1− vj,k+ uj+1,k+1− uj,k

)− 0.5cj,k,4
(
v̇j−1,k+1− v̇j,k− u̇j−1,k+1+ u̇j,k

)
− 0.5kj,k,4

(
vj−1,k+1− vj,k− uj−1,k+1+ uj,k

)− cj,k−1,3
(
v̇j,k−1− v̇j,k

)− kj,k−1,3
(
vj,k−1− vj,k

)
− 0.5cj−1,k−1,2

(
v̇j−1,k−1− v̇j,k+ u̇j−1,k−1− u̇j,k

)− 0.5kj−1,k−1,2
(
vj−1,k−1− vj,k+ uj−1,k−1− uj,k

)
− 0.5cj+1,k−1,4

(
v̇j+1,k−1− v̇j,k− u̇j+1,k−1+ u̇j,k

)
− 0.5kj+1,k−1,4

(
vj+1,k−1− vj,k− uj+1,k−1+ uj,k

) = fj,k,y (16)

where uj,k and vj,k are scalar components of the 2D displacement vector, fj,k,x and fj,k,y are scalar
components of the external force applied to mj,k. In order to solve Eqs. (15)–(16), the boundary
conditions should be specified on boundary cellular units, where j ∈ {1,M} and k ∈ {1,N}.
According to the second-order elliptic PDE theory, the boundary conditions can be classified
into three categories, i.e., Dirichlet condition, Neumann condition and Robin condition [21,24,25].
In this two-dimensional MSD structure, the boundary conditions can be similarly generalized
to three types: D-type condition, N-type condition and R-type condition, which are respectively
given in Eqs. (17)–(19),

uj,k = aj,k (t) , vj,k = bj,k (t) (17)

u̇j,k = αj,k (t) , v̇j,k = βj,k(t) (18)

uj,k+ cu̇j,k = φj,k (t) , vj,k+ dv̇j,k =ψj,k(t) (19)

where ai,j, bi,j, αi,j, βi,j, φi,j and ψi,j are time-dependent boundary excitations, c and d are
constants, the boundary indicial number are j ∈ {1,M} and k ∈ {1,N}.

In two-dimensional MSD structure, we let kj,k,2 = kj,k,4 =
1
2
kj,k,1 =

1
2
kj,k,3, and the damping

coefficients are determined by Eq. (20),

cj,k,l =

⎧⎪⎨
⎪⎩
2ζj,k

√
mj,kk̃x,j,k for l= 1

2ζj,k
√
mj,kk̃y,j,k for l= 3

(20)
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where k̃x,j,k =mj,kω
2
x,j,k and k̃y,j,k =mj,kω

2
y,j,k are equivalent stiffness in the x and y directions, and

ω2
x,j,k and ω2

y,j,k are defined in Eq. (21). Correspondingly, we let cj,k,2 = cj,k,4 =
cj,k,1+ cj,k,3

4
.

ω2
x,j,k =

kj,k,1+ kj−1,k,1 + 0.5
(
kj,k,2+ kj,k,4+ kj−1,k−1,2+ kj+1,k−1,4

)
mj,k

ω2
y,j,k =

kj,k,3+ kj,k−1,3+ 0.5
(
kj,k,2+ kj,k,4+ kj−1,k−1,2 + kj+1,k−1,4

)
mj,k

(21)

2.3 Electro-Mechanical Coupling Relation Derived from Quantum Mechanics
In order to establish electrical-mechanical coupling relation in the inverted staggered TFT, we

need to borrow several notations from crystallography. First, we use the triple 〈h,k, l〉, i.e., the
Miller index, to denote the lattice planes in a Bravais lattice. The normal vector of plane 〈h,k, l〉
is �n= h�b1+k�b2+ l�b3, where �bi, i= 1, 2, 3 are the unit basis vectors of the reciprocal lattice. Since
it is an industrial convention to design the CMOS devices based on the standard 〈001〉 plane, a
commonly used layout for source/drain islands and semiconductor channels in the transistor is
depicted in Fig. 5. In this representation, the directions of the channel currents J and the average
stress σ in the plane is denoted by angle θ and ϕ, respectively.

<001> Si plane

<100>

x
1

x
3

x
2

<110>

<010>
< 10>

Current channel

S

D

Figure 5: Commonly used layout for a 〈001〉 Si-plane, J is the current flow with direction by angle
θ , σ is the uniaxial stress with direction denoted by angle φ

However, as shown in Fig. 5, the stress σ only considers the averaging of the longitudinal
and lateral stress components which are both lie on the 〈001〉 plane but neglect the transversal
stress component. Under these stress settings, an experimentally verified linear coupling relation
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between the strained change on effective carrier mobility and the average stress in the plane is
given in Eq. (22),

ΔIDS
IDS

∼= Δμeff

μeff
=Π(θ ,ϕ) ·σ (22)

where Π(θ ,ϕ) is the piezoresistive coefficient dependent on stress/current directions in 〈001〉 plane,
and it is determined by Eq. (23) [9],

Π (θ ,ϕ)=Π11 ·
(
cos2 θ · cos2 ϕ+ sin2 θ · sin2 ϕ

)
+Π12 ·

(
cos2 θ · sin2 ϕ+ sin2 θ · cos2 ϕ

)
+ 2 ·Π44 · sin θ · cos θ · sinϕ · cosϕ (23)

where Π11, Π12 and Π44 are three fundamental piezoresistive coefficients in the semiconductor.
However, as we discussed before, the neglection of stress component in the transversal direction
(i.e., in (0, 0, 1) direction.) will influence the accuracy of the coupling relational model. Without
loss of generality, we assume θ = ϕ (i.e., the carrier flow direction coincides with the stress
component in the 〈001〉 plane.). If we further let the Manhattan style be MOSFET’s manu-
facturing layout which requires that θ = 45◦, the piezoresistive coefficient in this case will be
Π (45◦, 45◦) = (480± 4)× 10−12 Pa−1 for doped Silicon [9]. Under these settings, in our model
we treat the stress σ in Eq. (22) as the average of the longitudinal stress component σav,L (i.e.,
stress in 〈110〉 direction.) and the transversal stress component σav,T (i.e., 〈001〉 direction.).

In quantum mechanics and solid-state physics, the threshold voltage of an n-channel CMOS
device is defined in Eq. (24),

Vth=Vfb+ 2 (2m− 1)ψb (24)

where Vfb is the flat-band voltage, m (∼1.2−1.4) is the body-effect coefficient, and ψs is the
potential difference between the extrinsic and intrinsic Fermi levels. The body-effect coefficient is
slightly dependent on strains in the channel, nevertheless, the stains greatly influence the net shifts
of the valence bands and the conduction bands for the semiconductor, leading to shifts of the
extrinsic Fermi levels and the bandgaps. Quantum theory proved that the threshold voltage shift
in the strained n-type MOSFET is determined by Eq. (25) [26,27],

ΔVth=
1
e

{
ΔEc+ (m− 1)

[
ΔEg+ kT · log Nv(0)

Nv(σ )

]}
(25)

where ΔEc is the shift of the conduction band due to strains, ΔEg is the change in semiconductor
energy gap, and Nv is the effective density of states (DOS) in the valence bands, e is the
elementary charge of an electron. The contribution from the changes in effective DOS in valence
bands is very small for most semi-conductive materials, so that the last term in Eq. (25) is
negligible. In addition, deformation potential theory is applied to obtain the values of ΔEc and
ΔEg. The lattice scattering and external forces cause strains, which induces the potential shift.
The deformation potential theory in solid-state physics shows that the band shift as shown in
Eq. (26) is proportional to mechanical strains in the semiconductor [27],

ΔE =
∑
i,j

Ξi,jεi,j (26)
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where Ξ are deformation potentials, and ε is the strain in the semiconductor channel. Under
previously defined crystallography settings, it can be shown that the shift in the conduction band
is given by Eq. (27),

ΔE(i)c =
(
Ξd

¯̄1+Ξu{âiâi}
)
: ε (27)

where ¯̄1 is the unit tensor, âi is the unit wavevector (a.k.a., k vector) of valley i, { } is the dyadic
product, Ξd and Ξu are the dilation and uniaxial deformation potentials at the conduction band
edges, and ε is the strain tensor. Tab. 1 summarizes several groups of deformation potential values
which have been derived and experimentally calibrated in earlier literatures. The superscripts in

Tab. 1 denote (1)[27], (2)[28] and (3)[29]. Values with asterisk mean �d + 1
3
�u − a, where a is

Pikus-Bir deformation potential. All quantities in Tab. 1 are in eV. In accordance, the average
shift in the conduction band is determined by Eq. (28) [27].

ΔEc,av =
(

Ξd +
1
3
Ξu

)
· trace(ε) (28)

In order to quantify the threshold voltage shift, we also need to determine the bandgap
potential ΔEg. Similar analysis reveals that ΔEg is also proportional to the strains in the semi-
conductor channel. Ojha et al. [30] states that ΔEg with stain is as few as meV in the advanced
CMOS technology, thereby we can neglect the second term in Eq. (25). Combining Eqs. (25)
and (28), the strained shift on the threshold voltage can be solved. However, it should be noticed
that the deformation potentials are dependent on the semiconductor material types and the
doping conditions in the channel. Moreover, the transistor layout will affect the theoretical values
of the deformation potentials as well. Although the deformation potentials in the semiconductor
channel are indeterministic in most real cases, there is still a significant observation according
to Eqs. (25) and (28) that the stress-induced ΔVth is proportional to the average stains in the
channel, so that it should be proportional to the average stress as well, as given in Eqs. (29),

ΔVth = λ1σav,L+λ2σav,T (29)

where λ1 and λ2 are two constant coefficients, which can be linearly regressed from experimental
measurements. The derivations for the linear proportionality of ΔVth and mechanical stresses
exhibited in Eq. (29) fully explains the linear electrical-mechanical coupling relation in previous
experimental models [10–12]. Theoretically speaking, λ1 and λ2 are the sensitivity coefficients
which depends on the deformation potentials in the semiconductor channel.

Table 1: Dilation and uniaxial deformation potentials for the lowest indirect conduction bands of
Si and Ge obtained from theoretical calculations or experimental measurements

�d �u

Si −6.0(1) −0.77∗(2) 2.5∗(3) 7.8(1) 8.86(2) 10.5(3)

Ge −9.1(1) −0.9∗(2) 5.75∗(3) 15.9(1) 7.24(2) 9.75(3)

Considering a MOSFET in enhancement mode, the algebraic model of the MOSFET has
three operational regions, i.e., subthreshold region, linear region and saturation region [31].
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The drain current in subthreshold region is almost zero, and is described by Eqs. (30) and (31)
in the linear region and saturation region, respectively [32],

ID =μeff Cox
W
L

[
(VGS−Vth)VDS−

V2
DS

2

]
(30)

ID = μeff Cox
2

W
L
(VGS−Vth)

2 [1+λ (VDS−VDSsat)] (31)

where μeff is the effective carrier mobility, Cox is the per unit area gate oxide capacitance, W is
the channel width (lateral size), L is channel length (longitudinal size), λ is the channel-length
modulation parameter (∼0.01), VGS is the potential difference between gate and source and VDS
is for drain and source. The strained effects on other electrical parameters are not discussed in
this paper, relevant parameters (Cox, W , L, λ) are treated as constants in the simulation. Heidari
et al. [11] briefly discussed strain effects on Cox in Verilog-A model, where it showed that the
strained effects on Cox is infinitesimal and can be omitted. Therefore, Eqs. (22) and (28)–(31)
form the computational electrical model for simulating an inverted staggered TFT under strains.

3 Simulation of the Inverted Staggered TFT

The structure of the two-dimensional inverted staggered TFT is shown in Fig. 6. Terminal
electrodes are made of Indium-Tin-Oxide (ITO), the semiconductor is ZnO, the insulating layer
is SiO2, and the encapsulating layer is polyethylene (PET). The key properties for these materials
are presented in Tab. 2. The longitudinal dimension of TFT is 44 μm and the thickness is 36 μm.
The thickness for each layer is also recorded in Tab. 2. The length of ZnO channel is 18 μm.

Figure 6: The structure of a 2D inverted staggered TFT interfaced with human skin

For a TFT with substrate thicker than ten microns, the bonding force/adhesions on the
interface between substrate and human skin surface is infinitesimal [17], and, as a result, the
shear force/tensions on the substrate is also negligible. Therefore, within two sources of boundary
excitations shown in Fig. 2, we only consider normal vibrational excitation in our study. In order
to further strengthen our previous claim, we consider that the forearm skin can be modeled
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by the three-stage cascaded model in Khatyr et al. [33], where the stress-strain relation is then
given by:

σ = ε

1
Ee

+ 1−exp(−t/τ)
Eve

+A
[
1−∑5

i=1 ai exp(−t/bi)
] (32)

Table 2: Material properties used in mechanical modeling

Material E (GPa) Density (g/cm3) Thickness (μm)

ITO 116 7.1 2
ZnO 137 5.6 2
SiNx 250 3.1 3
SiO2 70 2.2 3
PET 5 1.4 12 (top)/18 (bottom)

Let us assume the channel of TFT is along the longitudinal axis of the arm. An average
elastic modulus close to the longitudinal axis is reported to be E1 = 0.657 MPa [33]. We consider
E1 as the initial Young’s modulus of the skin at the elastic stage of Khatyr’s model, i.e., Ee ≈
E1 = 0.657 MPa. Then it can be observed from Eq. (32) that the tension stress on the surface
should be evaluated by Eq. (33), where Eeff is the effective Young’s modulus of the arm skin
along longitudinal axis and it should be less than Ee, Eve and 1/A implied by Eq. (32).

σ =Eeff · ε ≤Ee · ε (33)

(a) (b)

Figure 7: (a) Stress distributions in TFT under symmetric tensional force on the bottom layer (in
MPa); (b) Stress distributions in TFT under vibrational excitations on the bottom layer (in MPa)

Thus, we take values suggested in Khatyr et al. [33] and it is found that the tension stress
on the arm skin surface is σ ≤ Ee · ε ≈ 0.657× 0.6= 0.4 MPa. In order to observe the effects of
the tensional boundary condition on the bottom layer of TFT, we compare the contour plots of
longitudinal stress in the TFT with two types of boundary conditions, as shown in Fig. 7. Since
the channel stress induced by the tensional boundary condition is much smaller than that induced
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by the normal stress boundary condition, we believe that the tensional boundary condition on
the TFT-skin interface can be neglected. This is in agreement with the claim that the normal
vibration is the major source of boundary excitations.

In the simulation, the inverted staggered TFT is attached on the human skin with two
endpoints fixed, and a sinusoidal normal pressure (i.e., skin surface vibrations) with intensity of
20 MPa and frequency of 50 Hz is assumed on the TFT-skin interface. The choice of 20 MPa
and 50 Hz in the simulation is made by referring to reported values in Kandel et al. [18] and
Pawlaczyk et al. [34], with child skin elasticity modulus reported as 70 MPa and the elderly adult
skin of 60 MPa. Moreover, Pawlaczyk et al. also stated that the mean ultimate skin deformation
before bursting was 75% for newborns and 60% for the elderly [34]. Due to the viscoelasticity
of human skin, it is implied by Eq. (33) that the intensity of normal pressure (stress) should
be less than 36 MPa for elderly and 52.5 MPa for newborns. Accordingly, 20 MPa is less than
36 MPa and taken as an intermediate vibration intensity value in the simulation with acceptable
and semi-empirical accuracy.

Table 3: 2D MSD parameters for PET layer in TFT with different MSD sizes (Assume damping
ratio ζ = 0.005)

id Type
(M ×N)

mj,k
×10−9

kg

kj,k,1,
kj,k,3
×109

kg/s2

kj,k,2,
kj,k,4
×109

kg/s2

c∗j,k,1
×10−3

kg/s

c∗j,k,3
×10−3

kg/s

cj,k,2,
c∗j,k,4
×10−3

kg/s

1 44× 36 1.4 5 2.5 4.58 4.58 2.29
2 88× 72 0.35 5 2.5 2.29 2.29 1.15
3 132× 108 0.156 5 2.5 1.53 1.53 0.76
4 176× 144 0.0875 5 2.5 1.15 1.15 0.57
5 220× 180 0.056 5 2.5 0.92 0.92 0.46
6 264× 216 0.0389 5 2.5 0.76 0.76 0.38
7 308× 252 0.0286 5 2.5 0.65 0.65 0.33
8 352× 288 0.0219 5 2.5 0.57 0.57 0.29
9 396× 324 0.0173 5 2.5 0.51 0.51 0.25
10 440× 360 0.014 5 2.5 0.46 0.46 0.23
11 484× 396 0.012 5 2.5 0.42 0.42 0.21
12 528× 432 0.010 5 2.5 0.38 0.38 0.19
13 572× 468 0.008 5 2.5 0.35 0.35 0.18
14 616× 504 0.007 5 2.5 0.33 0.33 0.16
∗Note: The values of damping coefficients are for internal PET cellular units, not for cellular units on the PET boundary.

The normal stress boundary condition is assumed to be a sinusoidal vibration with intensity
of 20 MPa, as the normal stress on the TFT-skin interface should not be a constant value. The
sinusoidal normal stress boundary condition guarantees that the intensity of interface stress can
be decomposed and take values in a continuous range from 0 to 20 MPa. The intensity value
20 MPa is not the exact stress value on the skin-TFT interface. However, it should be treated
as an intermediate value of the normal stress on the interface when the strain happens to be
60%. Besides that, it is found in Tab. 3 [35] that the Young’s modulus of human middle back
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skin is 63.75 MPa in the bilinear elastic skin model (Hooke’s law can be applied). If we place
the TFT on the patient’s middle back skin (which is a common point in electroencephalogram),
20 MPa (<63.75×60%= 36 MPa) is in the valid range of stress intensity for human middle back
skin. Moreover, the Young’s modulus of some animal’s skin (e.g., cattle skin) can range from
100∼3500 MPa [36–38]. If we assume the TFT is placed on the animal skin, 20 MPa is also a
reasonable stress intensity value for simulation study.

Even if some biometric researchers believe that the Young’s modulus of human skin can be
as large as 100 MPa, it is implied by Eq. (33) that the normal stress should be no greater than
60 MPa (this value is an upper bound, but not the least upper bound of the normal stress on
the TFT-skin interface.). In Section 3.3, we will also discuss the stress-induced effects on TFT’s
electrical properties when normal stress boundary condition is applied with stress intensity of
60 MPa.

3.1 Implementation and Analysis for 2D MSDModel
The materials’ constitutive equation will generate the stiffness, mass and damping coefficients

for each cellular unit under different MSD sizes. In the 2D MSD model these parameters are
determined as follows: mj,k = ρV/Nc, where ρ is the material’s density, V is the space volume of
the single-material layer, and Nc is the number of cellular units in the layer. Spring stiffness kj,k
has four directional components. The dimensional analysis shows that their values are propor-
tional to materials’ elastic modulus. In our model we let them coincide in magnitude with elastic
modulus. The damping coefficient cj,k has four components as well, their values are determined
by Eqs. (20) and (21). Let M and N denote the number of cellular units in each row and in each
column respectively. Then, the MSD parameters for the PET layer under different MSD sizes can
be approximated and recorded in Tab. 3.

The contour plots of the total displacement in the inverted staggered TFT solved by 2D MSD
model are shown in Fig. 8. In our paper, COMSOL is adopted to generate meshes for FEA,
whose size is automatically adjusted by the software kernel. In order to address our viewpoint,
the mesh refinement study was implemented and five groups of meshes and their FEA results are
shown in Fig. 9. Additionally, the inverted staggered TFT is also simulated through FEA and its
total displacement is presented in Fig. 10.

The mesh sizes and FEA simulation results processed with an 8-core Intel Core i9 CPU are
summarized in Tab. 4. When mesh sizes decrease to less than 0.295 μm, the FEA simulation
converges and the average stress in the active layer is solved. As shown in Tab. 4, the average
longitudinal stress in the active layer is approximately 20.35 MPa. This converging tendency in
FEA simulations can also be seen in Fig. 9, where the maximum field stress mainly locates within
the active layer, dielectric layer and the two endpoints of the bottom boundary layer.

With the number of cellular units in the MSD model increasing by several times over,
the simulated displacement field in the 2D MSD model is very close to the total displacement
contours shown in FEA model. In comparison with FEA, the MSD model has much simpler
formulation since the original 2D MSD dynamic equations can be compactly expressed in matrix
form. With all its coefficient matrices filled sparsely, the compact MSD system reveals that less
machine memory is needed in the calculations than FEA simulations. Indeed, it is found in
our study that FEA simulation generally requires more than 10 GB of memory during the
computations to drive the solution converge. However, it only requires less than 4 GB of memory
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for an MSD model with 616× 504 cellular units to obtain a comparable solution. In addition,
it should also be noted that the computational complexity of MSD is greatly reduced if the
MSD systems are solved with computationally efficient numerical algorithms. Farmago et al. [39]
reported that the FEA method has a computational complexity of O(NW2), where W is the
bandwidth of the banded stiffness matrix and N is the number of nodes, N∼1/(mesh size)2.
This result is in agreement with the five groups of simulation times reported in Tab. 4. In
contrast to FEA method, multiple iterative solvers such as GMRES, SOR and Gauss–Seidel
can be employed to solve the inversion of sparse matrices in MSD model, and the simulation
efficiency is tremendously improved by rendering a simulation time less than 2 minutes. Besides,
the MSD approaches provide analytical expression, which can be used to derive the electro-
mechanical relationship, as well as to perform the model reduction of the flexible circuitry,
which is useful for control of electrical responses of flexible circuitry with more complicated
geometrical topologies.

Figure 8: The total displacement field of the inverted staggered TFT modeled by 2D MSD
structure under different sizes (MSD model is implemented with MATLAB)
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Figure 9: The mesh plots (left) generated by COMSOL and its corresponding stress distributions
(right) in the longitudinal direction
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Figure 10: The total displacement field of a 2D inverted staggered TFT in solid mechanics model
(FEA is implemented with COMSOL)

Table 4: Mesh size and FEA simulation results of the mesh refinement study

Mesh size (μm) Average stress (MPa) Simulation time (s)

2.950 28.63 10
1.540 25.57 14
0.572 23.16 135
0.295 20.38 564
0.088 20.33 6035

Fig. 11 presents curves that demonstrate the linear relationship between average channel stress
and the average channel displacement. The positive and negative stress indicate that the channel
is under stretching and compression respectively. Under small displacements, the linear stress-
displacement relation stems from the linear strain-displacement relation in Eq. (5). Given this
linear stress-displacement relation in the ZnO channel, the relationship between average channel
stress and the MSD sizes can be plotted in Fig. 12. It is shown in Fig. 12 that average channel
stress shows a tendency to converge as the MSD size increases. This observation also implies
the validity of the 2D MSD structure for modeling the mechanical deformations in the inverted
staggered TFT.

3.2 Analysis for Strained Effects on the Carrier Mobility and the Threshold Voltage
With Eqs. (22), (23) and (28), the displacement, stress and strain distributions obtained from

the 2D MSD model can be utilized to predict the strained variations on the charge mobility and
the threshold voltage (μeff and Vth) in the inverted staggered TFT. Since the semiconductor in our

TFT is ZnO, the piezoresistive coefficient is given as Π (45◦, 45◦)= GF
E

= 16.66667× 10−12Pa−1,

where GF = ΔR
R

· 1
ε

is the gauge factor of the thin-film ZnO [40]. As given in Janotti et al. [41],

if the uniaxial deformed effect is neglected, the potential deformations in ZnO channel are
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Ξd = −3.1 eV and Ξu ≈0. Consider that trace (ε) = ε1 + ε2 + ε3, the strained variations on the
charge mobility and the threshold voltage are displayed in Fig. 13.
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Figure 11: The linear stress-displacement relations demonstrated in the ZnO channel, positive
stress means channel is under stretching and negative stress means channel is under compression
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staggered TFT model under different MSD sizes
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Figure 13: The strained variations on the charge mobility and the threshold voltage for an
inverted staggered TFT under a sinusoidal developed boundary excitation

3.3 Electrical Characterization of the Inverted Staggered TFT
Since the TFT is assumed to be an n-type in enhancement mode, Eqs. (30) and (31) can

be employed to simulate the transconductance curves of the transistor in linear and saturation
regions. The strain-free parameters for our inverted staggered TFT are given in Tab. 5, where
μeff is stress-free charge mobility in cm2/(Vs), Vth is the stress-free threshold voltage in V. The

vacuum permittivity ε0 is in m−3s4A2/kg, εr is the relative permittivity in ITO, tox is the thickness
of the ZnO layer in μm and Cox is the per unit area gate oxide capacitance in F/cm2, and Cox=
ε0εr

tox
. Besides, we assume the gate oxide layer and the ZnO layer have the same thickness in the

modeling. Accordingly, the transconductance curves of the drain current and the drain-source
voltage are characterized in Fig. 14. Similarly, the transconductance curves of the drain current
and the gate-source voltage are displayed in Fig. 15. As shown in these figures, the drain current
ID will deviate from the strain-free value for less than 0.03%.

There are two reasons accounting for this trivial shift on the TFT’s electrical characteristics.
Initially, we assume that the two endpoints of the skin-TFT interface are fixed, this constraint
will prevent the slipping motions between the substrate and the human skin in the longitudinal
direction. Additionally, the thickness of the substrate (i.e., the PET encapsulating layer) is too
large in contrast to other functional layers, so that the surface adhesion (bonding force) between
skin and substrate is too small and the substrate tensions are neglected in our model. Per the
analysis, it is found that a safe way to ensure that the electrical performance of the thin-film
sensors is not adversely affected by mechanical vibrations or deformations is to increase the
thickness of the encapsulating layer. Adding a thick encapsulating layer can not only reduce
the effects of vibration, but also help move the neutral stress plane to the sensor’s location if
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bending occurs. This finding is usually helpful for guiding the manufacturing of flexible thin film
electronic devices.

Table 5: Stress-free electrical parameters for ZnO channel [42]

μeff Vth ε0 εr tox Cox

ZnO 110 2 8.8542× 10−12 3.3378 0.2 1.478× 10−8
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Figure 14: The transconductance curve between drain current and drain-source voltage for the
inverted staggered TFT under a sinusoidal boundary excitation on the skin interface (t= 0.005 to
t= 0.015 is a half period of the boundary excitation)

In the original analysis, 20 MPa is an intermediate value within the normal stress spectrum
on the TFT-skin interface. If we assume the intensity of boundary stress takes an upper bound
value (e.g., 60 MPa), the stress-induced effects on μeff and Vth will be reinforced in contrast to
boundary vibration with 20 MPa. According to simulations, it is found that the relative change
of μeff is 0.1%, and 0.024% of Vth. Even undergoing a boundary vibration with an upper bound
intensity of 60 MPa, the enhancement-mode TFT characteristics (e.g., ID) will be shifted only
by less than 0.1%. This implies that the electrical characteristics of the TFT will not be severely
impaired by the channel stress when it is attached on a patient’s forearm skin.
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Figure 15: The transconductance curve between drain current and gate-source voltage for the
inverted staggered TFT under a sinusoidal boundary excitation on the skin interface (t= 0.005 to
t= 0.015 is a half period of the boundary excitation)

4 Conclusion

Prior researchers have developed multiple models to simulate TFTs. However, those models
either strongly depend on parameters that need to be identified from experimental measurements,
or are not capable of dealing with complex boundary conditions. This paper aims at developing
a two-dimensional MSD structure to explore the mechanical deformations and electrical charac-
teristics in an inverted staggered TFT. From the modeling and simulation of inverted staggered
TFT, we theoretically proved the linear electrical-mechanical coupling relation from the quantum
mechanics. Under a sinusoidal boundary excitation with intensity of 20 MPa and frequency of
50 Hz on the skin-TFT interface, it is found that the transconductance curves of the TFT shift
only by 0.03% in comparison to stress-free scenarios. This finding implies that the stress-induced
effects can be reduced by properly adjusting the thickness of the substrate in TFT. Meanwhile,
by comparing MSD’s displacement contour plots with that of a finite element model, we also
confirm the validity of the 2D MSD structure in the modeling for an inverted staggered TFT
and identify the advantages of MSD model over FEA model in the modeling of TFT.

These findings not only have significant implications for the understanding of how to char-
acterize the electrical properties in a strained inverted staggered TFT, but also have a bearing
on the development and innovations for modeling, design and manufacturing of general flexible
electronic devices. The work scope of this paper is developing a novel modeling approach of an
inverted staggered TFT attached on the human skin based on two-dimensional MSD structure.
Its experimental portion for characterizing the real transconductance curves will be presented in
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the follow-up papers. The study conducted here certainly shed new light on the modeling research
for flexible TFTs and enrich the knowledge base from the perspective of physics.
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