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Abstract:This paper focuses on the unsupervised detection of theHiggs boson
particle using the most informative features and variables which characterize
the “Higgs machine learning challenge 2014” data set. This unsupervised
detection goes in this paper analysis through 4 steps: (1) selection of the most
informative features from the considered data; (2) definition of the number of
clusters based on the elbow criterion. The experimental results showed that
the optimal number of clusters that group the considered data in an unsuper-
vised manner corresponds to 2 clusters; (3) proposition of a new approach
for hybridization of both hard and fuzzy clustering tuned with Ant Lion
Optimization (ALO); (4) comparison with some existing metaheuristic opti-
mizations such as Genetic Algorithm (GA) and Particle SwarmOptimization
(PSO). By employing a multi-angle analysis based on the cluster validation
indices, the confusion matrix, the efficiencies and purities rates, the average
cost variation, the computational time and the Sammon mapping visualiza-
tion, the results highlight the effectiveness of the improved Gustafson–Kessel
algorithmoptimizedwithALO (ALOGK) to validate the proposed approach.
Even if the paper gives a complete clustering analysis, its novel contribution
concerns only the Steps (1) and (3) considered above. The first contribution
lies in the method used for Step (1) to select the most informative features
and variables. We used the t-Statistic technique to rank them. Afterwards,
a feature mapping is applied using Self-Organizing Map (SOM) to identify
the level of correlation between them. Then, Particle Swarm Optimization
(PSO), a metaheuristic optimization technique, is used to reduce the data set
dimension. The second contribution of this work concern the third step, where
each one of the clustering algorithms as K-means (KM), Global K-means
(GlobalKM), Partitioning AroundMedoids (PAM), Fuzzy C-means (FCM),
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Gustafson–Kessel (GK) and Gath–Geva (GG) is optimized and tuned
with ALO.

Keywords: Ant lion optimization; binary clustering; clustering algorithms;
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genetic algorithm; particle swarm optimization

1 Introduction

Knowledge discovery mechanisms promote combination within or across machine-learning
algorithms. There are two common techniques to extract knowledge: classification and clustering.
Clustering identifies the distribution of patterns in the data sets by grouping the similar data
points. The objects from the same group are more comparable to those of distinct groups. Some
clustering algorithm results are highly dependent on initial cluster centroids which make their
high probability of trapping into local optima [1].

Particle Swarm Optimization (PSO) [2], Firefly Algorithm [3], Ant Colony Optimization
(ACO) [4], Spider Monkey Optimization (SMO) [5], Artificial Bee Colony (ABC) [6], Grey
Wolf Optimizer (GWO) [7], Whale Optimization Algorithm (WOA) [8], Moth-fame Optimization
(MFO) [9] and Ant Lion Optimizer (ALO) [10] are some metaheuristic methods that help to
efficiently explore the search space and avoid becoming stuck in local optima. The Salp Swarm
Algorithm (SSA), which is an inspiration of the swarming behavior of salps, was introduced
in [11]. A harmonized salp chain-built optimization was presented in [12] to improve the search
mechanism of the classical SSA using the opposition-based learning and LVF search concepts.
A hybrid multi-objective GWO was used in [13] for a dynamic welding scheduling problem.
To minimize the potential energy of molecules, a Hybrid Grey Wolf Optimizer and Genetic
Algorithm (HGWOGA) has been designed in [14]. A binary version of GWO for feature selection
was presented in [15]. The work done in [16] presents five variants of GWO and analyses their
performance using a fuzzy hierarchical operators. In [17], aGWO for multi-objective optimization
problems was developed. A novel Random Walk Grey Wolf Optimizer (RW-GWO) is proposed
to increase the potential of GWO algorithm in [18]. A study proposed a memory-based Grey
Wolf Optimizer for global optimization tasks (mGWO) [19]. A Hybrid Grey Wolf Optimizer with
mutation operator was presented in [20].

Combined to these metaheuristics, many clustering approaches have been proposed in the
literature in order to reduce the issue of local optimum trap. A clustering analysis using a novel
locality-informed grey wolf-inspired clustering approach was defined in [21]. A novel clustering
method using enhanced Grey Wolf Optimizer (GWO) and Map Reduce is presented in [22]. An
Ant Lion-based Random Walk Differential Evolution algorithm for optimization and clustering
was proposed in [23]. An improved Particle Swarm Optimization (PSO) based K-means applied
to Fault signal diagnosis is cited in [24]. A review on clustering with Genetic Algorithms (GA)
was done [25]. An engine fault signals diagnosis using Genetic Algorithm and K-means based
clustering is defined in [26]. A Whale Optimization Algorithm (WOA) approach for clustering is
introduced in [27]. Clustering was implemented in various areas with the development of data
mining, such as graphical recognition [28], machine learning [29], market analysis [30], medical
diagnosis [31,32] and high-energy physics [33,34].

The primary concern of the field of high-energy physics is the interactions of the essential
constituents of matter. The modern accelerators are the primary tools used in high energy physics
experiments, allowing the creation of new particles that only result in extremely high energy.
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A particularly interesting particle is the Higgs boson, created by physicist Peter Higgs to argue
the validity of the standard model [35]. This particle was the subject of the 2013 Nobel Prize
in Physics awarded jointly to Peter Higgs and François Englert, after its discovery by the CERN
(European Nuclear Research Organization) at Large Hadron Collider (LHC) [36]. Some of these
researches were ATLAS [37] and CMS which claimed the Higgs boson discovery [38]. The Higgs
boson has several distinct decaying procedures. Putting the original discovery aside, the study of
all decaying modes assures the validity of the theory and allows distinguishing new elements.

It should be noted according to Higgs boson recognition complexity, that high-performance
methods such as neural networks as well as other multidimensional methods have been
used [39–42]. However, the use of clustering methods in the high energy physics and the Higgs
boson search is restricted. For the high energy physics data classification, some clustering meth-
ods [43] and similar techniques that focus on a space-filling curve are applied [44]. A dynamic
nearest neighbor graph implemented with computational geometry was first used in the study of
Jet clustering in particle physics event properties [33]. An approach based on Fuzzy clustering
algorithms is proposed for the recognition of particles based on pulse shape evaluation [45].
Studying the H to tau–tau channel was the topic of the ATLAS challenge [46]. Using a collection
of deep neural networks, the winning method [47] had costly computational complexity but
achieved results greater than the runner-up with a margin that is statistically important. There
is also an advanced Decision Tree technique that offers a solid balance between efficiency and
simple implementation [48]. An attempt to prove that Cartesian Genetic Programming (CGP)
could be an interesting solution to learn from the Higgs big data set was presented in [49]. The
work done in [50] shows a practical implementation for the study of non-resonant production of
Higgs boson pairs in the context of extensions of the standard model with anomalous couplings
of the Higgs bosons.

To identify the Higgs boson signals and achieve a better classification performance, it is
important that the features selected contain necessary discriminative information. Good classi-
fication results can be achieved if the input is well prepared. This promotes the use of simple
algorithms which resulting functions are easy to interpret compared with complex schemes such
as neural networks or support vector machines [41]. There isn’t any ideal algorithm for clustering
that is suitable for all areas. Successfully applying a specific technique in one domain does not
necessarily imply that it can be deployed in another domain with the same degree of satisfaction.
Several considerations can affect the decision of the best technique of clustering such as the
understanding of the clustering objectives, the comparison of the algorithms results and the use
of the appropriate clustering performance measurements [29]. The interaction between the data
to be clustered and the efficiency of distinct clustering algorithms is an interesting issue that
has yet to be answered in clustering. An attempt to locate the optimum cluster number, while
comparing between hard and fuzzy clustering algorithms of the applied thyroid diseases data set,
is presented. Our work is a continuity of the one presented in [31].

The main contribution of the approach presented in this paper is the hybridization of fuzzy
and hard semi-supervised clustering algorithms tuned with ALO to distinguish a Higgs signal
from a background in an unsupervised way. The clustering algorithms used in this hybridiza-
tion are K-means [51], Global K-means [52,53], K-medoids [54–56], Fuzzy C-means [57,58],
Gustafson–Kessel [57,58] and Gath–Geva [57,58] algorithms. To bring to a close the performances
of this hybridization, a comparative study is done with some metaheuristic methods such as
GA [26,59] and PSO [60,61] using multiple validity indexes. In addition, an in-depth investigation
of the proposed algorithms parameters was carried to achieve better results.
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This paper presents another contribution when selecting the most informative features from
the dataset using a feature engineering technique based on Higgs data quantities ranking using
T-statistic method and K-means algorithm optimized using PSO, before excluding highly corre-
lated features using SOM and then features dimensionality reduction using K-means algorithm
optimized by PSO.

The Machine Learning dataset (HiggsML)—based on ATLAS events and characterized by a
list of selected attributes and variables—is used to confirm the proposed approach [62].

The elbow criterion [63] is applied to find the optimal number of clusters that group the
considered data in an unsupervised way.

The rest of this paper sections is organized as follows. Section 2 explains the dataset setting
and gives the physics background of this work. Section 3 introduces the clustering and meta-
heuristic algorithms used in this work. Section 4 is dedicated to our proposed approach. Section 5
reports the performance of the experimental analyses and comparisons of the proposed clustering
algorithms. Section 6 concludes the analysis and discusses future research directions.

2 Data

As part of the mechanism that gives mass to other elementary particles, the Higgs Boson
particle was theoretically anticipated to exist almost 50 years ago. Its importance lies in the fact
that it is the last ingredient of the particle physics Standard Model for fundamental particles
and forces.

In the beginning, an LHC event is initiated by a proton–antiproton collision. By using
detectors surrounding the intersection zone, it can be observed that the collision energy forms
new particles. Most events, however, do not generate interesting particles like the top quark
or the Higgs boson. A successful interpretation of data relies on the efficient distinction
between events that produce interesting particles (signal) as well as those who produce other
particles (background).

In the past, human knowledge (naive-Bayes-like “cut-based” methods) designed the region
of interest. Event selection in high-energy physics is an important topic for machine learning as
multiple background kinds can match the distinct signature of the signal.

From the point of view of machine learning, the concern can be formally considered as
binary classification problem where the events generated in the collider are pre-processed and
reflected as feature vectors. The concern is to classify events as a signal (i.e., an event of interest,
in this work a decay of H to tau–tau) or background (an event produced by processes already
known). More specifically, the classifier is used as a technique of selection that specifies a signal-
rich region (not necessarily connected) in the space of the feature. While the objective is to find a
new phenomenon, in the real data, the labeled actual signal events are not available. Alternatively,
an extensive simulator is used to simulate events by producing artificial events based on the
Standard Model and a detector model, taking into consideration possible artifacts and noise.
These simulations are used to evaluate the classifiers.

The classes are very imbalanced in the real data (around two signal events after pre-selection
in a thousand events). For this reason, in signal events, the simulated data used in this work
is enhanced. Weights are applied to all events of significance to reflect their chances of event
occurring to compensate for this bias.
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CERN’s ATLAS experiment provided simulated data used in many types of Higgs boson
research. A portion of these data was publicly released.

The work presented in this paper is based on the data provided by the Higgs Boson
Machine Learning experiment (HiggsML) organized in 2014 by the ATLAS physicist’s team and
computer scientists [62].

As introduced above, this work considers two classes of Higgs Boson: signals (denoted H
class) and background (B class). Notice that, each class consists of several sub-classes reflecting
the various Higgs decay channels and various other typical reactions. These different subclasses
are not considered in this work.

The collected data amounted to 200,000 signals, with 100,000 learning signals and 100,000
test signals. In the first batch of signals, the class H participates with 34,170 events and the class B
participates with 65,830 events. As a test batch of signals, the class H participates with 35450
events and the class B participates with 64,550 events.

Each selected event is described using a list of features. The quantities that were selected by
the physicists of ATLAS to select regions of interest are [62]:

• F1: The estimated mass mH of the Higgs boson candidate, obtained through probabilistic
phase space integration.

• F2: The transverse mass between the missing transverse energy and the lepton.
• F3: The invariant mass of the hadronic tau and the lepton.
• F4: The modulus of the vector sum of the transverse momentum of the hadronic tau, the
lepton and the missing transverse energy vector.

• F5: The absolute value of the pseudorapidity separation between the two jets.
• F6: The invariant mass of the two jets.
• F7: The product of the pseudorapidities of the two jets.
• F8: The R separation between the hadronic tau and the lepton.
• F9: The modulus of the vector sum of the missing transverse momenta and the transverse
momenta of the hadronic tau, the lepton, the leading jet.

• F10: The sum of the moduli of the transverse momenta of the hadronic tau, the lepton,
the leading jet.

• F11: The ratio of the transverse momenta of the lepton and the hadronic tau.
• F12: The centrality of the azimuthal angle of the missing transverse energy vector with
respect to the hadronic tau and the lepton.

• F13: The centrality of the pseudorapidity of the lepton with respect to the two jets.

• F14: The transverse momentum
√
px2+ py2 of the hadronic tau.

• F15: The pseudorapidity of the hadronic tau.
• F16: The azimuth angle of the hadronic tau.

• F17: The transverse momentum
√
px2+ py2 of the lepton (electron or muon).

• F18: The pseudorapidity of the lepton.
• F19: The azimuth angle of the lepton.
• F20: The missing transverse energy �ET .
• F21: The azimuth angle of the missing transverse energy.
• F22: The total transverse energy in the detector.
• F23: The number of jets (integer with a value of 0, 1, 2 or 3; possible larger values have
been capped at 3).
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• F24: The transverse momentum
√
px2+ py2 of the leading jet, i.e., the jet with the largest

transverse momentum.
• F25: The pseudorapidity of the leading jet.
• F26: The azimuth angle of the leading jet.

• F27: The transverse momentum
√
px2+ py2 of the jet, i.e., the jet with second largest

transverse momentum.
• F28: The pseudorapidity of the subleading jet.
• F29: The azimuth angle of the subleading jet.
• F30: The scalar sum of the transverse momentum of all the jets of the events.

Each event is labeled as signal or background. Since the aim of this paper is an unsuper-
vised classification, the event label is not used as an input feature to the clustering classifier,
but as validation information. To avoid bias with a wider range, all the considered features
are normalized.

3 Methodology

The following subsections present an overview of the clustering algorithms and metaheuristic
techniques as well as some validation indices and performance metrics used in this work.

3.1 Clustering Algorithms
It is possible to categorize clustering algorithms into partition-based algorithms, hierarchical-

based algorithms, density-based algorithms, grid-based algorithms, fuzzy-based algorithms and
model-based algorithms [64–69]. These algorithms are used to measure the level of resemblance
within and between clusters.

Various clustering algorithms have been proposed and designed, including K-means [51],
Global K-means [52,53], K-medoids [54–56] and Fuzzy methods [57,58].

3.1.1 K-Means Algorithm
K-means (KM) clustering algorithm [51] is a well-known clustering method dividing samples

into K clusters by updating the center of clusters in an iterative way until the criteria for
convergence is met. Elements with highest resemblance are allocated to the same group and those
with reduced resemblance are allocated to distinct groups [31].

Algorithm 1: KM Algorithm
1: Initialize a set of K items as first centroids
2: Repeat
3: Structure K clusters by allocating all items to the adjacent centroid
4: Recompute every cluster’s centroid
5: Until no cluster position changes
6: Return K clusters positions

K-means clustering algorithm effectiveness is highly reliant on the randomly chosen initial
cluster centroids. Few options are suggested to fix this issue of initialization. One of those
techniques is the Global K-means clustering.
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3.1.2 Global K-Means Algorithm
The global K-means (GlobalKM) clustering is an efficient global clustering technique which

objective is to optimize the clustering error based on the K-means method as a local search
strategy. It is an iterative clustering method that adds one cluster sequentially by applying N
(equal to the data size) executions of the K-means algorithm as a global search process based on
non-random initial positions [52,53].

Algorithm 2: GlobalKM Algorithm
1: Define the first cluster by computing the global data center.
2: i= 2
3: Repeat
4: For each point of the dataset
5: Grant the current data point as the ith cluster
6: Allocate data elements to the nearest cluster from the i clusters.
7: Compute the root square quality per cluster using Eq. (1).

J =
K∑
i=1

∑
xj∈Ci

∥∥xj −ci‖ (1)

8: End for
9: Memorize the Ci cluster that optimizes the root square quantity as the ith center.
10: i= i+ 1
11: until i>=K
12: Apply the KM algorithm (Algorithm 1) to the identified clusters.
13: Return K clusters positions

3.1.3 K-Medoids Algorithm
K-medoids [54–56] is a development of K-means by handling separate data. It considers the

closest data point to the data centroid as the appropriate cluster. In comparison with K-means,
it is a solid method for noise and anomalies. This is due to the fact that K-medoids reduces the
sum value of dissimilitude between the cluster and the data points belonging to it, instead of the
sum of squared Euclidean distances.

Several approaches using the K-medoids method have been proposed, including those suggest-
ing novel multi-centroid, multi-run sampling schemes [55] and new search strategies for efficient
K-medoids-based algorithms [56].

The most prevalent technique of K-medoids clustering is the Partitioning Around Medoids
(PAM) algorithm [31,70]. This is also the algorithm that was adopted in our work as suggested
below (Algorithm 3).

Algorithm 3: PAM Algorithm
1: Select randomly K elements of the n data points as the medoids.
2: Repeat
3: Allocate each data element to the neighboring medoid.

(Continued)
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Algorithm 3 (Continued)
4: For each medoid m from the K selected ones
5: For each data element o allocated to m
6: Swap m and o.
7: Calculate the total cost corresponding to the average difference between o and all the m-related

data points.
8: End for
9: End for

10: until no cluster position changes
11: Return K clusters positions

3.1.4 Fuzzy C-Means Algorithm
The core idea of Fuzzy c-means (FCM) is to define the membership of each element to each

cluster using the optimization of the objective function. The membership summation of every
element of the data needs to be equal to 1 [31,71–79].

The cluster centroids are revised after each iteration based on the Eq. (2).

ci =
∑N

j=1 μij
mxj∑N

j=1 μij
m

(2)

where:

• N is the number of data points.
• ci corresponds to the ith cluster center with i ∈ {1, . . . ,K} and K is the number of clusters.
• M is the fuzziness index with m ∈ [1,∞[.
• K is the number of cluster center.
• μij is the membership of the ith data to jth cluster center. It is calculated using the Eq. (3):

μij = 1

∑K
l=1

dij
dil

(
2

m−1

) (3)

dij is the Euclidean distance between the ith data and the jth cluster center. It corresponds
to Eq. (4):

dij =
∥∥xi− cj

∥∥ (4)

The FCM algorithm’s primary goal is to optimize the objective function J detailed in the
formula Eq. (5):

J (U ,V)=
N∑
i=1

K∑
j=1

μij
mdij2 (5)

The FCM algorithm is given below. It can be ended if the objective function J can no longer
be minimized or the change of the cluster centers position becomes very small.
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Algorithm 4: FCM Algorithm

1: Select randomly K cluster centers.
2: i= 1
2: Repeat
3: Compute the fuzzy membership μij using Eq. (3).
4: Calculate the fuzzy centers ci using Eq. (4).
5: i= i+ 1
6: until the minimum value J presented in Eq. (5) is reached or

∥∥U(i+1) − U(i)
∥∥ < β , where:

• i is the iteration step,
• β the termination criterion belonging to [0, 1],
• U = (

μij
)
N×K is the fuzzy membership matrix.

3.1.5 Gustafson–Kessel Algorithm
Gustafson and Kessel were the first to propose the Gustafson–Kessel fuzzy clustering (GK)

algorithm [57,58]. This latter associates the cluster to its centroid and its covariance. Unlike the
FCM algorithm that considers clusters to be spherical, this restriction does not apply on the GK
algorithm that can identify ellipsoidal clusters [31,58].

The steps of the GK algorithm are given in Algorithm 5.

Algorithm 5: GK Algorithm
1: i= 1
2: Repeat
3: Calculate the clusters centroids positions based on Eq. (6).

ci =
∑N

j=1 μij
mxj∑N

j=1 μij
m

(6)

4: Compute the cluster covariance matrices using Eq. (7).

Vi =
∑N

j=1
(
μij

)m (
xj − ci

) (
xj − ci

)T
∑N

j=1 μij
m

(7)

5: Compute the distances using Eq. (8).

DijAi
2 = (

xj− ci
)T [

ρidet (Vi)
1
N Vi−1 (

xj − ci
)]

(8)

6: Update the partition matrix Eq. (9).

μij = 1

∑k
l=1

Dij
Dlj

(
1

m−1

) (9)

7: i= i+ 1
(Continued)
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Algorithm 5 (Continued)
8: until the minimum value J presented in Eq. (10) is reached or∥∥U(i+1) − U(i)

∥∥ < β , where:
• β is the termination criterion between [0, 1].
• U = (

μij
)
N×K is the fuzzy membership matrix.

The objective function to be minimized in this algorithm is as given in Eq. (10).

J (X ,U ,V)=
K∑
i=1

N∑
j=1

μij
mDij

2 (10)

3.1.6 Gath–Geva Algorithm
Gath and Geva generalize the highest likelihood estimate of the Fuzzy clustering. The clus-

tering algorithm Fuzzy maximum likelihood estimates (FMLE) is based on the FMLE distance
norm [31,58]. This norm distance decreases quicker than the one used in the GK algorithm.
The difference between Gath–Geva (GG) and GK algorithms is that for GG the distance norm
calculation includes an exponential term, which implies its faster decrease. This makes GG
algorithm tend to the closest local value. This can be resolved using efficient initialization [31,58].

3.2 Metaheuristic Algorithms
Many metaheuristic algorithms exist in literature as Genetic Algorithms (GA) [25,60], Particle

Swarm Optimization (PSO) [61] and Ant Lion Optimization (ALO) [10]. This section will briefly
introduce the metaheuristic algorithms used in this work.

3.2.1 Genetic Algorithm
GAPrinciple the genetic algorithm (GA) is a search heuristic inspired by the theory of natural

evolution of Charles Darwin [26].

It has three main operators: selection, crossover and mutation. A GA starts iteration with an
initial population.

A GA process is initiated with a random set of individuals, considered as solutions to the
problem to solve, called a Population. Each individual or solution is a chromosome identified by
a set of joined parameters called Genes and is evaluated then assigned to a fitness value. In the
selection procedure, some criterion is applied to select a certain number of strings, namely parents,
from this population according to their fitness values. Strings with lower fitness values have more
opportunities to be selected for reproduction in next step. This paper use a rank selection scheme
that allows the control of the selection pressure, denoted sp.

The most significant phase of the genetic algorithm is Crossover where the fittest individuals
for reproduction are selected to create offspring of the next generation based on the process of
natural selection [26,60]. This is an iterating process which ends to find a generation with the
fittest individuals. The crossover probability of a selected individual to go through a crossover
process is denoted pc.

Some of the genes of the formed offspring can be subjected to a mutation with a low random
probability pm. It occurs to prevent premature convergence and maintain diversity within the
population [25,59,60].
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The algorithm generally terminates when the population does not produce offspring signifi-
cantly different from the previous generation.

GA operates on a population (a number of potential solutions npop). The population at time t
is represented by the time-dependent variable S(t), with the initial population of random estimates
being S(0). Algorithm 6 shows the GA structure.

Algorithm 6: GA Algorithm
1: Initialize initial random population of npop elements.
2: t= 1
2: Repeat
3: Compute the fitness S(t) of the chromosome and remember the highest fitness value.
4: Select the parents of the next generation from the generated population.
5: Crossover the parent chromosomes.
6: Mutate the chromosomes.
7: i= i+ 1
7: until the end criterion is satisfied.

GA Based Clustering In the GA based clustering applications (Sections 4.4 and 5), the fitness
S(t) cited in Step 3 of the GA Algorithm corresponds to the optimal distance of the considered
clustering algorithm. The GA end criterion is satisfied in this work when the maximum number
of iterations is reached.

By using the previous clustering algorithms (defined in Section 3.1), we obtain the following
GA based algorithms: GAKM, GAGlobalKM, GAPAM, GAFCM, GAGK and GAGG. The
results of GA and clustering combinations are listed and analyzed in Section 5.

3.2.2 Particle Swarm Optimization
PSO Principle Particle swarm optimization (PSO) is a population based stochastic optimiza-

tion process [61]. It was implemented effectively in many fields such as system control, function
optimization, artificial neural network training and other areas.

A PSO process is initialized with a random population of solutions. The prospective solutions,
called particles, move via the problem space by following the current optimal solutions [24,60,61].

Every particle has a fitness value to evaluate by the objective function, and a velocity which
directs its flying. In every iteration, the particle swarm optimizer updates its velocity and position
using the two best attributes: the best solution it has reached named Pbest and the global best
value named Gbest as presented in Eqs. (11) and (12).

Vp=wVp+ c1R1
(
Pbest−Cp

)+ c2R2
(
Gbest−Cp

)
(11)

Cp=Cp+Vp (12)

where,

• Cp is the position of a particle and Vp its velocity.
• c1 and c2 are constants labeled as acceleration learning variables representing the weighting of
stochastic terms pulling each particle to Pbest and Gbest positions respectively.

• R1 and R2 are obtained through a standardized distribution in the interval [0 1].



470 CMES, 2020, vol.125, no.2

The inertia weight w is calculated for each iteration using Eq. (13).

wt = 0.05wt−1wdamp (13)

wdamp is the inertia weight damping ratio and t the current iteration.

Algorithm 7: PSO Algorithm
1: Initialize population.
2: Repeat
3: Evaluate individual fitness.
4: Update personal best Pbest.
5: Update global best Gbest.
6: Generate a new population.
7: Update velocity using the Eq. (11).
8: Update position using the Eq. (12).
9: until the end criterion is satisfied.

PSO Based Clustering in this work, the fitness cited in Step 3 of the PSO Algorithm corre-
sponds to the optimal distance of each clustering algorithm defined in Section 3.1. The PSO end
criterion is satisfied in this work when the maximum number of iterations is reached.

The results of PSO based clustering combinations giving the PSOKM, PSOGlobalKM,
PSOPAM, PSOFCM, PSOGK and PSOGG algorithms are listed and analyzed in Section 5.

3.2.3 Ant Lion Optimization
Ant lion optimization (ALO) algorithm [64] is based on ant lions hunting mechanism. It

consists on random walk exploration and random agent selection based on five main hunting
steps: random walk of agents, building traps, entrapment of ants in the trap, catching prey
and rebuilding traps. The ALO optimizer roulette wheel and random ants walks can eliminate
local optima.

The random walk of ants is given by:

X (t)= [0, cumsum (2r (t1)− 1) , cumsum (2r (t2)− 1) , . . . , cumsum (2r (tn)− 1)] (14)

where cumsum is calculating cumulative sum, n is maximum number of iterations and t is a step
of the random walk

r (t)=
{
1 if rand > 0.5
0 if rand < 0.5

(15)

rand is a random number generator between [0, 1]. The random walk can be produced within the
search space with Eq. (16).

Xt
i =

(
Xt
i − ai

)× (
dti − cti

)
(bi− ai)

+ cti (16)

bi, ai are the minimum and maximum values of random walk of ith variable.

cti ,d
t
i are the minimum and maximum of ith variable in the tth iteration.

Roulette wheel is used to increase the probability for catching ants. It identifies the fittest
ant lions.
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The mathematical equations for trapping are given by Eqs. (17) and (18).

cti =Antliontj + ct (17)

dti =Antliontj + dt (18)

where ct, dt are respectively the minimum and the maximum of all variables at tth iteration. cti , d
t
i

are respectively the minimum and the maximum of all variables for ith ant. Antlionj corresponds
to the ant position of chosen ant lion.

Antlions shoot sand outward to push ants into them. It is possible to design the mathematical
model for the above action:

Ct = ct

I
(19)

Dt = dt

I
(20)

where I = 10w t
T , t is current iteration and T is the maximum number of iterations.

The final phase of ant lions hunting conduct is to catch an ant that enters the bottom of a
pit and then the following equation must update its position to the recent situation.

Antliontj =Antti if f
(
Antti

)
> f

(
Antlionti

)
(21)

It is essential to keep the best solution in the evolution algorithm. This can be set up as:

Antti =
RtA+RtE

2
(22)

where RtA is the random walk around the antlion selected by the roulette wheel at tth iteration,

RtE is the random walk around the elite at tth iteration, and Antti indicates the position of ith ant

at tth iteration.

The detailed ALO algorithm is described in Algorithm 8.

Algorithm 8: ALO Algorithm
1: Initialize randomly the first population of Ants and Antlions.
2: Calculate the fitness value of Ants and Antlions.
3: Find the best Antlion which has the optimal fitness and save it as the elite.
4: Repeat
5: For each Ant
6: Select an Antlion using Roulette wheel.
7: Update c and d using Eqs. (19) and (20).
8: Create a random walk and normalize it using Eqs. (14) and (15).

(Continued)



472 CMES, 2020, vol.125, no.2

Algorithm 8 (Continued)
9: Update the position of ant using Eq. (21).

10: End for
11: Calculate the fitness of all Ants.
12: Replace an Antlion with its corresponding Antti if becomes fitter Eq. (22).
13: Update the elite if an Antlion has fitter value than it.
14: until the end criterion is satisfied.

3.3 Cluster Validation Indices and Performance Metrics
It is possible to use cluster validity indexes to validate the efficiency of a clustering method

and evaluate its fitness of data partitions. Usually these effectiveness indicators are autonomous
from clustering algorithms. Several cluster validity indexes were suggested in the literature for
clustering algorithms. The partition coefficient (PC) was the first suggested cluster validity
index. Subsequently, partition entropy (PE) was proposed as a normalization of PC. The sep-
aration coefficient (SC) was the first validity index to take the data geometrical properties
in consideration.

3.3.1 Partition Coefficient (PC)
The partition coefficient, in Eq. (23), is described as the Frobenius norm of the membership

matrix, divided by the data size [31].

PC (U)= 1
N

k∑
i=1

N∑
j=1

μij
2 (23)

where μij is the membership of data point j in cluster i. The optimum cluster number corre-
sponds to the PC’s highest value which shows the cluster’s compactness. This value is between 0
and 1 [31].

3.3.2 Classification Entropy (CE)
Classification entropy, Eq. (24) [31], like the partition coefficient, measures the fuzziness of

the cluster partition. They are both computed only using the membership matrix components.

CE (U)= −1
N

k∑
i=1

N∑
j=1

log
(
μij

)
(24)

The clustering is considered as efficient when PC index tends to 1 and CE index tends 0.

3.3.3 Partition Index (PI)
Partition index, in Eq. (25), is the proportion of clusters compactness sum in comparison

with their segregation [31].

PI (U)=
k∑
i=1

∑N
j=1 μij

m
∥∥xj − vi

∥∥2
Ni

∑k
l=1 ‖xl − vi‖

(25)

The partition is better when PI value is higher.
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3.3.4 Separation Index (S)
On the opposite of the partition index (PI), the separation index S Eq. (26) uses a minimum-

distance separation [31]. The partition is considered as optimal when separation index value S
is small.

S (U)=
k∑
i=1

∑N
j=1 μij

2
∥∥vj − vi

∥∥2
Nmini,l ‖vl − vi‖2

(26)

3.3.5 Xie-Beni Index (XB)
The Xie-Beni index is a fuzzy clustering validity measure that can be applied to crisp clus-

tering. It is identified as the ratio between the quadratic error average and the minimum square
distance between the clusters elements as given in Eq. (27) [31].

XB (U)=
∑k

i=1
∑N

j=1 μij
m

∥∥xj − vi
∥∥2

Nmini,j
∥∥xj − vi

∥∥2 (27)

The optimum fuzzy partition is attained by reducing XB with respect to c= 2, . . . , cmax.

3.3.6 Dunn’s Index (DI)
Dunn proposed a crisp clustering efficiency index used for the identification of compact and

strongly distinguished clusters. The Dunn’s index DI is defined by Eq. (28) [31].

DI (U)=mini∈C

[
minj∈c,i �=j

{
minx∈Ci,y∈Cjd (x,y)

maxk∈C
{
maxx,y∈Cd (x,y)

}
}]

(28)

where d is a distance function and Ci the set whose elements are allocated to the ith cluster.

3.3.7 Alternative Dunn’s Index (ADI)
Alternative Dunn’s index is an improvement of the initial Dunn’s index, Eq. (30). The compu-

tation becomes simpler when the dissimilarity function between two clusters (minx∈Ci,y∈Cj d(x,y))
is evaluated in Beneath value by triangle-nonequality [31]:

d (x,y)≥ ∣∣d (
y, vj

)− d
(
x, vj

)∣∣ (29)

where vj is the cluster center of the jth cluster.

ADI (U)=minj∈c,i �=j

{
minx∈Ci,y∈Cj

∣∣d (
y, vj

)− d
(
xi, vj

)∣∣
maxk∈C

{
maxx,y∈Cd (x,y)

}
}

(30)

3.3.8 Efficiency and Purity
To measure the efficiency of the used algorithms, external criterions that evaluate the

clustering matching of the actual classes are computed.

These performance parameters are the efficiency γi, and the purity βi of classifications. They
are calculated from the confusion matrix N(Nij), (Nij being the value of signals of genuine class
Ci classified as class Cj) (Tab. 1).
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Table 1: Confusion matrix

Actual class Predicted class
H B

H: N1 N11 N12
B: N2 N21 N22

For each class Ci, we have:

γi = Nii

Ni
(31)

βi = Nii∑
j Nji

(32)

The global performance parameters are then calculated as given in Eqs. (33) and (34).

γ =
∑2

i=1Niγi∑2
i=1Ni

(33)

β =
∑2

i=1Niβi∑2
i=1Ni

(34)

4 Proposed Approach

As previously introduced, the purpose of this work is to improve the classification of events
into Higgs Boson signal or background using the hybridization between fuzzy and hard semi-
supervised clustering algorithms tuned with ALO. Towards this end, this work has been done
based on 4 major processes:

• improved feature engineering approach,
• definition of the optimal number of clusters,
• new hybridization of fuzzy and hard clustering algorithms tuned with ALO and then
• PSO and GA based clustering used for a comparative analysis.

The details of each process are presented in the next sections.

4.1 Proposed Features Engineering Approach
4.1.1 Features Ranking Using T-Statistic Method and PSOKM

This feature selection method utilizes t-Statistic [80,81] where each element can be categorized
either into class of signals C1 or to class of backgrounds C2. For each feature Fi, PSOKM (KM
algorithm optimized using PSO) is applied on the data set (executed 50 times) to define the two
clusters and calculate t-Statistic as in Eq. (35).

t (Fi)= |μi1−μi2|√
σi1

2

n1
+ σi2

2

n2

(35)

where μij and σij denote respectively the mean and the standard deviation of ith feature Fi for
class Cj, j= {1, 2}, using PSOKM algorithm.
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The P value is described as the likelihood of achieving a result equivalent to or better the
observed one. When the p value tends to 1, no distinction is suggested between groups other than
by chance. If the p value is close to 0, the observed distinction is unlikely due to chance [81].

The t-statistic values and p-value are reported in Tab. 2 in an ascending order of the p-value.

Table 2: Ascendant ranking of features based on the T-statistic method

Attributes T-statistic p-value

F1 Inf 0.0000
F18 1.6893 0.0956
F23 1.6524 0.1029
F15 −1.2478 0.2163
F24 0.9466 0.3471
F30 0.8054 0.4233
F17 0.8054 0.4233
F14 0.8054 0.4233
F10 −0.8054 0.4233
F8 −0.7647 0.4470
F12 0.6476 0.5194
F5 −0.5639 0.5747
F19 −0.5585 0.5783
F6 0.5189 0.6054
F9 0.4959 0.6215
F21 −0.4574 0.6488
F28 0.3999 0.6904
F13 0.3904 0.6975
F4 −0.3828 0.7030
F3 0.3276 0.7442
F16 −0.2220 0.8250
F26 −0.2241 0.8233
F27 0.2113 0.8333
F29 −0.2056 0.8377
F7 0.1593 0.8739
F22 −0.1470 0.8836
F20 0.1282 0.8984
F25 0.0830 0.9341
F2 0.0462 0.9633
F11 0.0231 0.9871

4.1.2 Highly Correlated Features Exclusion Using SOM Technique
From Tab. 2 and Fig. 1, the second step excludes the features that are highly corre-

lated and allows having diversified discriminant information about events. In order to identify
the correlation between these ranked features, the Self-Organizing Feature Map (SOM) tech-
nique [82–90] is used, by plotting the weight planes that shows the values in each map unit for
each variable.
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Figure 1: Features weight planes using SOM

The SOM technique is a non-linear mapping algorithm that aims to achieve a low-
dimensional representation (usually 2D or 3D) of a set of points dispersed in high-dimensional
pattern space. It enables the Euclidean distances between the points on the map to be as
close as possible to the Euclidean distances in the high-dimensional pattern space between the
respective points [82].

Fig. 1 presents the differences regarding the input variables. Lighter and darker colors rep-
resent respectively larger and smaller weights associated to each feature. If the patterns of two
inputs are very close, they can be claimed that they are strongly correlated [83].

Then, the sets of features which are highly correlated and then very similar are:

—F5, F6, F7, F13, F27, F28 and F29.
—F24, F25 and F26.
—F4, F9 and F10.
—F14 and F20.

Using these sets and the feature ranking done in Tab. 2, only the first feature of each set is
kept. The other similar features are excluded. The most significant features list for classification



CMES, 2020, vol.125, no.2 477

in a descendant order is then: F1, F18, F23, F15, F24, F30, F17, F14, F10, F8, F12, F5, F19, F21, F3,
F16, F22, F2, F11.

The SOM parameters tuning that had given the most efficient results corresponds to a
dimension of 20× 20 and a number of epoch equal to 200.

4.1.3 Features Dimensionality Reduction Using PSOKM
The main idea of this section is to combine the softly correlated features, which leads to

a reduction of the dimensionality of the feature space. Having this dimensionality as low as
possible is very important to reduce exponentially the density of the dataset since the volume of
the feature space grows exponentially with each dimension. In addition, the computing time of
algorithms grows strongly with the number of dimensions.

The To define the best number of features to use from the list of attributes in the previous
section, the PSOKM algorithm is used. An experiment was conducted on the dataset to evaluate
the efficiency γi, and the purity βi of the classification for each batch of features results are
reported in Tab. 3.

Table 3: Efficiency and standard deviation using PSOKM with respect of features number

Features number 4 5 6 7 8 9 10 11

Accuracies average γ (%) 60.44 69.87 69.76 69.84 71.08 70.35 73.92 72.66
Standard deviation σ (%) 3.35 1.44 1.97 1.36 1.58 0.69 2.67 2.46

Features number 12 13 14 15 16 17 18 19

Accuracies average γ (%) 64.88 62.11 65.94 64.88 65.52 71.08 64.87 63.19
Standard deviation σ (%) 1.33 2.12 1.51 1.33 1.98 1.58 3.88 2.67

The PSOKM algorithm is executed 50 times. The averages of the experimental results of
the dimensionality reduction are shown in Tab. 3. Each column of this table corresponds to a
number of features taken from the first lines of Tab. 2, in the descendant order of their efficiency.
The combination of the features that gives better efficiency corresponds to the first 10 ones
from Tab. 2.

This work will then use the 10 features that was proven to be the most informative (F1, F18,
F23, F15, F24, F30, F17, F14, F10, F8) as the system input matrix, to which an efficient comparative
classification will be applied.

4.2 The Optimal Number of Clusters: Elbow Criterion
To find the optimal number of clusters, this work used the elbow criterion [63]. It consists

on applying clustering on the data for different number of clusters and validates the correctness
of the obtained results. The best number of clusters corresponds to the last one that adds
sufficient information.

To answer this, the most informative feature values for the Higgs Boson signals, as defined
in Section 4.1.3, are used as input for the clustering algorithms K-medoid (PAM) and Fuzzy
c-means (FCM).
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To validate the efficiency of these clustering methods and evaluate the data partitions fitness
in each iteration, some common cluster validity indexes, as PC,CE,PI, S, XB,DI, and ADI defined
in Subsection 3.3, are used.

There are several runs carried out with a distinct number of clusters ranging from 2 to 7.

Tab. 4 presents the validation indices values calculated for each run using the hard K-medoids
(PAM) algorithm. Each run corresponds to a specific number of clusters (between 2 and 7
clusters). Tab. 5 shows the results found using FCM algorithm.

Table 4: Validation indices for PAM algorithm

Number of PC CE PI S XB DI ADI
clusters

2 – – 6.1221 6.1221.10−5 – 0.0065 0.0289
3 – – 0.3482 4.2423.10−6 – 0.0114 3.0126.10−4

4 – – 0.3874 4.9631.10−6 – 0.0122 3.1035.10−4

5 – – 0.4431 5.7112.10−6 – 0.0096 3.0985.10−4

6 – – 0.2793 3.5406.10−6 – 0.0077 0.0015
7 – – 0.2178 2.4628.10−6 – 0.0073 2.8420.10−5

Table 5: Validation indices for FCM algorithm

Number of
clusters PC CE PI S XB DI ADI

2 0.8688 0.2472 0.4629 4.6286.10−6 7.0395 0.6855 0.0357
3 0.6707 0.5793 0.5067 5.9964.10−6 3.5061 0.0099 8.9665.10−5

4 0.5674 0.7767 0.3968 3.9794.10−6 3.0779 0.0078 0.0022
5 0.4828 0.9786 0.4058 4.7727.10−6 2.6825 0.0078 3.2168.10−4

6 0.4668 1.0605 0.3595 3.6755.10−6 3.2977 0.0079 0.0011
7 0.4289 1.1836 0.3535 3.9551.10−6 2.9973 0.0080 0.0012

PC and CE are not applicable for PAM since it is a hard clustering method [31]. In Tab. 4,
PI and S using PAM reveals that the number of clusters could be defined to 2 and 3 respectively.
XB index is infinity (Inf) for PAM as reported in Tab. 4. This reflects that an overflow happened
leading to a too large to represent as a conventional floating-point value. All XB index values
were equal to infinity. It may be caused by an initialization problem of the hard PAM clustering.
The plots of Dunn’s and alternative Dunn’s indexes in Tab. 4 confirm that the adequate clusters
number should be equal to 4 and 2 clusters respectively. According to this analysis, 2 clusters
achieve the highest information partitioning of data. According to the FCM results of Tab. 5, PC
and CE indexes reach the values 1 and 0 (respectively) when the number of clusters is rated to 2.
This means that when the number of clusters is equal to 2, the FCM based clustering is efficient.
The FCM results in Tab. 5 give more information about the optimal number of clusters using PI
and S indexes where the local minimum is reached when the number of clusters is 3. For the XB
index using FCM method, it is difficult to find the optimum number of clusters (Tab. 5). Either



CMES, 2020, vol.125, no.2 479

3 and 6 can be seen as an elbow. Dunn’s and the alternative Dunn’s indexes have an elbow when
the number of clusters is equal to 2. The hard PAM and the FCM algorithms based experimental
results shown that the elbow corresponds to 2 clusters.

Figure 2: Scheme of the proposed hybrid clustering tuned with ALO giving ALOKM, ALOGlob-
alKM, ALOPAM, ALOFCM, ALOGK and ALOGG algorithms
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4.3 Proposed Hybrid Clustering Tuned with ALO
Since ALO have the advantages of fast convergence, local optima avoidance, high effi-

ciency and improved exploration space and in order to enhance clustering ability to find
global minimum, a hybrid clustering approach is proposed. Fig. 2 presents the flowchart of
proposed algorithms.

In the proposed approach, the objective function to minimize corresponds to the clustering
algorithms used: KM, GlobalKM, PAM, FCM, GK and GG. Each one of the considered
clustering algorithms is hybridized and tuned with the Ant Lion Optimizer giving respectively the
ALOKM, ALOGlobalKM, ALOPAM, ALOFCM, ALOGK and ALOGG Algorithms.

Based on Section 4.2, the number of clusters to find for the considered data set is 2 clusters.
The aim of clustering in our case is to assign the Higgs data points to two clusters where each
one groups the data points with similar characteristics. The 10 most informative features selected
in Section 4.1.3 are used.

Each cluster, in our approach, is considered as an Antlion and the elite of the ALO algorithm
is a matrix of 2-anlions that optimizes the most the fuzzy and hard clustering algorithms.

In the first phase of the proposed approach, the best 2-anlions solution which optimizes the
most the considered hard or fuzzy clustering algorithm is defined. Then, the positions of the
initial population of ants are updated based on that. Thereafter, the fitness of each 2-ants is
calculated. The fitness of the fitter 2-ants element is compared to the elite in order to return the
best 2-clusters element. Many iterations are carried out in order to return the best results. The
details of the proposed hybrid clustering tuned with ALO are presented in Algorithm 9.

Algorithm 9: Proposed ALO Based Algorithms
1: Initialize randomly the first population of 2-antlions combinations and ants.
2: Calculate the fitness value of the 2-antlions elements using the considered hard or fuzzy

clustering algorithm in Section 3.1 as the objective function to optimize.
3: Find the best 2-antlions which has the optimal fitness and save it as the elite.
4: Repeat
5: For each ant
6: Select a 2-antlions element using Roulette wheel.
7: Update c and d using Eqs. (19) and (20).
8: Create a random walk and normalize it using Eqs. (14) and (15).
9: Update the position of ant using Eq. (21).

10: End for
11: Repeat
12: For each ant1
13: Repeat
14: For each ant2 different from ant1
15: Calculate the fitness of the considered 2-ants using the considered hard or fuzzy clustering

algorithm in Section 3.1.

(Continued)
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Algorithm 9 (Continued)
16: End for
17: End for
18: Define the fitter 2-ants element.
19: Update the elite (defined in Step 3) if the 2-ants element (found in Step 18) has fitter value

than it.
20: until the end criterion is satisfied.

4.4 Hybrid Clustering Combinations with GA and PSO
The performance of the proposed approach defined in Section 4.3 was compared to the

hybridization of GA and PSO with the same considered clustering algorithms (KM, GlobalKM,
PAM, FCM, GK and GG) giving respectively the GAKM, GAGlobalKM, GAPAM, GAFCM,
GAGK, GAGG, PSOKM, PSOGlobalKM, PSOPAM, PSOFCM, PSOGK and PSOGG algo-
rithms. These GA and PSO clustering combinations were used and applied to the field of Higgs
boson for the first time in this work.

The 10 most informative features selected in Section 4.1.3 are used as an input to those
algorithms in order to assign the Higgs data points to two groups with similar characteristics.

The Tab. 6 summarizes the offline parameter tuning of GA and PSO that gives the best
efficiency applied to the considered clustering algorithm combinations.

Table 6: GA and PSO algorithms parameters tuning

Algorithm Parameters tuning

GA Number of population elements (npop)= 100
Crossover probability pc = 0.8
Mutation probability pm = 0.3
Selection pressure Sp = 8
Number of off springs= 2× round(pc× npop/2)
Number of mutants= round(pm× npop)

PSO Number of population elements (npop)= 100
Inertia weight w= 0.72
Inertia weight damping ratio wdamp= 0.99
Personal learning coefficient c1 = 1.49
Global learning coefficient c2 = 1.49
Lower bound velocity (VelMin)= 0.1(VarMax−VarMin)

Upper bound velocity (VelMax)=−VelMin

5 Results and Discussions

In this work, we have proposed a new approach for hybridization of both hard and fuzzy
clustering tuned with ALO (Section 4.3) applied to the Higgs boson search and considering a
selection of 10 most informative features (Section 4.1). The considered hard and fuzzy clustering
algorithms (Section 3.1) as KM, GlobalKM, PAM, FCM, GG and GK are used as the objective
function to optimize. The ALO based tuning leads to six algorithms: ALOKM, ALOGlobalKM,
ALOPAM, ALOFCM, ALOGG and ALOGK.
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Table 7: Confusion matrix obtained using clustering methods (KM, GlobalKM, PAM, FC, GG,
GK) and ALO, GA and PSO based clustering method

Predicted class

Method KM GlobalKM PAM

H B H B H B

Actual class H: 34170 34170 0 34170 0 34170 0
B: 65830 37379 28451 28584 37246 37381 28449

Method FCM GG GK
H B H B H B

Actual class H: 34170 34170 0 31548 2622 33074 1096
B: 65830 26648 39182 14606 51224 14602 51228

Method ALOKM ALOGlobalKM ALOPAM

H B H B H B

Actual class H: 34170 34170 0 34170 0 34170 0
B: 65830 25437 40393 24647 41183 29914 35916

Method ALOFCM ALOGG ALOGK

H B H B H B

Actual class H: 34170 34170 0 26088 8082 32893 1277
B: 65830 20131 45699 7879 57951 8152 57678

Method GAKM GAGlobalKM GAPAM

H B H B H B

Actual class H: 34170 34170 0 34170 0 34170 0
B: 65830 37383 28447 37383 28447 25437 40393

Method GAFCM GAGG GAGK

H B H B H B

Actual class H: 34170 34170 0 33664 506 33074 1096
B: 65830 16748 49082 20842 44988 16493 49337

Method PSOKM PSOGlobalKM PSOPAM

H B H B H B

Actual class H: 34170 34170 0 34170 0 34170 0
B: 65830 22317 43513 22317 43513 29914 35916

Method PSOFCM PSOGG PSOGK

H B H B H B

Actual class H: 34170 34170 0 28923 5247 32893 1277
B: 65830 16748 49082 11576 54254 16144 49686

The results of this hybridization are compared with some evolutionary well-known stochastic
methods as GA and PSO, especially that the field of Higgs boson is poor in term of meta-
heuristic point of view analysis. Notice that, the hybridization of the six clustering methods
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with GA and PSO led to the following algorithms: GAKM, GAGlobalKM, GAPAM, GAFCM,
GAGG, GAGK and PSOKM, PSOGlobalKM, PSOPAM, PSOFCM, PSOGG and PSOGK.

The offline tuning parameters used for each clustering technique are listed in Sections 4.3.2
and 4.4.

The computation code of the different analyzes was compiled under the Matlab environment
(R2017b) on an Intel Core i5 2,6 GHz processor, with 8 GB of RAM.

Tab. 7 reports the most efficient confusion matrix found in 50 runs executed for each one of
the improved algorithm combinations used in this work. It is based on event’s labels of the Higgs
Machine Learning dataset used. According to this feature label, the considered 100000 events in
the learning phase contain N1 = 34170 of signals (class H) and N2 = 65830 backgrounds (class B).
Based on the confusion matrix, we can qualify a method as better that the others, as a part of
a first layer analysis, when N11 (the number of signals found using the unsupervised clustering)
tend to N1 and N22 (the number of backgrounds found using the unsupervised clustering) tend
to N2.

Table 8: Efficiencies γ , purities rates β and computational time using clustering methods (KM,
GlobalKM, PAM, FCM, GG, GK) and combined to ALO, GA and PSO (validation data)

Method γ β Time ± standard
deviation (min:s:ms)

KM 71.61± 3.36 73.87± 2.59 00:00:21± 00:00:03
GlobalKM 78.29± 1.42 77.22± 1.98 09:07:05± 00:02:33
PAM 71.77± 2.77 73.87± 1.76 00:02:08± 00:00:54
FCM 79.76± 0.33 78.09± 2.54 00:00:21± 00:00:04
GG 85.07± 0.76 81.74± 0.65 00:08:00± 00:00:28
GK 85.87± 1.56 83.63± 1.43 00:01:02± 00:00:07
ALOKM 80.68± 2.89 78.66± 2.66 04:06:19± 00:00:36
ALOGlobalKM 81.28± 3.45 79.04± 1.76 04:24:30± 00:00:18
ALOPAM 77.28± 1.56 76.66± 2.87 03:07:07± 00:00:08
ALOFCM 84.71± 2.65 81.46± 3.88 23:20:31± 01:21:49
ALOGG 82.19± 2.56 82.28± 2.59 28:18:31± 02:54:27
ALOGK 91.94± 2.66 89.92± 5.67 26:07:31± 01:58:37
GAKM 71.96± 2.32 73.87± 1.49 04:04:30± 00:31:43
GAGlobalKM 71.96± 3.65 73.87± 1.49 13:33:55± 00:29:48
GAPAM 80.68± 2.65 78.66± 1.87 04:06:19± 00:36:07
GAFCM 87.28± 1.12 83.56± 0.45 04:24:30± 00:24:37
GAGG 83.43± 3.29 80.33± 1.42 07:35:00± 00:53:43
GAGK 85.87± 4.53 82.28± 0.34 07:14:33± 00:51:09
PSOKM 83.05± 2.23 80.25± 2.54 02:59:08± 00:03:35
PSOGlobalKM 83.05± 1.34 80.25± 3.67 11:02:45± 00:01:52
PSOPAM 77.28± 0.33 76.66± 2.54 03:07:08± 00:00:43
PSOFCM 87.28± 2.38 83.56± 1.44 03:21:05± 00:00:51
PSOGG 83.52± 1.03 81.29± 2.67 07:47:01± 00:01:04
PSOGK 85.87± 2.37 82.28± 1.54 07:34:33± 00:00:22
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In order to validate this first layer analysis and based on Eqs. (33) and (34), we are listing in
Tab. 8 efficiency and purity performance average values and standard deviations found in the 50
runs done to each clustering algorithm combination. Based on this second level analysis, it can
be clearly seen that the results found tend globally in favor to hybridization of fuzzy clustering
(either using Fuzzy c-means, Gath–Geva or Gustafson–Kessel) tuned with ALO, GA and PSO).
There is no specific fuzzy based clustering algorithm that worked best in all these combinations.
The efficiencies of ALOGK, GA based FC-means and PSO based FC-means are the best.
Moreover, based on Tab. 8, we can confirm the conclusion of the first layer analysis based on the
confusion matrix (Tab. 7) that the ALOGK clustering is the most performing method used since
it corresponds to the higher efficiency equal to 91.94% (with a standard deviation of ±2.66% in
the 50 runs) and the higher purity equal to 89.92% (with a standard deviation of ±5.67% in the
100 runs).

Table 9.1: Cluster validation indices (Part 1) using clustering methods (KM, GlobalKM, PAM,
FCM, GG, GK) and combined to ALO, GA and PSO (validation data)

Methods PC CE PI S

KM – – 1.012966± 0.556287 0.000010± 0
GlobalKM – – 2.213197± 0.778281 0.000022± 0.000001
PAM – – 1.024450± 0.077615 0.000010± 0
FCM 0.817041± 0.187297 0.302857± 0.006421 1.478514± 0.078261 0.000015± 0
GG 0.699337± 0.686366 0.438178± 0.055266 1.038487± 0.067528 0.000013± 0
GK 0.709337± 0.056366 0.448178± 0.065266 1.478487± 0.097528 0.000015± 0
ALOKM – – 0.967642± 0.089626 0.000009± 0.000001
ALOGlobalKM 0.799071± 0.196245 0.292667± 0.009987 1.441478± 0.086564 0.000012± 0.000003
ALOPAM – – 13.43907± 0.983766 0.000178± 0.000009
ALOFCM 0.839143± 0.076243 0.273270± 0.099896 0.000000 ± 0 0.000000± 0
ALOGG 0.849987± 0.056988 0.273270± 0.006528 0.000000 ± 0 0.000000± 0
ALOGK 0.845041± 0.036148 0.273270± 0.006528 0.000000 ± 0 0.000000± 0
GAKM – – 0.943431± 0.026753 0.000009± 0
GAGlobalKM – – 0.942978± 0.086257 0.000009± 0
GAPAM – – 0.967642± 0.097256 0.000009± 0
GAFCM 0.799071± 0.098682 0.292667± 0.026287 1.441478± 0.862758 0.000012± 0
GAGG 0.780562± 0.062683 0.279626± 0.007627 1.332875± 0.944264 0.000012± 0
GAGK 0.790562± 0.162683 0.289626± 0.008627 1.432875± 0.986264 0.000012± 0
PSOKM – – 13.43573± 0.862822 0.000134± 0.000007
PSOGlobalKM – – 13.43573± 0.086286 0.000134± 0.000007
PSOPAM – – 13.43907± 0.560007 0.000178± 0.000008
PSOFCM 0.799071± 0.098652 0.292667± 0.009828 1.441478± 0.000866 0.000012± 0
PSOGG 0.796543± 0.108257 0.279006± 0.016222 1.442875± 0.065765 0.000012± 0
PSOGK 0.790562± 0.098257 0.289626± 0.008222 1.432875± 0.055765 0.000012± 0

Tabs. 9.1 and 9.2 list the most common clustering validation indices as Partition Coefficient
(PC), Classification Entropy (CE), Partition Index (PI), Separation Index (S), Xie-Beni Index
(XB), Dunn’s Index (DI) and Alternative Dunn’s Index (ADI) applied to the considered data and
calculated for each algorithm combination used. The PC and CE indexes are useless for the hard
clustering. This includes that for all hard clustering algorithm combinations, the PC values are
equal to 1 and the CE ones are not a number. Applied to the fuzzy clustering, the algorithm is
efficient when the PC value tends to 1 and the CE value to 0. According to Tabs. 9.1 and 9.2,
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this rule is validated whether we use the ALOGK or ALOFCM clustering. This means that
these two methods are compact, belong to the crisp classification and produce clusters with less
overlap. The minimal values of PI and S correspond to the ALOFCM, ALOGG or ALOGK.
This means that they are the strongest algorithms based on the noise criterion and the separation
of clusters. The GG basic clustering algorithm is the most compact and gives the best separated
clusters according to the XB index. Both DI and ADI indexes tend toward the novel ALOFCM,
ALOGK and ALOGG clustering algorithm. Using this third layer analysis based on the clustering
validation indices, we can confirm that fuzzy based combinations are giving better results than
hard ones, especially the combinations based on the ALO method.

Table 9.2: Cluster validation indices (Part 2) using clustering methods (KM, GlobalKM, PAM,
FCM, GG, GK) and combined to ALO, GA and PSO (validation data)

Methods XB DI ADI

KM 13.41202± 0.007782 0.002806± 0.000754 0.015605± 0.000077
GlobalKM – 0.006039± 0.000662 0.015315± 0.000662
PAM – 0.003243± 0.000785 0.016160± 0.007520
FCM 5.842667± 0.099726 0.003460± 0.000737 0.016367± 0.000752
GG 0.004055± 0.000772 0.004055± 0.000726 0.000819± 0.000076
GK 6.191479± 0.972661 0.002781± 0.000765 0.061754± 0.000727
ALOKM – 0.004197± 0.000775 0.017003± 0.000672
ALOGlobalKM 5.842667± 0.426577 0.003460± 0.000587 0.016367± 0.000989
ALOPAM 22.13623± 1.887298 0.003722± 0.000862 0.037237± 0.008972
ALOFCM 28.45823± 2.919876 0.000624± 0.000068 0.000002± 0
ALOGG 28.45823± 1.979382 0.000624± 0.000068 0.000002± 0
ALOGK 28.45823± 0.986378 0.000624± 0.000068 0.000002± 0
GAKM 10.25958± 0.000826 0.003489± 0.000166 0.016406± 0.007862
GAGlobalKM 10.20232± 0.247675 0.003489± 0.000863 0.016402± 0.008962
GAPAM – 0.004197± 0.000762 0.017003± 0.000726
GAFCM 5.842667± 0.007623 0.003460± 0.000024 0.016367± 0.000245
GAGG 5.916631± 0.986245 0.013560± 0.008762 0.016344± 0.000862
GAGK 5.916007± 0.775528 0.013300± 0.000752 0.016254± 0.000785
PSOKM 22.13412± 1.008987 0.003543± 0.000077 0.036947± 0.000268
PSOGlobalKM 22.13412± 0.076722 0.003543± 0.000072 0.036947± 0.000173
PSOPAM 22.13623± 0.000825 0.003722± 0.000008 0.037237± 0.000726
PSOFCM 5.842667± 0.997265 0.003460± 0.000087 0.016367± 0.000135
PSOGG 5.916631± 0.527517 0.013560± 0.000627 0.016344± 0.000820
PSOGK 5.916002± 0.277381 0.013300± 0.007273 0.016254± 0.007276

The execution times of the considered approaches are gathered in Tab. 8. The time spent
using the hard clustering, especially the KM algorithm, is lower than the one using fuzzy
clustering. This is due to the fact that we are using a large set of data and that this kind of
clustering is the most suitable for this case.

As another angle of analysis, we are measuring the variation of the clustering cost by itera-
tions for each algorithm combination which corresponds to the sum of the distances between each
data point and its closest cluster centroid. The results are shown in the Figs. 3–6. According to
these figures, the optimal cost is reached respectively using GK, ALOGK, GAGK and PSOGK.
Again, we can conclude, as a part of comparison between hard and fuzzy clustering, that the
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combinations done using the fuzzy clustering have given better results. It can also be concluded
that the method that optimized the most the clustering cost was ALOGK algorithm. In term of
fast convergence, we can see using Figs. 3–6 that the combinations with KM and PAM algorithms
were faster to converge to their optimal costs. But, these optimal costs were at least doubly bigger
than the optimal cost of each combination with GK algorithm.

Figure 3: Average cost variation vs. iterations number for basic clustering KM, GlobalKM, PAM,
FCM, GK and GG algorithms

Figure 4: Average cost variation vs. iterations number for ALOKM, ALOGlobalKM, ALOPAM,
ALOFCM, ALOGK and ALOGG algorithms

In another level of analysis, Figs. 7–10 present the Higgs Boson search clustering distri-
bution using Sammon visualization [72], into signals and backgrounds based on the algorithm
combinations that optimize the most the clustering cost according to the last analysis (GK, the
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proposed ALOGK, GAGK, and PSOGK). The Sammon mapping used is based on the two
most discriminant features obtained in the Section 4.1.3. This corresponds to the features F1 and
F18. In Figs. 7–10, the distance measure of the cluster prototype is transformed into Euclidean
distance in the projected two dimensional spaces where each cluster centroid is represented by a
single red star. When the cluster is properly selected, the projected data fall close to the projected
cluster center in an approximately spherically distributed cluster (shown as blue stars). As it can
be seen in these figures, the data points lie much closer to the center of the cluster when the
ALOGK algorithm is used.

Figure 5: Average cost variation vs. iterations number for GAKM, GAGlobalKM, GAPAM,
GAFCM, GAGK and GAGG algorithms

Figure 6: Average cost variation vs. iterations number for PSOKM, PSOGlobalKM, PSOPAM,
PSOFCM, PSOGK and PSOGG algorithms
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Figure 7: Higgs boson dataset Sammon mapping visualization into signal and background classes
of GK algorithm

Figure 8: Higgs boson dataset Sammon mapping visualization into signal and background classes
of ALOGK algorithm
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Figure 9: Higgs boson dataset Sammon mapping visualization into signal and background classes
of GAGK algorithm

Figure 10: Higgs boson dataset Sammon mapping visualization into signal and background
classes of PSOGK algorithm

6 Conclusion

This paper presents a hybridization of hard and fuzzy clustering tuned with Ant Lion
Optimizer for the detection of the Higgs boson particle using the most informative features and
variables which characterize the Higgs machine learning challenge 2014 data set.
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The contribution of this work lies firstly in the approach used for these features and variables
selection. The second contribution of this work is the new hybridized clustering combinations and
tuning improvement, applied for the first time in the field of the Higgs boson search, where a
metaheuristic technique such as ALO, optimizes various clustering methods as KM, GlobalKM,
PAM, FCM, GK and GG. The results of the hybrid clustering technique tuned by ALO are
compared with some exitising metaheuristic optimizations such as GA and PSO.

In order to choose the proper learning parameters for the experiment, an offline parameters
tuning have been done for each one of the algorithms used in this work. The aim of each
stochastic technique was to minimize the clustering algorithms.

Based on a multi-angle comparative analysis of the results found using each hybrid combi-
nation, the ALOGK clustering has proved its high truthfulness applied to Higgs boson search.

To confirm this result many scalar validity indexes are used in performances analysis as
partition coefficient, classification entropy, partition index, separation index, Xie and Beni’s
index, Dunn’s index, alternative Dunn’s index, efficiency, purity computational time, average cost
variation and Sammon mapping visualization.

As a perspective, we will improve and compare the 3 algorithms combinations that have
given the best results in this work as well as other novel ones applied to an extended number of
Higgs channels.
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