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Abstract: A novel algorithm is proposed for the simulation of fluid-structure
interaction problems. In particular, much attention is paid to natural phenomena
such as debris flow. The fluid part (debris flow fluid) is simulated in the frame-
work of the smoothed particle hydrodynamics (SPH) approach, while the solid
part (downstream obstacles) is treated using the finite element method (FEM).
Fluid-structure coupling is implemented through dynamic boundary conditions.
In particular, the software “TensorFlow” and an algorithm based on Python are
combined to conduct the required calculations. The simulation results show that
the dynamics of viscous and non-viscous debris flows can be extremely different
when there are obstacles in the downstream direction. The implemented
SPH-FEM coupling method can simulate the fluid-structure coupling problem
with a reasonable approximation.

Keywords: Fluid-structure coupling; SPH; FEM; TensorFlow; python; dynamic
boundary conditions

1 Introduction

Fluid-solid coupling is universal, such as water dripping through rocks and surging against the bank. The
dynamic characteristics of debris flow are sophisticated and easily affected by many factors, such as particle
gradation, viscosity content, and bulk density; besides, these characteristics often involve complex and large
deformations. In the process of movement, the strain rate is far more than 100%. The traditional finite
element method (FEM) finite difference method, and other mesh-based calculation methods are easy to
cause mesh distortion when solving the problem of large deformation. At present, some scholars have
developed the technology of re-meshing in large deformation area and applied the finite element theory to
the calculation of significant deformation problems. However, this not only increases the calculation time
but also makes the calculation result easy to produce significant errors. With the development of
technology, computer software and hardware have reached the needs of the simulation. For fluid
simulation, there are two typical methods: The Eulerian grid method and the LaGrange particle method.
The LaGrange particle method is widely used because it is more suitable for dynamic fluid simulation.
Notably, the smoothed particle hydrodynamics (SPH) method is the most popular.
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After its proposal, SPH was quickly applied to fluid simulation problems. Solid simulation is simple, and
the FEM is widely used. The first application is to divide an entire stress surface into triangular elements for
calculation, and finally, obtain the plane stress successfully. The FEM can divide an entire area arbitrarily,
and boundary conditions do not limit it. It is convenient and efficient to calculate. Therefore, the
advantage of the FEM is distinct when simulating the fluid-structure coupling model. These advantages
make the FEM popular.

The debris flow fluid is a non-Newtonian fluid. Given the characteristics of the non-Newtonian fluid, the
SPH method is used to simulate the debris flow. Starting from 2D non-viscous dam break fluid, the
simulation is gradually extended to 3D viscous dam break fluid, and the governing equation of the fluid
motion is derived. Based on the Python language, the 3D motion program of debris flow fluid is written.
The calculation is carried out through TensorFlow, and the 3D motion control equation of debris flow
fluid is obtained. FEM is used to simulate the deformable solid, and its finite element analysis is carried
out. Finally, the fluid-structure coupling boundary is analyzed. The innovation of this simulation is to
combine the problem of fluid-structure coupling with TensorFlow to simulate more quickly and
accurately, which is of positive significance to the simulation of the process of debris flow.

2 Methodology

2.1 Experiment and Method
Fluid-structure coupling, a common natural phenomenon, has been studied and explored by scholars for

many years. All kinds of methods emerge in endlessly. Here, the reason that the problem of fluid-structure
coupling has been studied is that this kind of natural disaster, i.e., debris flow, has threatened the lives of
human beings for years. Thus, if humans can master the movement state of this kind of natural disaster
through simulations, the prediction or early-warning of this disaster will be achieved, and humans may
minimize the damages brought by it.

The initial ideas and methods of simulation experiments are as follows. (1) The fluid in the fluid-
structure coupling problem is simulated by SPH, which is regarded as a single fluid particle. Each particle
is analyzed for its motion state, and the results are extended to the entire fluid. (2) FEM simulates the
solid in the fluid-solid coupling problem. The entire solid is divided into one small unit for simulation,
which better adapts to the solid boundary with different shapes. (3) DBC simulates the fluid-solid
boundary. The boundary particles are generated automatically from the solid wall boundary; therefore, it
will be harder for the fluid particles to penetrate the solid boundary. Besides, in this case, these particles
can better adapt to the solid boundary with different shapes, thereby improving the calculation efficiency.
(4) The leapfrog scheme is used to solve the Navier-Stokes equation, update the motion state of particles
in real-time, and control the time step of the coupling algorithm. The solutions of fluid and solid are
limited to the same time step. (5) Python is used for programming. Through the interface, TensorFlow is
used for calculation, which dramatically shortens the calculation time and better satisfies the real-time
performance of the simulation process. (6) A complete fluid-structure coupling simulation program is
formed. Given obstacles in the downstream, the non-viscous fluid dam break, viscous fluid dam break,
and debris flow dam break are simulated, and the simulation results are consistent with the reality.

2.2 SPH
SPH regards continuous, flowing, and changing fluid as discrete and interacting particles. All physical

quantities are attached to each particle separately, such as mass and velocity. By studying the motion state of
each particle, the motion of the entire fluid is obtained. According to the obtained fluid situation, the entire
fluid is simulated, as shown in Fig. 1.
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The key of the algorithm is to solve the motion of each particle and analyze the particle by Newton’s
second law, F = ma. According to hydrodynamics, the force acting on particles consists of three parts [1],
as shown in Eq. (1):

F ¼ Fexternal þ Fviscosity þ Fpressure (1)

In Eq. (1), Fexternal represents gravity, Fexternal ¼ qg. Since the fluid unit density determines the fluid
mass, the mass is replaced by q. Fpressure represents pressure, the force generated by the pressure
difference inside the fluid; numerically, it is equal to the gradient of the pressure field, and the direction is
from the area with high pressure to the area with low pressure, i.e., Fpressure ¼ �rp. Fviscosity is the
viscous force, which is caused by the velocity difference between particles [2]. The magnitude of this
force is related to the viscosity coefficient μ of the fluid and the velocity difference, i.e., Fviscosity ¼ lr2~u.
The smooth length is expressed in h.

Therefore, the force of particles is shown in Eq. (2):

q~a ¼ q~g �rpþ lr2~u (2)

SPH algorithm also involves the concept of “smooth kernel” [3]. The particle’s attributes “spread”
around, and the effect diminishes as the distance increases. The function that changes with the distance
between particles is “smooth kernel function,” and the maximum influence radius is “smooth kernel
radius.” Here, the fluid is treated as a single particle. However, the fluid fills the whole space. The
operation of each position in the fluid is related to every particle around [4]. Therefore, the parameters or
values at each position are accumulated by the surrounding particles, as shown in Fig. 2.

An attribute A on point r is shown in Eq. (3):

Að~rÞ ¼
X

Aj
mj

qj
W ~r �~rj; h
� �

(3)

The density qðriÞ of point r is shown in Eq. (4):

qðriÞ ¼
X
j

qj
mj
qjW ~ri �~rj; h

� �
(4)

Fpressure

Fexternal
Fviscosity

Figure 1: Force analysis diagram of a single particle in the fluid
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The pressure p of point r is shown in Eq. (5):

p ¼ K q� q0ð Þ (5)

The pressure acting on point r is shown in Eq. (6):

Fi
pressure ¼ �rp ~rið Þ ¼ �

X
j

qj
mj
qjrW ~ri �~rj; h

� �
(6)

The viscous force acting on point r is shown in Eq. (7):

Fi
viscosity ¼ lr2~u rið Þ ¼ l

X
j

qj
mj
~ujrW ~ri �~rj; h

� �
(7)

The equation of particle motion is shown in Eq. (8):

~a rið Þ ¼~g þ m
45

ph6
X
j

ðpi þ pj
2qiqj

ðh� rÞ2~ri �~rj
r

Þ þ ml
45

ph6
X
j

ð~uj �~ui
qiqj

ðh� rÞÞ (8)

2.3 FEM
FEM is to divide a complete solution area into finite triangles, which are connected but not coincident

[5]. The polynomial difference is used to solve each triangle region. By combining the solutions of all
triangles, the approximate solution of the region can be obtained [6]. FEM can adapt to various shapes of
the solution area, with fast speed and high accuracy.

Based on the dynamic equation of continuous medium, the equation of the FEM is similar to its
definition. According to the weighted residual method, the velocity is taken as the weight function. The
momentum conservation equation is shown in Eq. (9):
Z
V
dvað@r

ba

@xb
þ qba � q€uaÞdV ¼ 0 (9)

In Eq. (9), @rba is Cauchy stress, and ba is physical force. The following aspects should be noted for
highly precise FEM solution:

r3

r1
r2

r

r0

Figure 2: Analysis diagram of the relationship between fluid and particle
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1. Unit order. The first order, second-order, and third-order can summarize the current unit order [7].
A higher-order element is above the second-order. Because of the existence of curves and
surfaces, the higher-order elements can better simulate the approximation. However, the higher
the order is, the more grids need to be processed. In addition, the difficulty of calculation, the
demand for hardware and software, and the calculation time will increase.

2. Grid density. The more polygons are divided, the closer the calculated area is to the area of the circle.
Here, the more grids are divided, the closer they are to the real situation [8]. However, the number of
grids also affects the calculation cost. Therefore, to better adapt to various situations, different
segmentation methods are adopted in different parts of the same model. Such processing methods
can effectively avoid the situation of too high calculation cost [9].

3. The quality of the grid. The quality of the grid is closely related to the size and shape of the mesh [10].
However, the mesh quality is usually challenging to control. Therefore, in the actual design of the
finite element, it is assumed that there are constraints on the grid to ensure the grid quality [11].

Therefore, the accuracy of the finite element solution is closely related to the grid division method; thus,
scholars have developed three high-quality division methods: Grid method, Delaunay triangulation method,
and mapping method.

The quality of the generated grid is poor [12]. Delaunay triangulation is suitable for the simulation of
2D problems, as shown in Fig. 3. The mapping method is suitable for the simulation of 3D problems, as
shown in Fig. 4.

2.4 Neighborhood Particle Search Method
At present, there are three commonly used methods for neighborhood particle search: Global pairing

method, tree search method, and linked list search [13].

P P

P P

P P

P P

(a)

(c)

(b)

(d)

Figure 3: Delaunay triangulation method. a) Insert new node. b) Find the outer circle of a triangle contains P.
c) Delete common edge. d) Join the vertices to form a new triangle
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The basic principle of the global pairing method is to delimit a fixed radius area around a particle, and the
particles in this area are the neighborhood particles of the chosen particle. Assuming that there are N particles
in the defined area, the time complexity of the global pairing method is O (N2) [14]. The more particles are,
the longer the calculation time of the global pairing method is, which is not suitable for real-time model
simulation. Therefore, the global pairing method is generally not used for the model with many particles.

The tree search method needs to divide the whole model into several small blocks to guide each block to
contain one particle; thus, it needs too much storage space and requires high software and hardware.

The method used in this study is a linked list search, which divides an entire area into several cells of the
same size, and numbers each cell. Particles in each cell correspond to the cell number, and particles adjacent
to the cell are searched. Currently, the search for neighborhood particles is much more convenient.

2.5 Boundary Treatment Method
Except for the simulations of solid and fluid, a severe problem in simulating the fluid-solid coupling

problem is the boundary treatment. Since SPH is based on the LaGrange particle method, the motion of
some particles in the fluid follows their LaGrange velocity. Hence, the fluid boundary can be captured
automatically; however, on the interface where the fluid contacts with the solid, the fluid particles must
not penetrate the solid. There are two solutions to these problems: the virtual particle method and the
penalty function method. The virtual particle method is suitable for the situation with a simple boundary
but high precision demand, and the penalty function method is suitable for the situation with complex
boundaries [15]. Because it is difficult to simulate the process of debris flow movement, the existing
boundary treatment methods are insufficient. Therefore, the original method is improved to achieve the
expected results. The method used here is a dynamic boundary condition (DBC). More than two layers of
solid wall particles are set, which are staggered with each other and utterly consistent with the motion
state of the fluid, as shown in Fig. 5.

Boundary particles can be generated automatically by a solid wall boundary.

2.6 Overall Algorithm Flow
The procedure of SPH-FEM coupling algorithm is as follows:

(1) The minimum element size and the minimum time step of the finite element are calculated.

(2) Combined with the time step of the SPH algorithm, the time step of the SPH-FEM coupling
algorithm is calculated.

(3) The DBC method is used to process boundaries.
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Figure 4: Mapping method
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(4) The viscosity, density, and pressure of fluid particles are calculated.

(5) The leapfrog scheme is used to solve Navier-Stokes equations and update the motion state of
particles in real-time.

At present, most of the incompressible viscous fluid simulation uses Navier-Stokes equations as the
governing equations of fluid motion. Its vector form is as follows:

@u

@t
¼ �ðu � ruÞ � 1

q
rpþ vr2uþ f (10)

ru ¼ 0 (11)

In Eqs. (10) and (11), u is the velocity of the fluid, q is the density of the fluid, p is the internal pressure of
the fluid, f is the external force on the fluid,r is the gradient operator, v is the elastic viscosity coefficient, and
r2 is the Laplace operator. Eq. (10) shows the momentum conservation. The four terms on the right represent
advection term, pressure term, viscous force, and external force in the process of fluid motion. Eq. (11) shows
the fluid mass conservation, which is also known as the incompressible condition of the fluid.

(6) The force state of boundary particles is calculated.

(7) According to the stress state at the boundary, the state of each FEM element node is determined.

It is shown in Fig. 6:

2.7 Hardware and Software Environment
The Python language is used to write programs. Because of the complexity of simulation and many fluid

particles, the calculation process costs too much time. The calculation efficiency of standard software cannot
meet the real-time research very well; so, the high-level interface provided by TensorFlow is used to realize
the calculation.

TensorFlow, as an open-source, high-performance computing library, supports IOS, Windows, MacOS,
Linux operating systems [16]. Also, it can realize large-scale local and distributed parallel computing on

Fluid particle
The boundary

particle
The solid wall

boundary

Figure 5: Dynamic boundary conditions handling solid wall boundaries
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GPU, CPU, TPU, FPGA, and other hardware architectures [17]. Hence, the same code can achieve high-
performance computing on different hardware platforms without any modification, reducing the cost of
software and time. The frame composition is shown in Fig. 7.

Start

Calculate the minimum element size and
minimum time step of finite element

Calculate the time step of sph-fem
coupling algorithm

The boundary is handled using DBC
methods

Computational fluid particles
viscous force, density, pressure, etc

Update the particle motion status in
real time

Calculate the force state of boundary
particles

Determine the status of each FEM node

End

Figure 6: Overall algorithm flow chart

Training libraries Inference libs

Python client C++ client

C API

Distributed master Dataflow executor

...

Kernel implementations

...

Networking layer

...

Device layer

RPC RDMA CPU GPU

Const Var MatMul Conv2D ReLu

Figure 7: TensorFlow architecture
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The hardware environment required for the experiment is shown in Tab. 1:

3 Results and Discussion

3.1 Simulation Results of the Non-Viscous Fluid
If there are rocks and other similar obstacles to the downstream of the fluid, there will be three situations

after the fluid contacts the obstacle: 1) The fluid splashes back; 2) The fluid flows around the obstacle; 3) The
fluid flows across the obstacle.

An obstacle with length, width, and height of 0.15 m, 0.5 m, and 0.4 m, respectively, and a water column
with length, width, and height of 1 m, 1 m, and 0.5 m, respectively, are set. Obstacles and water columns are
installed in a water tank, which is 3 m long, 1 m wide, and 1 m high. The initial distance between the obstacle
and the water column is 1 m.

In order to prevent fluid particles from penetrating, three-layer boundary particles are set. The specific
parameters are shown in Tab. 2:

The movement process of dam break fluid in the flume is as follows:

(1) At about 0.34 s, the dam break fluid contacts the left boundary of the barrier. (2) Subsequently, the
dam break fluid impacts the barrier, and its velocity decreases. (3) The fluid impacting the barrier falls back
into the first fluid, continues to flow forward from both sides of the barrier, and forms an “open space” on the
right side of the barrier. (4) At about 0.88 s, the fluid climbing the obstacle falls back in the original fluid. (5)
At about 2.4 s, the fluid becomes stable and fills the whole water tank.

Table 1: Hardware configuration for the experiment

Hardware Hardware parameters

CPU Intel(R) Core (TM)i7-6700HQ

Internal storage DDR4 2400 MHZ 16 GB

Graphics card NVIDIA Ge Force GTX 960 M

Video memory GDDR5 4 GB

Table 2: Non-viscous fluid calculation parameters

Parameter Symbol Sink fluid

Density ρ (kg/m3) 1000

Computation time tf (s) 3.0

The particle spacing dx (m) 0.015

Fluid particle number nf 86,703

Topographic particle number nb 105,330
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The whole process is shown in Fig. 8:

3.2 Simulation Results of the Viscous Fluid
The laminar viscosity model is transformed into the SPH form. The same model is simulated to compare

the difference between viscous fluid and non-viscous fluid. The equivalent viscous fluid replaces only the
non-viscous fluid, and the calculation parameters are shown in Tab. 3:

For a viscous fluid, unlike a non-viscous fluid, particles are affected by viscous force. At the initial stage,
the viscous fluid is contractive, the velocity of the viscous fluid is lower than that of the non-viscous fluid, and
the time of the viscous fluid reaching the edge of the obstacle is shorter than that of the non-viscous fluid.
After collisions, no “back splashing” phenomenon like a non-viscous fluid occurs, but a slow climbing

Figure 8: Simulation of non-viscous fluid dam break with obstacles downstream

Table 3: Calculation parameters of viscous fluid

Parameter Symbol Sink fluid

Density ρ(kg/m3) 1000

Computation time tf (s) 3.5

The particle spacing dx (m) 0.015

Fluid particle number nf 86,703

Topographic particle number nb 105,330

Obstacle particle number NZ 4075
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trend appears. Then, under the influence of gravity, it will fall and tend to be gentle, flowing forward along
both sides of the obstacle, as shown in Fig. 9:

It takes about 3.0 s from the beginning to the surface of the whole dam break fluid to become calm. It
takes about 0.43 s for viscous fluid to contact the left edge of the obstacle. Moreover, due to the effect of
viscous force, the dispersion between particles of viscous fluid is far less than that of non-viscous
particles, which is also the reason that the viscous fluid does not collide with the obstacles to produce
intense water bloom.

3.3 Simulation Results of Viscous Debris Flow
Debris flow is a kind of fluid formed by many poorly sorted solid particles and liquid water under the

action of gravity. As a kind of natural disaster, the initial gravitational potential energy of debris flow is
abundant, the movement speed is fast, and it is difficult to predict it. Therefore, the study of debris flow
movement has practical significance, which can help to prevent or reasonably control debris flow.

According to the nature of the fluid, debris flow can be divided into three types: Strong viscosity (bulk
density is more than 2 g/cm−3), sub-viscosity (bulk density is more than 1.85 g/cm−3) and rareness (bulk
density is between 1.46–1.85 g/cm−3). In addition to debris flow, there are mudflow and water stone flow.
Here, the viscous debris flow formed by the mixture of sediment and rainwater is studied.

Based on viscous fluid, shear stress is added into the fluid to simulate debris flow fluid. Again, the
same model as before is used for comparison. The fluid is replaced by debris flow fluid. Besides, to
simulate the situation of debris flow accompanied by rain, water is used to simulate rainwater during
the simulation process.

According to the previous model, the debris flow model is analyzed. Compared with viscous fluid, the
velocity of viscous debris flow is the same as that of viscous fluid. However, when the viscous debris flow
passes over the obstacles, “overflow” will appear, that is, after the viscous debris flow collides with the
obstacles, the viscous debris flow will not flow back into the fluid, but will flow forward through the
obstacles, as shown in Fig. 10:

Figure 9: Simulation of viscous fluid dam break with obstacles downstream
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In other words, compared with viscous fluid, viscous debris flow has a process of accumulation.
At the end of the simulation, the debris flow will return to the left wall of the flume after it touches the
right wall of the flume.

Because the debris flow fluid is affected by multiple factors, such as sediment content and particle size,
the debris flow simulation conducted in the laboratory may have some errors with the debris flow generated
in different locations and different states. Here, only the continuous and uniform debris flow is discussed.

Under the same working condition and small model size, the three kinds of fluids present different
motion patterns when they encounter obstacles. It is proved that the addition of viscous force and shear
stress is hugely beneficial better to simulate the movement state of viscous debris flow.

4 Conclusion

The motion state of dam break fluid when encountering obstacles is mainly simulated. The cohesionless
dam break fluid contacts the left boundary of the obstacle. Then, the dam break fluid hits the barrier, and its
velocity decreases after hitting the barrier. Part of the fluid climbs up the obstacle. Part of the fluid continues
to flow forward from both sides of the obstacle and forms an “open space” on the right side of the obstacle.
The fluid that climbs the barrier falls back into the overall fluid. The entire fluid area is steady and covers the
entire water tank. For a viscous fluid, unlike a non-viscous fluid, particles are affected by viscous force. At
the initial stage, the viscous fluid is in the form of contraction, and the velocity of the viscous fluid is lower
than that of the non-viscous fluid. The time for the viscous fluid to reach the edge of obstacles is significantly
shorter than that for non-viscous fluid. After collisions, no “back splashing” phenomenon like a non-viscous
fluid occurs, but a slow climbing trend appears. Then, it falls under the influence of gravity, tends to be gentle,
and flows forward along both sides of the obstacle. Compared with viscous fluid, the velocity of viscous
debris flow is the same as that of viscous fluid. However, when the viscous debris flow passes over the
obstacles, it will appear “overflow,” that is, after the viscous debris flow collides with the obstacles, the
viscous debris flow will not flow back into the fluid but will flow forward through the obstacles. The in-
depth study carried out by scholars worldwide on the dynamics of natural disasters such as flood, dam
break, landslide, and debris flow by using the SPH method is consistent at home and abroad.

SPH-FEM coupling method is still in the development stage. Thus, there are still some imperfections in
this method. It is hoped that scholars can continue to study and apply the SPH-FEM coupling method to real
life as soon as possible. The following aspects need to be further studied. (1) According to the movement
model of different obstacles, such as smooth stones, trees, and grass, the impact of different obstacles on
the movement speed of debris flow can be analyzed; (2) Because SPH is a meshless method, which is
very similar to DEM, the two can be combined in the later study. SPH is used in the fluid part, and DEM

Figure 10: Schematic diagram of viscous debris flow over obstacles
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is used in the solid part, which can better simulate the process of fluid-solid interaction. In addition, the
impact force of fluid on obstacles can be studied. (3) The motion state of mixed fluid can be studied.
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