
Intelligent Automation And Soft Computing, 2020
Vol. 26, no. 4, 773–781
DOI: 10.32604/iasc.2020.010112

 gjlyy43@163.com CONTACT Qixue Guan

An Improved TCP Vegas Model for the Space Networks of the Bandwidth
Asymmetry

Qixue Guan and Yueqiu Jiang

College of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Address: No.6 Nanping Middle Road, Hunnan New District, Shenyang City, Iiaoning Province

KEY WORDS: Acknowledgement frequency; bandwidth asymmetry；TCP Vegas；queuing delay.

1 INTRODUCTION
COMPARED with the ground network, the space

network has a longer round-trip time, higher bit-error

rate and asymmetric bandwidth, etc. It lowers the

performance when the TCP (Reno Jacobson V, Karels

M J, 1988), is originally based on the ACK timer, and

is applied on the space network. Among so many

improved TCP protocols, the TCP Vegas

boasts lower

packet loss rates and higher and more stable

throughputs than those of the TCP Reno, making it a

hot topic in the space network transmission protocol

research (Jacobson V, 1990).

Here is the principle of the TCP Vegas congestion

control algorithm. First, calculate the RTT (Round-

Trip Time) using the data packet send-time and the

arrival time of the corresponding ACK

(Acknowledgment). Second, calculate the expected

throughput and actual throughput of the link according

to the value of the RTT and the CWND (congestion

window). Third, estimate the actual situation of the

network based on the difference between the value of

the expected throughput and that of the actual

throughput (Brakmo L S, O’Malley S W, Peterson L

L, 1994). At last, control the number of data packets

sent into the network by adjusting the CWND size to

avoid network congestion caused by the transmission

link overburden or low throughput brought by the low

utilization of the link (Brakmo L S, Peterson L L,

1995).

The document points out that in a link with an

asymmetric bandwidth, the ACK may delay or get lost

when the uplink becomes saturated and congested

earlier than the downlink and then the congestion

control algorithm, which depends on information fed

back by the ACK will be misled to enter the

congestion control phase too early. That makes the

congestion control algorithm indirectly reduce the

number of ACKs sent into the uplink at the expense of

cutting down the number of data packets sent into the

downlink at that phase to relieve the uplink congestion

(Mo J, La R J, Anantharam V, et al. 1999). In the

space communication link, especially the satellite

communication link with the big gap in the bandwidth

between the downlink and uplink, congestion is

extremely easy to occur in the uplink (from ground to

satellite, reverse path) when the downlink (from the

satellite to the ground, forward path) is transmitting

data packets at a high rate of speed. If there is other

background traffic in the uplink besides the ACKs, the

ABSTRACT

It is known that congestion in the reverse direction happens in advance of the
congestion in the forward direction due to the significant bandwidth asymmetry
in the two directions of the space networks, especially in the satellite networks,
which enables the TCP Vegas to enter the phase of the congestion avoidance
blindly and reduce the throughput of the forward direction. To solve this
problem, a congestion control model, TCP Vegas-DDA, which maintains the
frequency of the acknowledgments in the reverse direction is proposed. The
model sets the interval time between acknowledgments dynamically based on
the variation of the queuing delay in the reverse direction and reduces the
impact of the queuing delay on the congestion control algorithm by amending
the value of the base round-trip time. Results of the simulation indicate the
problem of the low throughput in the forward direction caused by the
congestion in the reverse direction can be solved, and the performance of the
TCP Vegas in the asymmetric links can be improved.

774 QIXUE GUAN and YUEQIU JIANG

congestion caused by the asymmetry of the bandwidth

may become even worse (Balakrishnan H,

Padmanabhan V N, Katz R H, 1997). According to the

principle of the TCP Vegas, the ACKs will queue in

the bottleneck uplink when there is congestion in it.

All those will lead to the increasing of the uplink

transmission delay and measured RTT and then will

mislead the TCP Vegas to impose congestion control

on the downlink and thus lower the performance of the

protocol (PAN Cheng-sheng, Xuan Jing-peng, WEI

De-bin, et al. 2012).

At present, the promotion of the delay

measurement accuracy and the CWND adjustment

efficiency is the primary focus of improving the TCP

Vegas for the satellite communication system (Wang

Jian-feng, Huang Guo-ce, Chen Cai-qiang, et al.

2008).

There are few solutions to the uplink

congestion caused by the bandwidth asymmetry. You

can find some relatively typical solutions in the

following documents: Document analyzes the cause of

the highly decreased performance of the TCP Vegas in

the asymmetric link compared with the TCP Reno in

detail (Gong Changqing, Zhao Zhigang, Wang

Guangxing, 2006). It also calculates the queuing delay

of the data packets in the downlink based on the time-

stamp, and then the calculated value of the actual

throughput in the TCP Vegas algorithm is revised

according to the results from the former step to lower

the impact of the uplink queuing delay on the TCP

Vegas congestion control algorithm to some extent.

But this method, calculating the downlink queuing

delay using the timestamp, may introduce the time

synchronization issues between the two ends and

make the improvement scheme too complicated.

Based on the measurement of the queuing delay of the

downlink and uplink using routers, the document

further lowers the impact of the uplink status on the

congestion control algorithm by proposing a method

of revising the actual throughput and the base RTT at

the same time (YUE Peng, ZHANG Bing, LIU Zeng-

Ji, et al.2006). The document presents an idea of

measuring the change of the downlink queuing delay

using the time-stamp and taking the results as an

assistance on the downlink congestion detection to let

the congestion control algorithm control the downlink

congestion more accurately, rather than revising the

key parameters in the original TCP Vegas algorithm

(Fu C P, Chung L C, Liew S C, 2001).

Although the above method addresses the problem

in which the data packet throughput decreases after

introducing the congestion control algorithm when the

ACK congestion is experienced in the uplink by

eliminating the impact of the uplink queuing delay on

the TCP Vegas algorithm. The ACK congestion in the

uplink is still not being controlled directly and

efficiently, making the number of the ACKs in the

uplink reduce blindly. That makes the ACK frequency

in the uplink not being kept at a relatively high level

so that the work pace of the TCP Vegas congestion

control becomes lowered and the climbing speed of

the downlink data packet throughput slows down.

Finally, the performance of the TCP Vegas is

compromised (Fu C P, Liew S C, 2003).

Therefore, the paper proposes an end-to-end TCP

Vegas congestion control model with an active control

on the uplink congestion starting with the

acknowledgement mechanism cooperating with the

TCP Vegas. The model provides a solution to the

problem of the lower downlink throughput when the

congestion happens earlier on the uplink than

downlink and improves the overall performance of the

TCP Vegas (Chan Y C, Chan C T, Chen Y C, 2003).

2 THE TCP VEGAS-DDA (DYNAMIC DELAYED
ACKNOWLEDGEMENT), AN IMPROVED TCP
VEGAS MODEL

IN order to tackle the problem of the throughput

decreasing when the TCP Vegas congestion control is

introduced after the uplink congestion occurs, the TCP

Vegas-DDA, and the congestion control model

presented in this paper, imposes the congestion control

on the uplink indirectly using the revised TCP Vegas

congestion control mechanism and maintains a

relatively high ACK frequency in the uplink with the

assistance of the adaptive delayed ACK mechanism

(Chan Y C, Chan C T, Chen Y C, et al. 2004).

Major amendments made on the improved model

include the original TCP Vegas, and by adjusting the

ACK intervals, the number of the ACKs sent into the

uplink is controlled to make sure the ACKs queue in

the uplink is in an appropriate manner to keep a

relatively high ACK frequency. At the same time, the

calculated value of the base RTT is modified

according to the intervals between the adjacent ACKs

to lower the impact of the early and late ACKs on the

measurement of the RTT (Ho C Y, Shih C H, Chen Y

C, et al.2005).

2.1 The TCP Vegas-DDA Model Structure
The model is composed of the delayed ACK

mechanism controlling the ACK intervals and the TCP

Vegas correction algorithm for the congestion control,

as shown in Figure 1.

Data Sender

ACK Delay

Computation

Module

Data Receiver

Sending data

Receiving Acks

Amended

TCP Vegas

Module

Receiving data

Delay Timer

Settings

Module

Sending Acks

Interval

between

Adjacent

ACKs

Computation

Module

Data Packets

Acks

D
ela

y
e
d

 A
C

K

M
e
ch

a
n

ism

Figure 1. The Structure of the TCP Vegas-DDA Module.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 775

The delayed ACK mechanism consists of three

parts: A sender-side ACK delay computation module,

a receiver-side delay timer settings module and a

computation module for the actual interval between

the adjacent ACKs.

In the initial stage of the model, the receiver-side

ACK delay, and the maximum ACK delay is the

interval between the two adjacent ACKs. Its value is

set to zero. The receiver returns the ACK immediately

after it receives an unacknowledged packet and there

is no ACK delay(Kang Yuchi, Liu Meihong, et al,

2019).

The process of the one round of the ACK

frequency adjustment is described. The sender sends

data packets to the receiver. The receiver extracts the

ACK delay interval, with zero as the original value,

from the head of the data packet it is received and sets

the ACK delay timer using the result value.

Meanwhile, a decision is made whether to send the

corresponding ACK at this interval according to the

data packet status. Then puts the actual send-time

interval between the current ACK and previous ACK

into the head of the current ACK before it’s sent out.

After receiving the ACK, the sender computes the

queuing delay of the ACK during the transmission in

the uplink according to the actual send-time interval

carried by the ACK and at the same time it imposes

the congestion control on the uplink using the

modified TCP Vegas congestion control algorithm. it

calculates the ACK delay interval for the next round

by taking the result queuing delay as the basis of the

evaluating ACK frequency in the uplink. In the last

step, it puts the result ACK interval into the head of

the next data packet to be sent and a new round of

adjustment begins when the data packet reaches the

receiver.

2.2 Delayed ACK Strategy
On the basis of the traditional cumulative

acknowledgement mechanism, the adaptive delayed

ACK strategy in this model introduces a method for

the delayed ACK transmission based on the ACK

interval, to manage the ACK frequency in the uplink.

Document points out that the delayed ACK method

may lead to three problems in the traditional TCP

Reno relying on the acknowledgement timer, because

the ACKs received by the sender will be less or come

less frequently.

(1) The burst data traffic: Assuming that the n

ACKs sent by the receiver are lost or delayed due to

the uplink congestion and only one ACK arrives on

time finally. The slow process of the increasing

CWND showing by the size of n data packets

gradually during the period of accepting n ACKs has

been turned into a burst that increases the CWND

suddenly. By the size of the n ACKs only after

receiving one ACK, the sudden expansion of the

CWND raises the risk of the data packet loss. The

larger the value n is, the higher the risk of the data

packet loss becomes. Over-fast growing on the

CWND may make the data sent into the downlink

burst and the risk of data packet loss in downlink

become even higher, especially in the slow-start

phase.

What the TCP Vegas is based on is the change of

throughput rather than the ACK arrival frequency at

the sender, which means that the TCP Vegas is not a

protocol based on the acknowledgement timer.

Although the TCP Vegas is insensitive to the ACK

arrival frequency at the sender, the calculation of the

throughput still relies on the arrival of the ACKs.

Therefore, in order to avoid the above problems in the

slow-start phase when the CWND grows rapidly, the

delayed ACK mechanism presented in this model only

works when the TCP Vegas is in the congestion

avoidance phase.

 (2) The slow growth of the CWND: The

traditional TCP Reno depends on the number of the

ACKs received rather than the data volume that can be

acknowledged by the ACKs to adjust the CWND. So,

smaller number of the ACKs arriving at the sender

successfully is bound to decrease the growth speed of

the CWND.

To solve the problem, this model makes the

delayed ACK mechanism work in the congestion

avoidance phase when the TCP Vegas sees slow

growth on the CWND to avoid any impacts on the

CWND rapid growth during the slow start.

(3) The fast-retransmission malfunction: The

traditional TCP Reno performs the fast-transmission

as soon as it receives the three duplicate ACKs. It is

possible that the sender can’t receive all the three

duplicate ACKs before the sender-side timer time out

due to the delay of the ACK. That will prevent the

sender from starting the fast retransmission when there

is a data packet loss, so that the retransmission of the

lost data packet can only be triggered until timeout.

Therefore, performance of the protocol becomes

lower.

Document [3-4] says that the TCP Vegas improves

the TCP Reno retransmission mechanism. That is, the

transmission time interval can be calculated using the

timestamp in a duplicate ACK after receiving it with

no need to get three duplicate ACKs. Then it figures

out whether to start the fast-retransmission by

checking the pre-set threshold of the fast-

retransmission timeout. Even if there is multiple data

packet loss, it can still find out in the same way, by

examining the time-stamp carried by the first or

second ACK (not a duplicate ACK) arrives after the

successful retransmission of the first lost packet,

whether to perform the fast-retransmission. Although

the original TCP Vegas has already made the starting

of the fast-retransmission, it no longer relies on the

number of duplicate ACKs received since its born, it’s

still possible that the fast-retransmission cannot be

started due to the lack of enough ACKs received by

the sender, because the ACKs can still arrive at the

http://202.202.244.12/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/OutboundService.do?SID=8FesynO1zTaEq9omCLJ&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=4082419
http://202.202.244.12/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/OutboundService.do?SID=8FesynO1zTaEq9omCLJ&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=408043

776 QIXUE GUAN and YUEQIU JIANG

sender with a too low frequency when one of the

following three situations occurs: There is a small

CWND; the sender enters the slow-start phase due to

timeout; and there is no packet sent out by the sender

during an interval longer than an RTT. It leads to a

lower performance. Therefore, an ACK time-out timer

should be set at the receiver-side to ensure the ACKs

arrive before time-out at the sender-side. The timer is

set to 1.2 times of the RTT.

2.3 Calculation of the Interval between the
Adjacent ACKs

In order to keep a relatively high ACK frequency

in the uplink, an ACK queue of a certain length must

be maintained in the uplink. Therefore, the interval

between the adjacent ACK packets and the queuing

delay of the ACK should be correlated. If an ACK is

sent after an interval of T following the previous

ACK, which decreases (or increases) the queuing

delay ‘T’ of the ACK in the uplink, the maintenance

on the size of the ACK queue in the uplink works. In a

space communication environment with a big gap in

the bandwidth between the downlink and uplink, the

congestion is experienced earlier in the uplink than

downlink and the packet loss caused by the error code

is not taken into consideration, the primary factors

making the RTT vary and is the variation in the

queuing delay of the ACKs in the uplink and the

variation in the ACK interval (packet delay in

downlink is neglected, because there is no congestion

in it), so the RTT variation should be:

ΔRTT = ΔT + ΔT’ (1)

In the equation: ΔRTT is RTT variation; ΔT is the

variation in the ACK interval; ΔT’ is the variation in

queuing delay of the ACK in the uplink.

In order to keep the size of the ACK queue in the

uplink and reduce the increment of the RTT as much

as possible, the paper supposes the variation in the

ACK and the interval is equal to the variation in the

queuing delay of the ACK in the uplink, ΔT = ΔT’.

Equation, ΔT = ΔRTT/2, can be derived from equation

(1), therefore the ACK interval for the new round

should be:

Ti = Ti-1 +ΔRTT / 2 (i=1, 2…)

(2)

In this equation, Ti is the ACK interval in the new

round (with zero as its initial value); Ti-1is the ACK

interval in the previous round and ΔRTT is the current

RTT variation.

(1) Determination of the lower limit of the ACK

interval.

The ACK interval should not be too short so that

the length of the ACK queue in the uplink cannot be

too long. The minimum interval of the ACK delay

(lower limit of the interval) should be no less than ΔT,

the ACK interval under a regular ACK sending

frequency in the TCP Reno.

Δt is set as the interval between ACKi and ACKi+1,

the two ACKs arrive at the sender in succession.

A is set as the difference of the acknowledged data

size in bytes between the two qualified normal ACKs

arriving at the sender in succession. In order to get the

same results as the accumulative acknowledgement

strategy in the TCP Reno, this value is set to the size

of 2 MSSs, which means one ACK is sent out per two

data packets received.

Δa is set as the difference of the acknowledged

data size in the bytes between two actual ACKs, ACKi

and ACKi+1, arriving at the sender in succession. After

the arrival of ACKi+1, the adjustment range of the data

packets sent by the sender and CWND should be

similar to that in the situation when ceil(Δa / A) – 1

ACKs are received, Δa /Δt = A /ΔT. Ceil returns the

smallest integer value not less than the number

specified as an argument. Minus one means removal

of ACKi, the one already arrives.

The formula for calculating Tmin, and the minimum

ACK interval, is as follows:

Tmin = ΔT = (A / Δa) × Δt (3)

(2) Determination of the upper limit of the ACK

interval.

To ensure enough feedback is being provided while

tuning the CWND with the TCP Vegas-DDA, two

ACKs must be successfully received by the sender

within two RTTs, of the CWND adjusting cycle. The

ACK interval should be no greater than one RTT. The

formula for calculating the Tmax, the maximum ACK

interval, is as follows:

Tmax = RTT (4)

Finally, the formula for calculating the Ti, shows

the ACK interval in a new round, is as follows:

Ti = min(max(Ti, Tmin), Tmax)(i = 1, 2…) (5)

2.4 The Revision to the TCP Vegas
The original TCP Vegas calculates the expected

transmission speed and the actual transmission speed

with formula’s (6) and (7) respectively:

Expected = cwnd(t) / baseRTT (6)

Actual = cwnd(t) / RTT (7)

In the equation, Expected is the expected

transmission speed and Actual is the actual

transmission speed. cwnd(t) is the size of the CWND

now of t and baseRTT is the minimum RTT in the

current link observed by the sender. RTT is the

measured RTT in the current link now of t.

Then work out Δ with formula (8),

Δ = (Expected - Actual) × baseRTT

 = (1 – baseRTT / RTT) × cwnd(t) (8)

INTELLIGENT AUTOMATION AND SOFT COMPUTING 777

At last, adjust the size of the CWND with formula

(9) to make the number of data packets in the

downlink close to the capacity of the link as much as

possible.

1

1

cwnd

cwnd

cwnd

cwnd

(9)

It can be derived from formula (9) that the CWND

adjustment algorithm varies according to the value of

Δ α andβ, and the measurement of Δ is related to the

cwnd and the ratio of the RTT to the baseRTT at that

moment according to formula (8). So, when α and β

are set to 1 and 3 respectively, the congestion control

result in the downlink depends on the ratio of the RTT

to the baseRTT. Although the RTT includes the uplink

queuing delay of the ACK, which accounts for the

major part during congestion in the uplink. The value

of the RTT is not revised by removing the uplink

queuing delay while only the baseRTT is revised,

because the TCP Vegas congestion control strategy is

used in the uplink congestion control in this model.

The calculated value of the RTT should include the

ACK delay, because the ACK is not sent out at once

when a data packet arrives. The delay should be

approximately equal to ΔT, (the interval between

adjacent ACKs). Therefore, the revision must be

performed while calculating the baseRTT to make its

value equal to the sum of the ΔT and the previous

baseRTT, and baseRTTi= baseRTT +Ti., because

BaseRTT and RTT add ΔRTT synchronously. The

BaseRTT is usually less than the RTT, Δ reduces when

the cwnd remains unchanged according to formula (8)

and Δ tends to go back to the value less than α (the

growth phase of the cwnd) according to formula (9).

Therefore, the growth of the cwnd is boosted through

the BaseRTT revision while the ACK frequency is

maintained and finally the downlink throughput is

improved.

3 THE SIMULATION ANALYSIS
IN order to analyze and verify the performance of

the TCP Vegas-DDA model in the satellite network

with the highly asymmetric link bandwidth, this paper

describes the simulation of the TCP Reno, the TCP

Vegas and the TCP Vegas-DDA by using the OPNET

as the simulation test software. The network topology

is shown in Figure 2.

Set the link between Router A and Router B as the

bottleneck link. The bandwidths of the downlink and

uplink are set as 1.5M/s and 1.5K/s (Bandwidth ratio

is 1000:1) respectively. The one-way transmission

time is 300ms; the downlink data packet size is 1000

bytes and the ACK size is 50 bytes; bottleneck

downlink buffer size is 10 data packet size; duration of

simulation is 20 minutes.

Figure 2. The Topology of the Simulation Network.

According to the definition of the standard

bandwidth ratio k given in document [6], in the

current simulation environment, the standard

bandwidth ratio k = (downlink bandwidth/uplink

bandwidth)/(data packet size/ACK size) =

(1.5Mbps/1.5Kbps)/(1000 bytes/50 bytes) = 50. This

means that for every k=50 data packets sent by the

downlink, one corresponding ACK is sent by the

uplink and both the downlink and uplink become

saturated at the same time. Therefore, in the current

simulation environment, if the traditional cumulative

acknowledgement policy is applied, the receiver will

create and send one ACK for every two data packets

received. The bandwidth ratio should be no greater

than 40:1 to avoid the uplink experiencing congestion

earlier than the downlink. Apparently for the current

simulation settings with the bandwidth ratio 1000:1, a

huge amount of the ACKs would queue in the

bottleneck uplink during the data transmission and

they may lose when the bottleneck uplink buffer is

small.

3.1 The Simulation Experiment with Unlimited
Uplink Buffer

To better observe and analyze the impact of the

uplink queuing delay on the TCP Vegas-DDA

performance the bottleneck uplink buffer size is set to

a large value. The size of 5 ACKs, and to cache the

ACKs not transmitted in time. Thus, the ACKs only

queue in the uplink so that the simulation will not be

affected by the ACK loss.

(1) Throughput Analysis

As shown in Figure 3, the average throughputs of

the TCP Vegas-DDA、TCP Vegas and TCP Reno in

the downlink are 52560bit/s, 25013bit/s and

16762bit/s respectively. The TCP Vegas-DDA has an

average throughput of 110% higher than that of the

original TCP Vegas and the throughput of the

traditional TCP Reno is the lowest. It demonstrates

that the TCP Vegas and the TCP Reno can only

reduce the number of the ACKs sent into the uplink

indirectly at the expense of lowering the downlink

throughput to relieve the uplink congestion by

performing the congestion control when the uplink is

experiencing congestion earlier than the downlink.

150Mbps

100ms

150Mbps

100ms

 Client Router A Router B Server

1.5Mbps, 100ms

1.5Kbps, 100ms

778 QIXUE GUAN and YUEQIU JIANG

Figure 3. Throughput in the forward direction

As shown in Figure 4, the uplink ACK interval of

the TCP Vegas-DDA is always lower than those of the

TCP Vegas and TCP Reno. As shown in Figure 5, the

uplink throughput of the TCP Vegas-DDA is higher

than those of the TCP Vegas and TCP Reno. Although

the TCP Vegas-DDA may reduce the number of

ACKs sent into the uplink through the congestion

control mechanism when the congestion occurs in the

uplink, just like the TCP Vegas. The TCP Vegas-DDA

ensures a high ACK feedback frequency to accelerate

the growth of the downlink packet throughput under

the congestion control mechanism, because it adopts

the adaptive delayed ACK strategy to help keep a

certain number of ACKs in the bottleneck uplink by

reducing the ACK interval. Besides that, the ACK

intervals of the TCP Vegas and the TCP Reno in

Figure 4 are stable and close to each other. The major

reason for the volatility of the ACK queue size in the

TCP Vegas-DDA is the former two protocols both use

the traditional cumulative acknowledgement scheme

with the static ACK frequency, making the ACK

interval fixed. The TCP Vegas-DDA adopts an

adaptive delayed ACK strategy, which adjusts the

ACK frequency according to the queuing delay,

making the ACK interval fluctuate.

Figure 4. The Interval Time between the ACKs.

Figure 5. The Throughput in the Reverse Direction.

TCP Vegas-

DDA

TCP Vegas

TCP Reno

Figure 4. The Interval Time between the ACKs.

TCP Vegas-
DDA

TCP Vegas

TCP Reno

TCP
RenoTCP

Vegas-DDATCP Vegas

TCP Reno

INTELLIGENT AUTOMATION AND SOFT COMPUTING 779

Figure 6. The Bottleneck Link Queue Size in the Reverse
Direction.

Figure 7. The Bottleneck Link Queuing Delay in the Reverse
Direction.

(2) Status analysis on the queue of the bottleneck

uplink.

Changes on the size of the bottleneck uplink queue

are shown in Figure 6. The average length of the

queue of the TCP Vegas-DDA fluctuates slightly

around the size of 1.2 ACKs. Changes of the queuing

delay induced by that is shown in Figure 7. The

average queuing delays for the three protocols are 0.37

seconds, 0.34 seconds and 0.34 seconds, respectively.

It is the involvement of the congestion control

mechanism who makes the length of the queue

towards a stable value. The ACK frequency under the

congestion control mechanism approaches the

available bandwidth of the link and then becomes

stabilized, which makes the corresponding ACK

generation frequency stabilized too, so that the length

of the uplink ACK queue is kept stable. The adaptive

delayed ACK scheme in the model causes the

fluctuation of the ACK queue length in the bottleneck

uplink in the TCP Vegas-DDA. When the number of

ACKs queuing in the uplink increases, the ACK

queuing delay rises. That makes the ACK queuing

delay increase and the ACK interval grow.

Consequently, the number of ACKs sent into the

uplink per unit time reduces and the number of the

ACKs in the queue decreases. The queuing delay may

become shorter when the length of the ACK queue

goes smaller, making the TCP Vegas-DDA cut down

the ACK interval instead. Finally, the length of the

ACK queue in the uplink begins fluctuating.

The TCP Vegas and TCP Reno have limited ability

to handle the bottleneck uplink and they both use

cumulative acknowledgement schemes with no

adjustment on the ACK frequency. Therefore, their

ACK frequency stabilizes at a fixed value under the

congestion control mechanism, making the length of

the ACK queue remain stable in the bottleneck uplink.

3.2 The Simulation Experiment on the Buffer-
limited Uplink

As shown in Figure 6, when the buffer size of the

bottleneck uplink is large, the average uplink buffer

size needed by the TCP Vegas-DDA is the size of 1.2

ACKs. This experiment revises the buffer size of the

bottleneck uplink to the size of 1 ACK to observe the

performance of the uplink when the ACK loss

happens during the congestion.

(1) The Throughput Analysis

As shown in Figure 8, when there is a small buffer

size in the bottleneck uplink, the downlink throughput

of the TCP Vegas-DDA is still higher than those of

the TCP Vegas and TCP Reno. But the downlink

throughputs of all the three algorithms, TCP Vegas-

DDA, TCP Vegas and TCP Reno become higher

compared with those in the situation with larger

buffers and the larger throughput results from a longer

bottleneck uplink ACK queue. As measured in the

experiment, the ACK queuing delays for the three

protocols are all 0.3 seconds, because the bottleneck

uplinks are saturated and because of packet loss,

intervals between adjacent ACKs arriving at the

sender misleads the system to believe there is a faster

pace than that with a larger bottleneck uplink buffer, it

is called the Stretch ACK [17]. The ACK feedback

accelerates, which bursts the data in the downlink and

hence improves the throughput. The TCP Reno, which

relies on the acknowledgement timer, is sensitive to

TCP Vegas-
DDA TCP Vegas

TCP Vegas

TCP Reno

TCP Vegas-

DDA

780 QIXUE GUAN and YUEQIU JIANG

the frequency of the ACK arrival so the TCP Reno

sees the largest increase in the throughput. As data

packets arrive at the receiver with a higher frequency,

the CWND adjustment cycle is cut down, and the

work pace of the congestion control accelerates and

finally performance of the protocol improves.

Figure 8. The Throughput in the Forward Direction.

(2) The Status Analysis on the queue of the

bottleneck uplink

Figure 9. The Bottleneck Link Queue Size in the Reverse
Direction.

As shown in Figure 9, the TCP Vegas-DDA has a

more saturated ACK queue in the bottleneck uplink

compared with that of the TCP Vegas and TCP Reno.

It means that in a same network environment, the TCP

Vegas-DDA keeps an ACK queue with a certain

length in the bottleneck uplink to ensure a relatively

rapid ACK feedback and then makes the congestion

control work in a faster pace so that the packet

throughput of the downlink can improve in a short

time. As shown in Figure 10, the reduction of the

ACK interval at 12 minutes is the major cause of the

increment on the length of the ACK queue in Figure 9

after 12 minutes.

4 CONCLUSION
THIS paper presents the TCP Vegas-DDA, a

congestion control model based on the changing

uplink delay. It maintains a certain ACK feedback

frequency in the asymmetric link bandwidth satellite

network by dynamically adjusting the ACK interval.

The model provides a solution to the problem that the

downlink data packet throughput decreases after the

TCP Vegas congestion control mechanism is involved

when congestion occurs in the uplink. Effectiveness of

the model has been verified by simulation with the

OPNET.

5 ACKNOWLEDGMENT
THIS work was supported by the National Natural

Science Foundation of China (61501307, 61471247,

61373159), Liaoning specially-hired Professor

Program and Program for Liaoning Excellent Talents

in the University (LR2015057), and it was also

sponsored by the ''Liaoning BaiQianWan Talents

Program (2014921044)'', General Project of the

Liaoning Provincial Committee of Education

(No.L2014078, No.L2015459), and Shenyang Ligong

University (4771004kfx24).

Figure 10. The Interval Time between the ACKs.

TCP Vegas-
DDA

TCP Reno

TCP Vegas

TCP Vegas-
DDA

TCP Vegas

TCP Reno

TCP Vegas-
DDA

TCP Vegas

TCP Reno

INTELLIGENT AUTOMATION AND SOFT COMPUTING 781

6 REFERENCES
Balakrishnan H, Padmanabhan V N, Katz R H (1997).

“The effects of asymmetry on TCP performance”.

The 3rd Annual ACM/IEEE International

Conference on Mobile Computing and

Networking, New York, USA, 26-30.

Brakmo L S, O’Malley S W, Peterson L L (1994).

“TCP Vegas: new techniques for congestion

detection and avoidance”. ACM SIGCOMM

Computer Communication Review, 24(4): 24-35.

Brakmo L S, Peterson L L (1995).” TCP Vegas: end-

to-end congestion avoidance on a global

Internet”. IEEE Journal on Selected Areas in

Communications, 13(8): 1465-1480.

Chan Y C, Chan C T, Chen Y C, et al (2004).

“Performance improvement of congestion

avoidance mechanism for TCP Vegas”. The Tenth

International Conference on Parallel and

Distributed Systems, Newport Beach, USA, July

9-9.

Chan Y C, Chan C T, Chen Y C. An enhanced

congestion avoidance mechanism for TCP

Vegas[J]. IEEE Communications Letters, 2003,

7(7): 343-345.

Fu C P, Chung L C, Liew S C (2001). “Performance

degradation of TCP Vegas in asymmetric

networks and its remedies”. ICC 2001. IEEE

International Conference on Communications,

Helsinki, Finland, 11-14.

Fu C P, Liew S C (2003). “A remedy for performance

degradation of TCP Vegas in asymmetric

networks”. IEEE Communications Letters, 7(1):

42-44.

Gong Changqing, Zhao Zhigang, Wang Guangxing

(2006). “Research of TCP Congestion Control

Algorithm over LEO Satellite Networks”.

Computer Engineering, 32(18): 90-92. (in

Chinese)

Ho C Y, Shih C H, Chen Y C, (2005). “An aided

congestion avoidance mechanism for TCP

Vegas”. The Third International Conference on

Networking & Mobile Computing, Heidelberg,

Berlin, August 2-4.

Jacobson V (1990). “Modified TCP congestion

avoidance algorithm”. End2end-Interest Mailing

List, 16(3):265-280.

Jacobson V, Karels M J (1988). “Congestion

avoidance and control”. ACM SIGCOMM

Computer Communication Review, 18(4): 314-

329.

Kang Yuchi, Liu Meihong, Kao-Walter, Sharon(2019).

Numerical Analysis of Pressure Distribution in a

Brush Seal based on a 2-D Staggered Tube Banks

Model. Intelligent Automation And Soft

Computing ,25(2):405-411

Mo J, La R J, Anantharam V, (1999). “Analysis and

comparison of TCP Reno and Vegas”. Infocom

99 Eighteenth Joint Conference of the IEEE

Computer & Communications Societies IEEE,

New York, USA, 4(3):21-25.

Pan Cheng-sheng, Xuan Jing-peng, Wei De-bin,

(2012). “Improvement on TCP Vegas Algorithm

Based on Base RTT Computation in Satellite

Network”. Journal of System Simulation, 25(6):

1254-1258. (in Chinese)

Wang Jian-feng, Huang Guo-ce, Chen Cai-qiang,

(2008). “Enhanced TCP westwood algorithm

based on loss differentiation over GEO satellite

networks”. Computer Science, 35(11): 70-73. (in

Chinese)

Yue Peng, Zhang Bing, Liu Zeng-Ji, (2006). “A

Rerouting Issue with TCP Vegas and its

Solution”. Computer Science, 33(8): 39-41. (in

Chinese)

7 NOTES ON CONTRIBUTORS
Qixue Guan, Master of

Computer Science, Lecturer,

Graduated from Shenyang

Ligong University in 2006.

Worked at Shenyang Ligong

University. Research interests

include network transmission

technology and intelligent cluster.

Network transmission technology

shows positive research. Has undertaken several

national and provincial projects and several papers

have been published

Yueqiu Jiang, Doctor of

Computer Science, professor.

Graduated from Northeast

University in 2004. Worked at

Shenyang Ligong University.

Research interests include image

processing, multimedia

applications and satellite

communications and signal

processing. In the application of

multimedia technology shows positive research.

Several papers have been published and have

undertaken several related projects.

http://202.202.244.12/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/OutboundService.do?SID=8FesynO1zTaEq9omCLJ&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=4082419
http://202.202.244.12/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/OutboundService.do?SID=8FesynO1zTaEq9omCLJ&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=408043
http://202.202.244.12/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/OutboundService.do?SID=8FesynO1zTaEq9omCLJ&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=1863123
http://202.202.244.12/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/javascript:;
http://202.202.244.12/rwt/SCI/http/MFZHA63PP7TXE55GNNYG875MMWTGP3JPMNYXN/javascript:;

