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1 INTRODUCTION 
IN recent years, various wellness and care services 

have begun using wearable medical devices (often 

wristbands). Additionally, many services reward 

clients for having healthy lifestyles. For example, 

some insurance providers reduce premiums for 

customers who exercise regularly. These programs 

have been the subject of many pilot projects; however, 

the number of existing wearable devices that 

accurately analyze calorie expenditure is limited. In 

some cases, participants were able to produce false 

data that gave the appearance of actual exercise. Some 

common methods for generating these data are using a 

massage belt or putting a wristband in a spin-dryer (to 

mimic movements in high-intensity exercise). 

Current calorie-expenditure estimations are based 

on wrist motion and convert a signal into a measure of 

intensity by analyzing the magnitude of the 

acceleration signal. Thus, many studies have 

attempted to calculate calorie expenditure using signal 

analysis, pattern recognition, and feature classification 

for determining activity intensity and duration. 

However, most pattern-recognition techniques are too 

complex to implement in embedded wearable devices, 

leading to problems in the development of certain 

services. 

2 RELATED WORKS 
IN this domain, numerous studies have been 

conducted using probabilistic and statistical methods, 

and many of these utilized Bayesian network (BN) or 

naive Bayesian (NB) classifiers [Bao and Intille 

(2004), Maurer et al. (2006), Tapia et al. (2007), 

Jatoba et al. (2008), Pham and Abdelzaher (2008), 

Altun and Barshan (2010), Lara et al. (2012), Lara and 

Labrador (2012, Jan)]. These statistical methods 

require large amounts of learning data, which 

increases the complexity of the statistical models. 

Research has been conducted using linear discriminant 

analysis (LDA) [Cheng et al. (2010)]; however, LDA 

cannot adequately handle multimodal data. 

Additionally, several studies employed regression 

analysis [Riboni and Bettini (2011), Lara et al. (2012), 

Zhu and Sheng (2009), Pham and Abdelzaher (2008), 

Lee et al. (2011)]; however, a similar problem was 

encountered in these studies. Researchers applied a 

hidden Markov model (HMM) to analyze the 

continuity of certain behaviors. While this was a novel 

approach, it increased the complexity of the 

probability models. 
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In other studies [He and Jin (2008, Jul), He et al. 

(2008, Dec), He and Jin (2009)], a support vector 

machine (SVM) was used to transform the feature 

space and domain for activity recognition. 

Additionally, multilayer perceptron (MLP) has been 

applied as an artificial neural network model [Altun 

and Barshan (2010), Khan et al. (2010), Lara and 

Labrador (2012, Jan)]. These solutions are widely 

used and have a high accuracy; however, they lack 

explanatory capabilities. Furthermore, these methods 

require many feature space dimensions, and 

identifying reasons for the occurrence of errors is 

difficult. Finally, when the model is updated, it can 

only be modified by repeating the learning process. 

Triaxial sensors are optimal for determining 

physical properties during activity-recognition studies. 

Hence, in previous studies [Chen et al. (2008), Kao et 

al. (2009), Berchtold et al. (2010, Sep), Berchtold et 

al. (2010, Oct)], activity-recognition models 

employing a fuzzy-inference system were designed. In 

human behavior, walking, running, and rest states 

each have obvious value gaps; thus, low-complexity, 

feature-based activity-recognition models can be 

easily designed with minimal learning data. However, 

these systems experience difficulty in choosing correct 

physical features and setting decision boundaries 

between real and fake physical activities. 

Other studies [Bao and Intille (2004), Ravi et al. 

(2005), Maurer et al. (2006), Jatoba et al. (2008), 

Alttal et al. (2015), Altun and Barshan (2010)] 

employed the k-nearest neighbors (k-NN) algorithm, 

which is one mode of instance-based learning. This 

method resulted in excellent classification and pattern-

recognition performance. Additionally, it is effective 

for regression analysis, owing to its high explanatory 

power. Nevertheless, the method has high 

computational complexity, because the model 

constitutes an entire instance during the learning 

process. 

Decision-tree methods (ID3, C4.5 CART) [Bao 

and Intille (2004), Hanai et al. (2004), Maurer et al. 

(2006), Tapia et al. (2007), Ernes (2008), Jatoba et al. 

(2008), Altun and Barshan (2010), Lara et al. (2012), 

Lara and Labrador (2012, Jan)] also have considerable 

explanatory power; thus, they are widely used in 

action-recognition research. These methods have high 

computational complexity; however, this can be 

controlled to some degree. Nevertheless, if the 

decision boundaries are not rectangular, the data 

distribution fails, and the overall results are poor. 

Bagging and boosting—ensemble algorithms that 

use decision trees—are voting-based (weighted) 

metaclassifiers. These metaclassifiers are produced as 

a result of many parallel sub-classifiers or a strong 

classifier connecting weak classifiers in a series 

[Minnen et al. (2007), McGlynn and Madden (2011), 

Lara et al. (2012)]. Such solutions require combining 

existing algorithms to ensure stable performance; 

however, their computational complexity is too high 

to implement in small embedded devices. 

Table 1. Related works for activity recognition 

Algorithm Related Works 

Bayesian (BN, NB) 

[Bao and Intille (2004)],  
[Maurer et al. (2006)],  

[Tapia et al. (2007)],  

[Jatoba et al. (2008)],  
[Pham and Abdelzaher (2008)],  

[Altun and Barshan (2010)],  

[Lara et al. (2012)],  
[Lara and Labrador (2012, Jan)] 

LDA [Cheng et al. (2010)] 

Regression analysis 
[Riboni and Bettini (2011)], 

[Lara et al. (2012)] 

HMM 

[Zhu and Sheng (2009)],  

[Pham and Abdelzaher (2008)], 
[Lee et al. (2011)] 

SVM 
[He and Jin (2008, Jul)],  
[He et al. (2008, Dec)],  

[He and Jin (2009)] 

MLP 

[Altun and Barshan (2010)],  

[Khan et al. (2010)],  

[Lara and Labrador (2012, Jan)] 

Fuzzy-inference 

system 

[Chen et al. (2008)],  
[Kao et al. (2009)],  

[Berchtold et al. (2010, Sep)], 

[Berchtold et al. (2010, Oct)] 

k-NN 

[Bao and Intille (2004)],  

[Ravi et al. (2005)],  
[Maurer et al. (2006)],  

[Jatoba et al. (2008)],  

[Ravi et al. (2005)],  
[Alttal et al. (2015)] 

ID3, C4.5, CART 

[Bao and Intille (2004)],  
[Hanai et al. (2004)],  

[Maurer et al. (2006)],  

[Tapia et al. (2007)],  
[Ernes2008],  

[Jatoba et al. (2008)],  

[Altun and Barshan (2010)],  

[Lara et al. (2012)],  

[Lara and Labrador (2012, Jan)] 

Boosting/bagging 

[Minnen et al. (2007)],  

[McGlynn and Madden (2011)], 

[Lara et al. (2012)] 

The methods used in the aforementioned studies all 

yield a high recognition performance. However, 

owing to development issues, the latest wearable 

devices lack sufficient resources for these algorithms.  

Put differently, the computational complexity of 

these methods is too high for use in small embedded 

devices. Therefore, we propose an activity-recognition 

algorithm with low computational complexity, which 

can operate in small embedded processors. 
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3 PROPOSED METHOD 

3.1 Overview 
THE proposed method reduces the number of k-

NN instances through k-means clustering. The k-NN 

algorithm has fewer matrix calculations than other 

algorithms. Thus, it is easy to implement, is relatively 

stable, and has satisfactory explanatory power. 

However, as noted in previous studies, this algorithm 

faces the critical challenge of performing many 

comparison calculations during operation. In the k-NN 

algorithm, the best k value should be empirically 

chosen, and the algorithm generally performs best 

when k = 1. In [Ravi et al. (2005)], the authors chose k 

= 7 empirically; however, the k value in other studies 

was either 1 or was not mentioned because it was 

empirical. Thus, in the existing case studies, a 

characteristic was simply extracted and applied as a 

comparison target, rather than effectively applying the 

k-NN algorithm [Bao and Intille (2004), Parkka 

(2006), Maurer et al. (2006), Jatoba et al. (2008), Ravi 

et al. (2005), Alttal et al. (2015)]. Although unrelated 

to human-activity recognition in embedded devices, 

research has been conducted on fast searching for 

nearest neighbors through parallel processing using 

hardware processors [Li et al. (2011), Gracia et al. 

(2008), Gracia et al. (2010)]. 

To overcome the aforementioned challenge, we 

propose reducing the number of k-NN instances by 

dividing groups using a k-means clustering algorithm 

to extract the centroid of each group. All the extracted 

instances may not have the same label; thus, we assign 

a label according to the maximum likelihood (ML) in 

a particular group. The proposed classification method 

is shown in Figure 1. 

Figure 1. Overall procedure of the proposed method 

3.2 Feature Extraction 
In previous triaxial sensor-based activity-

recognition studies, various features were calculated to 

increase the accuracy, for example, the tendency 

(mean, median) in the time domain, the dispersion 

(standard deviation, mean, absolute deviation, entropy, 

inter-quartile range), histograms (cumulative, 

percentile), representative frequency, and the power in 

the frequency domain [Lara and Labrador (2013)]. 

Resources are limited in miniaturized embedded 

environments. Thus, filters are not applied to reduce 

the computational complexity. Additionally, most 

previous studies extracted numerous characteristics to 

use, resulting in the calculation of characteristics that 

duplicated both the meaning and the distribution of 

values. For example, the meaning of the standard 

deviation is duplicated by the mean absolute 

deviation, entropy, and interquartile range mean 

dispersion, which have high correlation and similar 

distributions of calculated characteristic values. In the 

frequency-conversion operation and characteristic 

extraction procedures, the characteristics of the 

frequency domains were not calculated to reduce the 

computational complexity. 

Thus, in the present study, we extracted the 

arithmetic mean, standard deviation, and maximum 

value, with the specific segment length (SL) on each 

axis of the basic time domain, without preprocessing. 

In addition, considering differences in sensor direction 

(on the wrist), we calculated the triaxial signal 

momentum and extracted the same three features for 

each subject. Equation 1 describes the calculation of 

the momentum signal from the triaxial signal. Here, 

“  ” represents the acceleration value, and the 

subscript indicates the axis. Equations 2 and 3 give the 

arithmetic mean and standard deviation, respectively, 

derived from each axis signal. The set   in these two 

equations includes each axis component (     ) and 

the momentum ( ), and   is the SL in the array, 

which refers to the sampling rate (SR) multiplied by 

unit time. Various results were obtained by changing 

the SR and SL (time, seconds). The feature space for 

each of the four signals (including momentum) had 12 

dimensions. Figure 2 shows the acquired instances, 

with their labels, in three dimensions. 

     
    

    
 (1) 

        
 

 
     

 

   

                   

(2) 

        
 

 
               

 
 

   

(3) 



682 CHOE ET AL. 

Figure 2. Acquired instances with their labels 

3.3 Extracting Centroid Using k-Means 
Clustering 

K-means [MacQueen (1967)] is a clustering 

algorithm (described in the flowchart of Figure 3) that 

first determines the number of clusters (k) in the input 

data and then sets the number of centroids at an initial 

random location. Subsequently, i) the distances 

between all instances and centroids are calculated and 

ii) allocated to the same group. Finally, iii) the nearest

centroid in each instance is individually selected. 

Next, if an allocated instance is changed from one 

group to another, the centroid now belongs to that 

same group. If there is no movement, the process is 

terminated. These processes are presented in the 

flowchart of Figure 3. In general, sound methods for 

determining the optimum cluster number for k must 

consider all options and should apply the Davies–

Bouldin index [Davies and Bouldin (1979)]. 

Figure 3. Flowchart of k-means clustering 

The following equations correspond to key 

processes of the k-means clustering algorithm. 

Equation 4 expresses the calculation of the distances 

(    ) between all centroids (  ) and all instances (  ). 

We used the Euclidian distance for all equations. 

Process ii) in Figure 3 is represented by Equation 5, 

where all the      values obtained using    allocate the 

minimum i
th
 centroid (  ) of group (  ). Equation 6 

represents process iii) and is a means of calculating 

the centroid (  ) from the renewed group (  ), which 

determines the numerical average for all instances (  ) 

in group (  ). 

             
 
       (4) 

               
 

              (5) 

   
 

    
   

     

    (6) 

In this study, we used the k-means algorithm to 

find the representative value of many acquired 

instances. This algorithm is similar to expectation 

maximization (EM), i.e., a clustering algorithm that is 

based on a probabilistic model and is highly effective. 

However, the EM algorithm can cause duplicate 

cluster detection depending on the probability 

distribution. Thus, it encounters difficulty in 

estimating computational complexity. For this reason, 

we used the k-means method, which reliably avoids 

duplicate clusters. This algorithm uses centroids 

extracted from each calculated cluster, which later 

replace instances. Figure 4 shows the instances with 

allocated acquired data, which were grouped using the 

k-means algorithm. Figure 5 shows all the centroids. 

To search for nearest neighbors in the embedded 

environment, we adjusted the number of clusters from 

30 to 100, as experimental results revealed the 

recognition rate to be <90% with <30 clusters. 

Figure 4. Instances grouped using the k-means algorithm 
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Figure 5. Extracted centroid of each group by k-means 
clustering 

3.4 Assigning Label According to ML 
Each extracted centroid represents one cluster, and 

each cluster contains several instances. These 

instances are each labeled according to their activity 

and time segment. Thus, one cluster is a gathering of 

similar activity instances, but each can have a different 

label. Therefore, in this study, ML was applied to the 

labels of many instances within a cluster, and these 

labels were assigned to a centroid. For a specific label 

(e.g., in Equations 7 and 8), the labels with the highest 

probability of instances belonging to that cluster were 

assigned. In Equation 7, the set   represents the 

collected behavior labels and has three elements: 

“Rest” =   , “Walk” =   , and “Run” =   . Equation 8 

describes the process of allocating each group (  ) of 

the centroid (   ), where the most possible labels 

among each label (  ) in the group (  ) are assigned. 
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Figure 6 represents centroids that were labeled by 

applying the ML method to each centroid through 

instances belonging to the group in Figure 4. Figure 7 

shows the result of relabeling each instance according 

to calculated labeled centroids. There appears to be no 

difference from the original distributions (Figure 2); 

however, there is a small discernable change. 
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Figure 6. Labeled centroid of each group by ML 

Figure 7. Re-labeled Instances in each group 

3.5 k-NN Classification 
The k-NN [Cover and Hart (1967)] algorithm is 

easy to implement and understand owing to its simple 

principles and high performance. This algorithm 

involves calculating the distances (and similarities) 

between an input target instance and all existing 

instances and then extracting the nearest previously set 

k neighbor instances. In the extracted nearest-neighbor 

instances, the highest frequency label besides the label 

of the input instance is identified. The k value is set to 

obtain the highest measurable performance. The 

distances between the instances are calculated using 

Equation 9 (  = dimension), which uses the  ,   

vector to obtain the distance      according to the 

Minkowski distance metric. Generally, p is 1 

(Manhattan) or 2 (Euclidean). In this study, we set the 

value as 2. 

Because we set the centroid to the representative 

value of the instance group, as a standard instance of 

activity recognition, the k value of the k-NN algorithm 

is set as 1. Figure 8 presents the distribution of the 

target instance for the tests, and Figure 9 shows the 

predicted result based on the centroid shown in Figure 

6.
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Figure 8. Target instance Figure 9. Predicted instance 

4 PERFORMANCE EVALUATION
Table 2. Acquired signal lengths (in minutes) in the experiment 

Subjects 1 2 3 4 5 Total Rate [%] 

Rest 

Working on Desk 113 62 28 0 80 283 45.57 

Ridding Bus 36 0 0 0 62 98 15.78 

Belt Massager 5 5 0 0 5 15 2.42 

Subtotal 154 67 28 0 147 396 63.77 

Walk 24 28 24 23 24 123 19.81 

Run 12 24 22 22 22 102 16.43 

Total 190 119 74 45 193 621 100.00 

4.1 Experimental Scenario 
TO evaluate the efficacy of the proposed 

algorithm, we measured the wrist-acceleration signals 

of five subjects, with acquired activity labels, over 621 

min. The activities were walking in a field with 

various items (clothing, umbrella, and luggage), 

working at a desk, resting while using a smartphone, 

riding a bus, using a belt massager, and running on a 

treadmill. The measurable range of acceleration was ± 

2G, at an SR of 32 Hz. Table 2 presents the statuses of 

the collected data. 

4.2 Performance Metrics 
To compare the efficacy of k-NN with that of other 

algorithms, we calculated the number of instances 

used in recognition after reduction and measured the 

accuracy of each algorithm. The accuracy was defined 

as the probability that corresponded to each real and 

expected activity label in the entire test sample. When 

examining the behavioral cognition study using the k-

NN algorithm, P-fold cross-validation was used with 

shuffled instances to evaluate the performance 

[Maurer et al. (2006), Altun and Barshan (2010), Ravi 

et al. (2005), Alttal et al. (2015)]. The P values 

employed in previous studies were as follows: 5 

[Maurer et al. (2006)], 10 [Altun and Barshan (2010), 

Alttal et al. (2015)], and 12 [Ravi et al. (2005)]. In all 

instances, we applied P-fold cross-validation with P = 

10, and all algorithms were applied to the same 

datasets. In the equally shuffled dataset, the proposed 

algorithm applied k-means clustering while setting the 

first to k
th
 instances to the initial centroid. 

    
           

                 
(10) 

      
          

    

(11) 

In addition, we calculated the values of two 

evaluation factors using the k-NN algorithm that 

resulted from common target light-weighting and 

multiplied them by two additional factors. The first 

factor shows how each algorithm maintained the k-NN 

recognition rate by using the ratio of the achievement 

accuracy (   , as shown in Equation 10). In Equation 

10,             represents the testing accuracy 

obtained from the current k-NN algorithm, and 

                 represents the testing accuracy 

after the application of the proposed instance-

reduction method. The second factor shows the degree 

of reduction in the number of instances used in the k-

NN algorithm relative to the ratio of overall instance 

reduction (   , as shown in Equation 11). In Equation 

11,      represents the number of instances used for 

training in the current k-NN algorithm, and          

represents the reduced number of instances for the 

proposed method. These two factors become 0 in the 

worst case and 1 in the best case. Increasing the ratio 

of the achievement accuracy can improve recognition 

rate, thereby producing values greater than 1. 
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4.3 Results 

Table 3. Accuracy (Acc.) and instance count (Inst. #) for different algorithms 

SL [s] Algorithm 
Inst.# 

[N] 

SR [Hz], Accuracy with Standard Deviation [%] 

4 Hz 8 Hz 16 Hz 32 Hz 

1 s 

1-NN 33534 96.94 ± 0.17 97.38 ± 0.24 97.62 ± 0.18 97.66 ± 0.17 

P30 30 90.57 ± 0.64 90.29 ± 0.42 90.60 ± 0.55 89.29 ± 0.55 

P40 40 90.10 ± 0.72 90.93 ± 0.24 91.22 ± 0.49 90.68 ± 1.01 

P50 50 90.64 ± 0.39 90.67 ± 0.39 90.51 ± 0.26 91.15 ± 0.39 

P60 60 91.83 ± 0.71 91.36 ± 0.40 91.78 ± 0.45 91.25 ± 0.38 

P70 70 92.09 ± 0.67 91.89 ± 0.35 92.18 ± 0.51 91.55 ± 0.72 

P80 80 92.29 ± 0.54 91.92 ± 0.37 92.72 ± 0.37 92.60 ± 0.41 

P90 90 92.73 ± 0.47 92.00 ± 0.28 92.91 ± 0.41 92.86 ± 0.56 

P100 100 92.72 ± 0.52 92.60 ± 0.32 93.49 ± 0.44 92.74 ± 0.62 

5 s 

1-NN 6706 97.61 ± 0.48 97.49 ± 0.63 97.50 ± 0.49 97.41 ± 0.41 

P30 30 90.78 ± 0.97 90.38 ± 0.95 89.59 ± 1.17 90.75 ± 0.98 

P40 40 91.17 ± 1.09 91.45 ± 0.85 90.70 ± 1.16 90.18 ± 0.99 

P50 50 91.44 ± 1.05 91.64 ± 0.84 91.52 ± 1.23 91.57 ± 1.01 

P60 60 91.73 ± 0.98 91.49 ± 1.06 92.03 ± 1.13 92.70 ± 1.35 

P70 70 92.06 ± 0.84 92.12 ± 1.02 92.51 ± 1.06 93.04 ± 0.67 

P80 80 92.26 ± 0.77 92.79 ± 0.98 92.83 ± 0.60 93.51 ± 0.85 

P90 90 92.59 ± 1.05 93.46 ± 0.48 93.71 ± 0.65 93.51 ± 0.75 

P100 100 93.46 ± 0.89 93.76 ± 0.84 94.38 ± 0.38 93.51 ± 0.72 

10 s 

1-NN 3353 97.50 ± 1.09 97.56 ± 0.92 97.69 ± 0.48 97.37 ± 0.55 

P30 30 90.77 ± 1.33 90.02 ± 1.93 91.17 ± 1.06 90.58 ± 1.81 

P40 40 91.47 ± 1.46 90.28 ± 2.10 91.47 ± 1.20 92.91 ± 1.68 

P50 50 92.75 ± 0.85 89.96 ± 1.63 92.19 ± 1.43 93.59 ± 1.39 

P60 60 92.91 ± 0.91 91.81 ± 1.58 92.43 ± 1.14 93.42 ± 1.32 

P70 70 93.08 ± 1.08 92.62 ± 1.68 93.64 ± 1.40 93.75 ± 1.44 

P80 80 93.05 ± 1.14 92.32 ± 1.55 93.75 ± 1.67 94.31 ± 1.49 

P90 90 93.72 ± 1.16 92.73 ± 1.15 93.83 ± 1.42 93.67 ± 1.45 

P100 100 93.67 ± 1.18 93.21 ± 1.05 93.69 ± 1.51 94.44 ± 1.24 

Table 3 presents the accuracy (Acc.) and training 

instance count (Inst. #) of each algorithm. The SRs 

were 4, 8, 16, and 32 Hz, and the SLs were 1, 5, and 

10 s. For these SLs, total number of extracted 

instances for each test was 37260, 7452, and 3726, 

respectively. Of these instances, 90% were used for 

training (33534, 6706, 3353), and 10% were used for 

testing (3726, 746, 37). In the performance-evaluation 

simulations, one instance comprised a minimum of 

four samples and a maximum of 320 samples, for each 

axis. In Table 3, “1-NN” represents the original k-NN 

algorithm, which did not apply a data-reduction 

method. In the range of P30 to P100, “k = 1” refers to 

the number of applied centroids (30–100) for the 

proposed method. 

Figures 10(a)–(d) show the accuracy graphs for 

each applied SR. For each graph, the x-axis indicates 

the number of applied centroids, and the y-axis 

indicates the estimated accuracy as a percentage. In 

each figure, one line represents an SR. Depending on 

the number of applied centroids, the accuracy 

increases with the SL. Depending on the SL, the 

number of k-NN instances (the object of reduction) 

and     values increase. 

Table 4 presents the performance of the proposed 

method. The results indicate that the proposed 

algorithm exhibited large differences in accuracy, 

corresponding to the number of 1-NN training 

instances and samples (sampling rate × segment time) 

comprising each instance. Thus, if our proposed 

algorithm has a high SR, it functions with high 

accuracy. Additionally, our method can clearly reduce 

the number of instances needed for classification. 

Moreover, our method is expected to solve the 

overfitting problems that arise from cluster-based 

classification. However, our experiments were 
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Figure 10.                   for each SL and SR 

conducted using a fixed number of centroids; thus, the 

reduction ratios increased with the number of 1-NN 

instances. Therefore, we were unable to reproduce a 

sufficient number of detailed decision boundaries; 

however, when the SR and SL were sufficiently high, 

the proposed method achieved satisfactory 

classification performance. 

The graphs of each applied SR are shown in 

Figures 11 (a)–(d).The x-axis is same as that in Figure 

10, and the y-axis indicates the     value, which was 

between 0 and 1.                   exhibited a 

different recognition rate according to the SR; 

however, there was no significant change in the     of 

the relative difference with k-NN before instance 

reduction was applied. The recognition rate differed 

depending on the selected SL, as the number of 

instances used in the initial k-NN algorithm changed 

according to the SL. Thus, the effect of instance 

reduction using the proposed method that directly 

specifying the number of clusters for comparison was 

altered. Additionally, changing the calculated    

value to a percentage had the effect of further reducing 

the instance rate to 99.9%–97.0%, depending on the 

SL. 

Figures 12(a) and (b) show the average 

                 for each SL and SR. Of course, the 

SL and SR are proportional to the accuracy. The 

algorithm can more clearly reflect representative 

features of behavior when the SL is larger, owing to 

the continuity of behavior in perception. Additionally, 

a higher SR produces greater accuracy, as the 

resolution of the signal for calculating the 

characteristics in the unit time is high. 

The points in Figures 12(c) and (d) represent the 

average values of the                   for all values 

of           . The graphs in these figures show the 

average accuracy with respect to the SL at different 

SRs and with respect to the SR at different SLs, 

respectively. Overall, the correlation coefficient 

between each SL and the average value of all the 

accuracies was 0.995, and that between each SR and 

the average value of all the accuracies was 0.744. Both 

variables had strong correlations but different 

meanings. When both variables increased, with the 

accuracy increasing slightly, the number of operations 

increased linearly in the feature extraction. In the case 

where the SL increased, the execution cycle of the 

activity-recognition algorithm decreased, which 

slightly reduced the computational complexity. 

However, when the SR increased, the number of 

operations of the feature extraction increased. Thus, 

the SL should be considered over the SR in the 

implementation of the algorithm. 
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Table 4.     and     for each algorithm 

SL [s] Algorithm 
   

[0 1] 

SR [Hz],     [0 1] 

4 Hz 8 Hz 16 Hz 32 Hz 

1 s 

P30 0.9991 0.9343 0.9272 0.9281 0.9143 

P40 0.9988 0.9294 0.9338 0.9344 0.9285 

P50 0.9985 0.9350 0.9311 0.9272 0.9333 

P60 0.9982 0.9473 0.9382 0.9402 0.9344 

P70 0.9979 0.9500 0.9436 0.9443 0.9374 

P80 0.9976 0.9520 0.9439 0.9498 0.9482 

P90 0.9973 0.9566 0.9448 0.9518 0.9508 

P100 0.9970 0.9565 0.9509 0.9577 0.9496 

5 s 

P30 0.9955 0.9300 0.9271 0.9189 0.9316 

P40 0.9940 0.9340 0.9380 0.9303 0.9258 

P50 0.9925 0.9368 0.9400 0.9387 0.9400 

P60 0.9911 0.9398 0.9385 0.9439 0.9516 

P70 0.9896 0.9431 0.9449 0.9488 0.9551 

P80 0.9881 0.9452 0.9518 0.9521 0.9600 

P90 0.9866 0.9486 0.9587 0.9611 0.9600 

P100 0.9851 0.9575 0.9617 0.9680 0.9600 

10 s 

P30 0.9911 0.9310 0.9227 0.9333 0.9303 

P40 0.9881 0.9382 0.9254 0.9363 0.9542 

P50 0.9851 0.9513 0.9221 0.9437 0.9612 

P60 0.9821 0.9529 0.9411 0.9462 0.9594 

P70 0.9791 0.9547 0.9494 0.9585 0.9628 

P80 0.9761 0.9544 0.9463 0.9597 0.9686 

P90 0.9732 0.9612 0.9505 0.9605 0.9620 

P100 0.9702 0.9607 0.9554 0.9591 0.9699 

4.4 Time Complexity 
The k-NN method had a time complexity of     

for training and           for testing (classification). 

Here,      represents the number of instances for 

classification,   represents the dimensionality of the 

feature vectors, and       represents the number of 

nearest instances. To reduce     , the applied 

clustering method had a time complexity of 

                   for the training process, where   

represents the maximum number of iterations of the 

clustering operations, which was set as 1000. 

          represents the number of target centroids in 

the clusters and the centroid model, which were the 

classification standards. After clustering, each centroid 

was labeled using the ML, which had a time 

complexity of                   . Thus, the entire 

time complexity of the training process was 

                  , indicating that the proposed 

method had a time complexity of                 for 

testing (classification). Compared with the k-NN 

algorithm, the proposed method can reduce the time 

complexity for classification, and the rate of instance 

reduction is    . 

5 CONCLUSION 
THE proposed method is an effective data-

distribution model owing to its efficacy for calculating 

cluster centroids. However, in some cases, the 

distributions of different classes slightly overlapped, 

and certain instances were interpreted as noise at the 

center of the data distribution in some classes. 

Nevertheless, our method can provide more stable 

performance by simplifying decision boundaries and 

overriding this noise component.  

A data-reduction method was proposed for k-NN 

comparison operations. This method employs the k-

means clustering algorithm and can be implemented in 

low-performance embedded mobile devices. The 

method facilitated controllability for accurate target 

time complexity. In our simulations, we fixed the 

initial values in the k-means clustering process; 

however, when the initial value was randomly selected 

and the clustering process was repeated, the 

performance improved. In an actual embedded 

processing environment, multiplex and memory-

access operations are very complex; therefore, a 



688 CHOE ET AL. 

Figure 11.     for each SL and SR 

Figure 12. Average                   for each SL and SR 
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lightweight method with reduced comparing instances 

(and time complexity) is essential. 

In future research, we will attempt to reduce the 

operational time complexity of the proposed method. 

An improved centroid-extraction method combining 

k-means or k-NN with bootstrapping may be 

developed, and a tree structure may be employed to 

reduce the time complexity of the comparison 

operations for the k-NN algorithm. 
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