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1 INTRODUCTION 
A very large number of papers describe control 

systems that use artificial intelligence techniques for 

all the aspects that involve nonlinearities, or 

imprecise, incomplete, and uncertain knowledge. We 

recall here only a few topics; Model's Parameters 

Determination - Altinten (2007), System Identification 

- Makas and Yumusak, (2016), Optimization of 

Control Parameters - Kesarkar and Selvaganesan 

(2015); Aras et al. (2011); Jabri et al. (2011); Zhang et 

al. (2018); Optimal Sensors' Placing - Bruant et al. 

(2011); and Singh and Hahn (2006), Optimal Control 

Problems - Bououden et al. (2015); Naghizadeh, et al. 

(2016); Hu, X.B. et al. (2004); Faber et al. (2005); 

Qian et al. (2012); and Wong et al. (2016). 

Solving an optimal control problem (OCP) means 

designing a control structure and implementing it as a 

closed-loop structure. This framework is the only one 

that takes into consideration real-time information. 

One of the control structures used in many 

applications is the Receding Horizon Control (RHC). 

This one uses a process model (MP) and organizes the 

moving of the prediction horizon for example; Hu et 

al. (2005a) and Attia et al. (2006). A particular case of 

the RHC is the well-known Model Predictive Control 

(MPC) that makes at each step a specific action: The 

minimization of the prediction errors. There are many 

works dealing with the MPC from different points of 

view such as; Theoretical works - Clarke (1994); 

Hiskens and Gong (2006); Zheng (2010), tutorial 

reviews - Christofides et al. (2013), or surveys of 

industrial applications - Qin and Badgwell (2003), 

Yang et al. (2014), Lopez Francol (2018). 

Many papers have considered metaheuristics (e.g., 

Genetic Algorithm, Simulated Annealing, and Particle 

Swarm Optimization etc.) in conjunction with the 

RHC in order to implement closed-loop structures, 

which have been used afterwards in real-time control. 

The book by Jayaraman and Siarry (2014) has a 

section that shows a survey of this kind of work. The 

paper by Goggos and King (1996) introduces a new 

technique called the Evolutionary Predictive Control 

for the design of predictive controllers. The technique 

uses Evolutionary Algorithms to generate and evaluate 

a family of optimum predictive controllers having 

different design parameters at every sampling instant 

via an adaptive process from which the best performer 

is selected. 

Many works deal with the adequation of GA to 

model-based predictive control. The emphasis is 

placed on the GA operators' definition. The paper by 

Sarimveis and Bafas (2003) proposes a specialized 

genetic algorithm optimization method for fuzzy 

predictive control based on the Takagi–Sugeno model. 

A new approach given in Causa et al. (2008) includes 

a prediction based on a hybrid fuzzy model of the 

process. The work done by Venkateswarlu and Reddy 

(2008) proposes stochastic optimization algorithms 

such as the GA and simulated annealing that are 
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combined with a polynomial-type process model to 

develop nonlinear model predictive control strategies. 

An interesting application of the RHC is related to 

the flood control by Blanco et al. (2010). With the 

same topic, the paper by Chiang and Willems (2015) 

associates evolutionary optimization with the RHC, in 

order to obtain a real-time flood control system. This 

work is essentially similar to that presented in Section 

4, which is the second case study of our paper. 

We make the following observations that provide a 

better description of the authors' perspective with 

regards to this work's topic: 

1. The statement of an OCP contains necessary

elements; the process model (PM), functioning

constraints, and objective function that must be

minimized or maximized, initial conditions, and

time horizon.

2. A stand-alone MbA, which is neither included in

nor includes a closed-loop control structure can

solve the OCP and produce an offline "optimal"

solution, which is a sequence of values for the

control variables covering the control horizon.

This control sequence may eventually be used in

real-time but only within an open-loop control

structure, i.e., the control values a priori that are

calculated are sent to the real process at precise

time moments, without taking into consideration

the real-time information. This is a possible but

unusual situation, because unmodeled dynamics,

perturbations, or noises can affect the real process

and significantly change the performance index's

value.

3. Obviously, a closed-loop (feedback) control

structure is not equivalent to a real-time control

structure. For example, the former may be used in

simulations (like in this work) where there is no

real-time information (only eventually a simulated

one), and the simulated time is not synchronized

with a real time clock.

This paper has a rather practical relevance, because

it is addressed in the first place to a practicing 

professional engineer who wants to implement an 

optimal control structure using an MbA. The MbA 

solving the specific optimal control problem is already 

developed and tested off-line. The implementation of 

the control structure has to join knowledge from soft 

computing and control engineering that is not always a 

simple task. Our article is addressed to the researcher 

that has developed a new metaheuristic algorithm 

aiming to use it within an optimal control structure. 

The objective of this work is to emphasize some 

practical aspects of how to join the RHC to an MbA in 

order to obtain a closed-loop control structure that can 

be further used in real-time control as a solution to the 

given OCP. These practical aspects are taken into 

account in the systematic procedure proposed in this 

paper, which produces the desired control structure 

starting from the statement of the given OCP.  

When joining the RHC structure with an MbA, it is 

important to establish their relative "position". For 

example, in many applications the MbA is the genetic 

algorithm (GA). Some authors consider implicitly that 

the RHC structure is subordinated to the GA. On the 

other hand, others use the RHC structure that includes 

a GA. There are very good papers such as Hu and 

Chen (2005a); Hu and Chen (2005b) that have 

mentioned explicitly the relation between the two 

components and justified it in the context of the solved 

problem. Of course, when the designer of the control 

structure specifies the actions of his algorithm, the two 

variants are feasible, because it is always possible to 

rearrange the algorithm's actions. The solution 

proposed in this paper comes from the confirmed facts 

that an MbA has the vocation of optimizing an 

objective function, while the RHC explicitly provides 

the feedback (see observations 2 and 3). That is why, 

in the context of our procedure, the RHC integrates 

the MbA into its controller. Therefore, the general 

framework with feedback is created by the RHC 

structure whose controller repeatedly calls the MbA. 

Section 2 of the paper is devoted to the 

presentation of the RHC structure and how the MbA 

can be integrated into its controller. This description 

leads to a systematic procedure that begins with the 

design and implementation of a stand-alone algorithm 

based on the chosen metaheuristic able to solve the 

given OCP. The stand-alone MbA will be slightly 

modified to generate an algorithm that can be 

integrated into the closed-loop structure, as described 

in Sections 2.1. and 2.2, which deals with some 

aspects concerning the implementation of the 

controller related to the influence of the performance 

index and time constraints over the prediction horizon. 

In Sections 3 and 4, the proposed procedure is 

illustrated by two case studies of the OCPs that use 

two different metaheuristics. From the beginning, let 

us note that the emphasis is not on the importance or 

difficulty of the OCP, or the metaheuristic chosen to 

solve the problem or other tools that are concerns of 

the computational intelligence that can improve the 

metaheuristic's efficiency. The two case studies are 

just nontrivial exemplifications of how to implement 

the Receding Horizon Controller following the 

proposed procedure. Section 3 refers to an OCP with a 

nonlinear continuous model and Section 4 describes 

an OCP concerning a nonlinear discrete system. 

2 OPTIMAL CONTROL STRUCTURE USING 
METAHEURISTIC-BASED ALGORITHMS 

THE perspective of this paper starts from the 

difference between the solution of an OCP and a 

closed-loop control structure that implements this 

solution. We speak here about an optimization 

problem (OP) referring to a dynamic environment 

where the values of the decision variables (control 

inputs) have to optimize (maximize or minimize) an 
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objective function and change periodically in order to 

adapt to environmental changes. A process model 

taking place in the dynamic environment can calculate 

for each moment the values of some dependent 

variables as a result of prior variation of the decision 

variables. The environmental changes are expressed 

by the values of the so-called state variables and 

controlled variables. 

As the theoretical framework of the RHC is already 

well-known, only some elements sufficient to join the 

RHC with the metaheuristic-based algorithm will be 

reviewed in this section. Obviously, all the variables 

and functions may have a vectorial character. 

Complete mathematical details, such as vector 

dimensions, will be avoided to simplify the 

presentation. 

2.1 Optimal Controller Implementation using 
Metaheuristic-based Algorithms 

A given OCP considers the environment evolution 

on a control horizon [t0, tH], with discrete moments 

ti=t0+i·T, i=0,… H, where T is the sampling period and 

t0 is the initial moment. If the value X(t0) of the initial 

state and the sequence of control inputs U(t0), U(t1), 

…, U(tH-1) are known, then the sequence of the state 

variables X(t1),…, X(tH-1), X(tH) and the sequence of 

controlled (output) variables Y(t1),…, Y(tH-1), Y(tH) can 

be calculated using a PM. In this work, we consider 

that the PM is a set of differential algebraic equations. 

Let Π be the structure of the OCP defined as 

   Π =<f, constraints, t0, H, X(t0), J(t0, H, X(t0))>, (1) 

where f is the function appearing in the state equation 

))(),(( tUtXf
dt

dX
 , (2) 

J(t0, H, X(t0)) is the objective function, and 

"constraints" is the set of all algebraic and differential 

constraints imposed by the dynamic environment. To 

solve Π means finding the control sequence that 

optimizes (maximizes or minimizes) the objective 

function J(.) on the control horizon, starting from the 

initial state of X(t0). 

For different reasons, especially when a 

deterministic algorithm is not known, we may decide 

to solve this problem using an approaching algorithm 

based on a metaheuristic, such as the Genetic 

Algorithm, Particle Swarm Optimization, Ant Colony 

Systems, Simulated Annealing, etc. The main reason 

is the ability of such algorithms to cope with the high 

complexity of Π. 

For many control applications, a realistic way of 

solving Π is to accomplish the procedure in two 

phases. 

(1) In the first phase, an MbA is designed for 

solving Π. Let us denote A(t0, H, X(t0)) as an 

algorithm that finds a control sequence that optimizes 

the objective function J(t0, H, X(t0)) on the control 

horizon [t0, tH] starting from the initial state X(t0); in 

another words, it solves Π. Obviously, this algorithm 

involves implicitly function f and the "constraints", 

which are specific to problem Π. A can also take into 

consideration elements that are not mentioned above, 

such as the parameters of the process, disturbances, 

uncertainties, estimated values for input variables 

other than control inputs, etc. In addition, the 

computational results of algorithm A must attest to its 

efficiency, good convergence, and acceptable 

computational complexity. 

This phase is equivalent to an off-line solution of 

Π, which cannot be applied, because it will generate 

an open-loop control system that is extremely 

sensitive to the PM quality and disturbances. Hence, a 

closed-loop solution that can be further used in real-

time control is compulsory. This will consider, as 

initial state values for the computation of predicted 

control sequence, only the actual values collected 

from the environment or estimated on the basis of real 

controlled variables. 

(2) The second phase yields a controller integrated 

in a closed-loop structure, which implements the 

solution of Π. The solution proposed in this paper is to 

consider the RHC structure recalled in Figure 1. 

We express the evolution of the dynamic 

environment by the state variables of X(.). The state 

variables are either directly measured or estimated 

using variables U(.) and Y(.). As a general rule, the 

controller is tasked with minimizing the prediction 

error through the control input sequence along the 

prediction horizon. 

In the proposed systematic approach, the RHC 

structure has a few particularities: 

 The Receding Horizon Controller integrates a

slightly modified version of algorithm A,

denoted as ARH, because the main adjustment is

the replacement of the control horizon by the

prediction horizon (also called the receding

horizon) through the implementation of the

Receding Horizon mechanism.

 The reference signals are related to the optimal

state trajectory of the dynamic environment.

 The prediction error is a measure of the

difference between the predicted and optimal

state trajectories.

Since the second phase of the described procedure 

is compulsory, one may wonder if the first phase is 

really necessary. 

Remark 1: It is necessary to design and implement 

the MbA algorithm A as an offline solution of Π since 

it is an effective way to verify whether it has the 

following features:  

- it is appropriate for solving the given OCP (good 

solutions are obtained); 

- it has good convergence speed when solving Π, a 

fact that must be carefully proven and tested; 
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- its computational complexity is acceptable and can 

justify the possibility of using algorithm A for a 

RHC structure. 

In the sequel, let us consider t0=0 and the discrete 

moments tk=k·T will be specified simply by k. The 

control horizon is the interval [0, H]. We recall the 

following notations: 

Process

Model

Receding Horizon 

Controller

 Process

objective function

 and state values

other 

parameters

constraintsI(U, k)

sequence of 

control inputs

X(k)

U(k)

Figure 1.  Implementation of the Receding Horizon Control.  

- [k, k + h] is the prediction horizon, with h < H, 

k =0, 1,… H-h; 

- U(k+i|k), i=0... h-1 is the predicted value for 

U(k+i) based on knowledge up to moment k; 

- X(k+i|k), i=1,..., h is the predicted value for 

X(k+i) based on knowledge up to moment k; 

Note that 

U(k+i|k)  U(k+i), k >0, i=1,..., h-1, (3) 

The same thing can be asserted for the state 

variables. 

Figure 1 suggests how the RHC involves the 

predictive control technique. This means that at the 

present moment of k when the state variable is X(k), 

the performance index J for the interval [k, k + h] is 

optimized subject to constraints through an optimal 

control sequence 

- ocs= <U
*
(k|k),… , U

*
(k+h-1|k)> (4) 

The first element of U(k)=U
*
(k|k) of this sequence 

is applied to the system. Then the horizon is shifted by 

one sample and the optimization is restarted for 

interval [k+1, k+h+1]. The optimization is made 

within the Receding Horizon Controller. 

The fact that the Receding Horizon Controller 

integrates ARH is the main point of joining the RHC 

with an MbA. But it also includes other parts with 

tasks related to real-time functioning. We propose a 

Receding Horizon Controller whose outline is given in 

Algorithm 1. Step 2 calls algorithm ARH devoted to the 

chosen metaheuristic. Using the PM based on 

knowledge up to time k, ARH tries to optimize the 

objective function J(k, h, X(k)) on the control horizon 

of [k, k + h] starting from the initial state of X(k). 

Therefore, ARH is equivalent to A(k, h, X(k)) and yields 

the best control sequence that it can find during the 

current sampling period. This is in fact the predicted 

control sequence (pcs): 

pcs=<U(k|k), . . . , U(k + h − 1|k)>. (5) 

Algorithm 1 Outline of Receding Horizon Controller 

1. Get the current value of the state vector, X(k).

2. Call ARH in order to generate pcs.

3. Send the control input U(k) that is the first element

of pcs towards the dynamic system. 

Return 

The Receding Horizon Controller is called 

iteratively by the control program at each sampling of 

period k until the end of the control horizon. 

2.2 Some Aspects Concerning the 
Implementation of the Receding Horizon 
Controller 

The description of the systematic design procedure 

for the controller used within the RHC (see Section 

2.1) can be completed with some practical aspects that 

will be very useful for the implementer. 

2.2.1 Correspondence between the 
Performance Index and the Prediction 
Horizon 

Usually, in our context, the objective function—

and implicitly the performance index—can be 

expressed for the sake of simplicity by its continuous 

general form as 

J=  

ft

t

ff xtMdtttutxL

0

),()),(),(( . (6) 

The first part is a Lagrange-type term that 

measures the quality along the trajectory of the 

dynamic system; and the second part is a Mayer-type 

term that measures the quality of the trajectory in its 

final extremity. If necessary, a discrete form can be 

derived. The structure of the performance index is 

decisive for the strategy of the RHC related to the 

prediction horizon. The Mayer-type term will be 

called the terminal penalty in the sequel. 

As mentioned in other works Hu and Chen 

(2005a); and Hu and Chen (2005b) the prediction 

horizon can have different positions inside the control 

horizon [0, H]. Figure 2 shows the two possible 

situations generated using the RHC structure. In 

scheme (a), the prediction horizon includes the final 

moment of H of the control horizon. Accordingly, the 

prediction horizon's length is the variable having the 

value of h=H-k, where k is the current sampling time. 

Because k evolves from 0 to H-1, it holds h=H, …, 1. 

In scheme (b), the prediction horizon has a constant 

length of h < H. Hence, from k=0 until k =H-h, the 

controller makes h-steps-ahead predictions. But over 
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the final segment of the control horizon, from k= H-

h+1 until k= H-1, the prediction horizon's length will 

decrease from h-1 to 1.  

Figure 2. The Relative Position of the Prediction and the 
Control Horizons. 

In our opinion, some remarks related to schemes 

(a) and (b) have to be underlined. 

Remark 2: Schemes (a) and (b) are not options of 

the design procedure. Case (a) was presented by some 

authors as the conventional dynamic optimization and 

scheme (b) as the RHC. Generally, scheme (a) is 

compulsory when the performance index includes a 

terminal penalty, because this must be calculated, and 

consequently, the prediction horizon must include the 

final states. Scheme (b) is devoted to the OCPs whose 

performance index has only an integral component 

concerning the control and state variables. 

However, scheme (a) meets the elements that 

define the RHC strategy: 

- a decision is made by looking ahead for a number 

of steps in terms of a given cost/criterion but it is 

only implemented by one step; 

- the prediction uses a dynamic PM; 

- the implementation result is checked and a new 

decision is made by taking updated information 

into account and looking ahead for other number 

of steps. 

The prediction horizon "recedes" at each sampling 

period but keeps the final extremity. Hence, its length 

decreases by one unit at each sampling period. 

There is a particular situation when scheme (b) 

might be applied to an OCP whose performance index 

has a terminal penalty. This is an interesting case 

described in some papers such as Hu and Chen 

(2005b) when a terminal penalty must be considered 

to ensure the effectiveness of the solution. The basic 

idea is that the terminal penalty cannot be computed, 

because the prediction horizon does not include the 

final moment of H but it can be estimated. 

The performance index at the moment of k can be 

expressed (see Figure 2(b)) by the following equation: 

J(k, H, u)=J(k, k+h, u)+J(k+h+1, H, u) +FP(x(tf)), (7) 

Where J(k1, k2, u) is the integral component calculated 

on interval [k1, k2] for the control sequence u, and 

FP(x(tf)) is the final penalty for the final state x(tf) 

(that obviously depends on u). Scheme (b) implies that 

only the value of J(k, k+h, u) is calculated by ARH. If 

the sum of J(k+h+1, H, u) + FP(x(tf)) can be 

estimated, the value of J(k, H, u) can be calculated 

using this estimation. Generally speaking, there is no 

such estimation for each OCP. When such estimation 

exists, the receding controller may use scheme (b), 

which is more efficient than using scheme (a) from the 

point of view of a numerical complexity. In this work, 

because we consider as a matter of priority the 

dynamic processes modeled by differential algebraic 

equations estimating the terminal penalty is even more 

difficult. 

2.2.2 Time Constraints and the Prediction 
Horizon 

As in any closed-loop control system, the choice of 

T is related to the control engineering aspects, such as 

the discretization of the continuous signals and the 

time constants of the considered dynamic sub-systems. 

The duration of the control horizon is an input data 

of the given OCP and is equal to H·T. Hence, if T is 

chosen, then the H value can be deduced. The first 

constraint that can attest to the ability of A to solve the 

given OCP is that the execution time of algorithm A 

must be less than the control horizon.  

A crucial parameter of algorithm ARH is the 

prediction horizon that is equal to h·T. From the point 

of view of the control structure's optimal character, the 

ideal situation would be to determine the current 

control input as being the first element of the optimal 

control sequence for the entire control horizon, which 

is a solution of A. As shown before, ARH takes into 

consideration only the pcs determined for the 

prediction horizon. Thus, a larger value for h is 

desirable since there is an increased chance of quasi-

optimal behavior along the control horizon. However, 

this fact contradicts the execution time of ARH. 

The most restrictive time constraint for algorithm 

ARH is that the execution time is smaller than the 

sampling period. Therefore, h is chosen in such a way 

that ARH terminates inside the sampling period. This is 

a difficult constraint to meet and is the reason why the 

RHC can be used for processes with relatively large 

time constants. 

2.2.3  Evaluation of the Optimal Behavior of the 
Closed-loop Control Structure 

In comparison with the "ideal" situation of the 

open-loop structure that implements a quasi-optimal 

solution given by A, the RHC is a more complex 

structure introducing feedback (creation of the closed-

loop structure) accompanied by the prediction 

technique. Hence, the RHC generates degraded 

optimal behavior, meaning that the control input 

sequence and state trajectory involves a deterioration 

of the performance index. In order to analyze the 

effectiveness of our implementation approach, two 

k k+1 H 0 

Prediction Horizon 

time 

k+h 

(b) 

k k+1 H 0 

Prediction Horizon 

time 

(a) 
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simulation series may be carried out. The first 

simulation series consists of a number of executions of 

A (e.g., 30–40). The quasi-optimal evolution of the 

open loop system is simulated. The average 

performance index over the simulation series is 

calculated and a particular simulation of A, whose 

performance index is the closest to the average, may 

be considered as the typical execution. 

The second simulation series employs a simulation 

model where the real process is identical to the PM 

(see Figure 1). As a result, the feedback value of the 

real state X(k) is equal to the state value computed by 

the PM. As in the first simulation series, the 

simulation was carried out a number of times (e.g., 

30–40) to determine the average performance index 

and typical execution. By making a comparison with 

the "ideal" situation of the open loop, one can 

establish how much the RHC structure will alter the 

quasi-optimal character of the constructed solution. 

2.2.4 Stability Analysis for the Closed-loop 
System 

One of the first papers that deal with the stability of 

the RHC structure is by Mayne and Michalska (1990). 

The authors have proven that under certain 

assumptions the RHC yields a stable closed-loop 

system when applied to a time-invariant nonlinear 

system. 

Generally speaking, it is impossible to ensure the 

applicability of this theorem in our context where the 

optimal solution is computed through an approaching 

algorithm. But the authors have proven another 

important theorem, which validates the use of 

suboptimal controls in constructing receding horizon 

laws. The suboptimal control value sent to the process 

is denoted by h
*
sub(x) for any current state of x. With

our notation from Section 2.1, it holds: 

h
*
sub(x(k)) = U (k|k). (8) 

This control law yields a closed-loop system, 

))(,( * xhxfx sub (9) 

that uses the receding horizon strategy and can be 

asymptotically stable, if certain constraints are met. 

The significance of the above result is very 

important, because it shows that exact optimization is 

not essential. The approximate optimal control laws 

work well in practice with discrete systems and gives 

stabilization towards a small neighborhood of the state 

space's origin. In our case, if ARH has a good 

convergence speed, then pcs approaches well with the 

ocs and value


 )()( xocsxpcs may be sufficiently 

small. This fact involves the stabilization of the 

closed-loop system towards a small neighborhood of 

the origin. The larger the convergence speed, the 

smaller the value


 )()( xocsxpcs will be. 

3 A RECEDING HORIZON CONTROLLER FOR 
THE PROTEIN PRODUCTION 

3.1 Protein Production Problem 
IN this section, an OCP described in Nikumbh et 

al. (2014) is considered. This problem involves the 

fed-batch production of an induced foreign protein by 

recombination bacteria. In order to maximize 

profitability from the fermenter, it is necessary to 

determine the optimal evolution of two control inputs, 

the inducer and nutrient feed that vary with time. The 

given batch time tf is 10 h. 

The nonlinear system is described by the following 

state equations: 

)()( 211 tutux  (10) 
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There are some algebraic constraints: 

1)( ),(0 21  tutu  (19) 

For the initial time ti=0, the initial values of the 

seven state variables are 

 0 1, 0, 0, 40, 0.1, ,10X  (20) 

The objective function is 

  ft

tff dttuQtxtxJ
0

)()()( 241 . (21) 

The performance index involves the maximization 

of the objective function: 
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J
tutu )( ),( 21

max (22) 

Our objective is to implement a receding horizon 

controller for a real-time control structure using the 

MbA and RHC structure. 

3.2 Implementation of the Receding Horizon 
Controller 

As we have already seen, in the first phase of our 

procedure, we had to choose a metaheuristic to solve 

the considered OCP. In Nikumbh et al. (2014) the 

authors used the Biogeography-Based Optimization 

(BBO) and obtained good results by considering a 

sampling period equal to 1h. In Section 8.6 of the 

book by Jayaraman and Siarry (2014), the value Q=0 

is considered within the objective function (21). 

Consequently, the performance index has only a 

terminal penalty term. Besides this value, the case 

Q=1.5 will be considered as well in our work, in order 

to have an objective function that represents a terminal 

penalty together with an integral type term. 

We have used in our simulations an evolutionary 

algorithm that has similar efficiency in determining 

the offline solution. This is algorithm A upon which 

the implementation of the RHC structure is based on. 

Our intention is not to emphasize the use of another 

metaheuristic but to analyze the efficiency of the 

closed-loop structure obtained with the proposed 

implementation approach. 

Every control input is represented in time by a 

sequence of 10 values corresponding to each sampling 

period, that is, H=10. Finally, a solution is coded by 

concatenating the two sequences. Algorithm A uses a 

direct encoding with real (non-binary) values and has 

some usual characteristics; the population of each 

generation has μ individuals; the offspring population 

has λ individuals; the selection strategy is based on the 

Stochastic Universal Sampling using the rank of 

individuals, which is scaled linearly using the 

selection pressure; one-point crossover operator that 

yields a single offspring; and mutation with global 

variance adaptation. Ngen is the number of generations 

in which the population is evolving; 

Algorithm A may be implemented as a function 

that returns the ocs for the Protein Production 

Problem: 

ocs=A(λ, μ, Ngen, t0, H, X0), (23) 

where t0=0 is the initial time and X0 is the initial state 

vector. In comparison with Section 2.3.3, A has three 

additional arguments (λ, μ, Ngen) for the 

parameterization of the evolutionary algorithm. Owing 

to the time constraint, ARH will work with smaller 

values for these three parameters (λRH, μRH, NRH) 

compared with algorithm A. The values used in our 

simulations are listed in Table 1. 

Table 1. Parameters of the Evolutionary Algorithm. 

λ μ Ngen 

A 70 40 120 

ARH 60 30 60 

Because the objective function given by equation 

(21) showing a terminal penalty and there is no 

estimation of the final state X(tf), algorithm ARH has to 

implement a prediction horizon using scheme (a) from 

Figure 2. As described in Algorithm 2, the length of 

the prediction horizon h decreases by 1 at each 

sampling period. The final time is always H. Hence, 

the pcs for the Protein Production Problem has 2·h 

elements, with h = H,…, 2, 1. 

Algorithm 2: ARH using Scheme (a) 

Input: Current sampling period: k; 

Population size: λRH; Offspring size: μRH; 

The current state vector: X(k); 

Number of generations: NRH; 

Other parameters necessary to run algorithm A 

Output: Predicted control sequence pcs 

h= H-k 

pcs=A(λRH, μRH, NRH, k, h, X(k)) 

Return pcs 

3.3 Simulation Results 
As mentioned before, in Section 8.6 of the book by 

Jayaraman and Siarry (2014) an optimal solution for 

Q=0 is given. Our first goal is to compare this solution 

to that one constructed by the RHC structure endowed 

with the ARH algorithm. 

The algorithm based on the BBO found out a 

maximum value for the objective function, Jmax=6.15. 

The reported control inputs u1(t) and u2(t) that 

maximize the objective function are depicted in Figure 

3. The evolution of the state variables obtained by

simulation using these control inputs is presented in 

the same figure. The final values are x1(tf)=3.782 and 

x4(tf)=1.6263 that confirms the value of Jmax. 

For the same problem with Q=0, the RHC structure 

was implemented and simulated using the MATLAB 

system. Its controller is based on the evolutionary 

algorithm represented in the previous section. In our 

simulation model, the real process is identical to the 

process model used for the state prediction. Because 

of its stochastic character, the evaluation of the RHC 

structure was made through a simulation series that 

consists of 30 executions of the simulation model. The 

results are presented in Table 2. 

Table 2. Results of the Simulation Series for the RHC Structure. 

Best Worst Mean Var Jmax 

6.3397 6.0539 6.2821 0.0046 6.288 
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The first four columns of Table 2 show the 

maximum, minimum, mean value, and variance of the 

performance index, respectively. Column Jmax shows 

the performance index value of the typical execution. 

The state final values are x1(tf) = 4.0364 and x4(tf) = 

1.5578 that confirms the value 6.288. The quasi-

optimal control inputs and the state evolution are 

depicted in Figure 4. 

Figure 3. Control Inputs and State Variables Produced by the 
BBO Algorithm. 

In conclusion, the second solution is better than the 

first one in spite of the RHC implementation. 

The second objective of our simulations is to 

evaluate how much the performance index deteriorates 

just because the RHC mechanism is used. That is why 

the two simulation series described in Section 2.3.3 

were carried out. Each simulation series consists of 30 

executions on the simulation model. For each 

simulation series, a typical execution is selected from 

the 30 runs. The typical solution produced by 

algorithm A after its population evolved along 120 

generations is depicted in Figure 5.  

The curves, which show the evolution of variables 

x2 and x3 are the values divided by 10 for better 

graphical representation. The performance index has a 

typical value of Jmax=5.8885. 

Figure 6 shows the evolution of the control inputs 

and state variables produced by a typical execution of 

the RHC with ARH. The results are presented in Table 

3, which allows the comparison between the running 

of algorithms A and ARH within the RHC. 

Figure 4. Evolution of the RHC Structure with the Evolutionary 
Algorithm. 

Table3. Results of the Simulation Series. 

Simulation 
Model 

Best Worst Mean Var Jmax 

A 6.0312 5.7126 5.8884 0.08486 5.8885 
RHC - ARH 6.0226 5.3625 5.8600 0.15697 5.8601 

The first four columns of Table 3 show the 

maximum, minimum, mean value, and variance of the 

performance index, respectively. Column Jmax shows 

the performance index value of the typical execution. 

The degradation of the quasi-optimal character from A 

toward ARH is represented by the difference between 

the performance indices, which is 0.0284. The relative 

decrease of Jmax is only 0.48%. This is the effect of 

introducing the loop closing with the prediction 

mechanism. Hence, the RHC structure in this case has 
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good efficiency in keeping the quasi-optimal character 

of the OCP solution. Let us note also that the variance 

of the performance index doubled its value in 

comparison with A. 

Figure 5.  Control Inputs and State Variables Produced by A 
Algorithm. 

4 A RECEDING HORIZON CONTROLLER FOR 
THE SEWER NETWORK DISCHARGE 

4.1 Sewer Network Discharge Problem 
IN this section, the sewer network discharge is 

presented as an OCP called the Sewer Network 

Discharge Optimization Problem (SNDOP). A 

nonlinear discrete model for a sewer network (SN) 

was proposed and developed in Minzu et al. (2014). 

Figure 7 illustrates an example of a SN with 10 

retention tanks. The rectangular element represents the 

retention tank for wastewater and the circular element 

is the collector for all flow capacities that are inputs of 

the tanks.  

The considered time is discrete, having the control 

horizon H, namely t=0, 1,…, H. The influent that 

affects the SN is represented by the flow capacities of 

di(t), i=1,…, 10, from 10 catchments areas. The 

discharge of tank i caused by its evacuation pump is 

denoted by ui(t), i=1,…, 10. A characteristic of the SN 

is that each tank has only one downstream tank. When 

the tanks reach their maximum capacity Mi, 

i=1, …, 10, expressed by volume units, there will be 

overflows denoted by q
over

i(t).

Figure 6.  Control Inputs and State Variables Produced by the 
RHC with the ARH. 

The state variables represent the remaining 

wastewater volumes in the tanks. For example; in 

tank i at moment t, there is a wastewater volume of 

(xi(t)·ΔV) m
3
:

  10,,1  ,,,1 ,0)(   iMtx ii (24) 

 TtxtxtxtX )()()()( 1021  (25) 

Let qi(t) be the total flow capacity of the 

wastewater entering retention tank i. In order to 

simplify the model, variables di(t), and ui(t) can be 

expressed as integer values. All the water columns 

have the same evacuation power, which may be 

expressed by the wastewater volume evacuated in 

sampling period T. Let ΔV be this volume. Hence, all 

the variables have values in multiples of ΔV. These 

values are denoted as; Di(t), Ui(t), Qi(t), and Q
over

i(t),

i=1,…, 10 and are integer values. Under these 

conditions, a realistic hypothesis has been adopted: 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Minzu,%20V..QT.&newsearch=true
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{0,1})( tUi  (26) 

The control input vector is 

TtUtUtUtU )](  )( )([)( 1021  (27) 
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Figure 7.  Sewer Network with 10 Retention Tanks. 

The estimated influent is known as input data for all 

tanks over the entire time horizon: 

)](,),([)( 101 tDtDtD  , t=0,…, H-1 (28) 

The expressions of Qi, i=1,…, 10, reflects the sewer 

network's structure. For our example, it holds; 
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The statement of SNDOP is composed of the 

following elements: 

♦ the nonlinear discrete system is

1,,0  
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♦ the initial conditions are

TxxxXX )]0(,),0(),0([)0( 10210  ; (31) 

♦ the bound constraints are

10,...,1)(  ,)(0  itxMtx iii  N, ; (32) 

♦ the objective function is

 


 


1 10
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))()()(,0max()(
H

ts i
iiii MsUsQsxtI

(33) 

The inner sum is equal to the overflow of all tanks 

in sampling period s. Hence, I(t) is equal to the total 

overflow for all tanks and for all sampling periods on 

the time horizon of [t, H]. 

♦ the performance index is

)0(min
1,,0),(

* II
HttU 




. (34) 

The SNDOP consists of finding the control input 

values that minimize the total overflow I(0), whereas 

influent D(.) is present in the SN and affects the state 

of the retention tanks, acting like a disturbance. 

Obviously, the estimated influent D and the initial 

state of vector X0 are considered to be already known. 

The solution of the optimization problem is a 

sequence of control inputs, U (t), with t=0, …, H-1. 

For a given SN structure, this optimization problem 

has the following initial data; T, H, M1,…, M10, the 

estimated influent D described by (28), and the initial 

state vector X0. 

4.2 Implementation of the Receding Horizon 
Controller 

The BHPSO algorithm introduced in Beheshti et al. 

(2015) was specially developed for solving the 

SNDOP in Minzu et al. (2015). This is why it may 

assume the role of algorithm A in our approach. 

Because the aim of this section is to give another 

example showing how to implement and analyze the 

RHC structure, only the main characteristics of this 

algorithm are reviewed. 

Let u be a solution of SNDOP. For algorithm A, u 

is the position vector of a swarm's particle. Thus 

solution u is a sequence of control inputs for all the 

tanks and all the sampling periods belonging to the 

time horizon. With this assumption, the structure of u 

is given as 

])(...  )(||)(... )([
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101

0

01001

0

  

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

Ht

ff

t
f

tUtUtUtUu (35) 

Hence, the solution is a binary vector having 

Hm 10 bits. With regard to the estimated 

influent, our simulations used a typical example 

corresponding to the situation when the SN is affected 

by significant rainfall. The evolution of the estimated 

influent di(t) related to some retention tank’s is shown 

in Figure 8. Because all the variables from the model 

described before have integer values, the estimated 

influent is subject to discretization. The result is a 

matrix whose element D(t, i), t=0,…, H-1, i=1,…, 10 

(expressed as multiples of ΔV) is the continuous 

influent di(t) after discretization and quantization, such 

that the total volume of influent is preserved. This 

matrix is input data for both algorithms A and ARH. 

When the initial state and estimated influent D are 

set, solution u determines uniquely the state trajectory 

of the discrete system (30) and the total overflow 

Q
over

=I(0), (see Figure 9). In our implementation, the 

evaluation of the objective function was achieved by a 

function that calculated the evolution of SN in 

compliance with the model (26) - (33). This function 
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returns the value of the total overflow Q
over

, which has 

to be minimized. Implicitly, as indicated in Figure 9, 

the evaluation function determinates the sequence of 

states X(0),…,X(H), which begins with the initial state. 

Figure 8. Example of the Estimated Influent. 

Figure 9. The Sewer Network as a Dynamic System. 

Algorithm A may be implemented as a function 

that returns the ocs for SNDOP: 

ocs=A(ns, D, t0, H, X0), (36) 

where t0, X0 and ns are respectively the initial time 

showing the state vector and the number of particles in 

the swarm. There are other parameters necessary to 

the configuration of A as a PSO-based algorithm, 

which are not covered here. In our simulations, these 

parameters have identical values in both algorithms A 

and ARH. In principle, owing to time constraints, ARH 

may use a swarm with a smaller number of particles 

ns.  

Algorithm 3: ARH using the scheme (b) 

Input: Current sampling period: k; 

  Length of prediction horizon: h ; 

  Current state vector: X(k); 

  Other parameters necessary to run ARH 

Output: Predicted control sequence pcs 

if k ≤ H-h 

   pcs=A(ns, D, k, h, X(k)) 

else   /* H-h<k≤ H-1*/ 

   pcs=A(ns, D, k, H-k, X(k)) 

Return pcs 

In this case, the objective function given by 

equation (33) does not have a terminal penalty term. 

This is a favorable context for the computational 

complexity of algorithm ARH, because it may 

implement a prediction horizon using scheme (b) from 

Figure 2. As described in Algorithm 3, the prediction 

horizon is the interval [k, k+h]. The length of the 

prediction horizon h is constant for the sampling 

periods , H-h,, k  10 . However, for the final 

segment of the control horizon k=H-h+1,…, H-1 the 

prediction horizon decreases by 1 at each sampling 

period. Algorithm ARH uses the same estimated 

influent D as algorithm A, but only the lines of matrix 

D correspond to the current prediction horizon. The 

real influent Dreal, which is unknown, will act in the 

circumstances of the real-time control but will be 

considered in our simulations after some hypotheses 

are made concerning its value. 

4.3 Simulation Results 
The analysis of the Receding Horizon Controller 

for the SNDOP was made through simulations that 

comply with the procedure described in Section 2.2.3. 

In order to complete the definition of our problem, the 

remaining parameters have been set as: 

M1=10; M 2=14; M 3=6; M 4=20; M 5=50; M 6=10; 

M7=14; M 8=6; M 9=20; M 10=40. 

X0=[3 3 3 3 3 2 2 2 2 2]
T
; T=120 s; H=40.

Hence, the control horizon has 80 min. The size of the 

swarm has been set to ns=20, for both algorithms A 

and ARH. For the initial state X0 and for the estimated 

influent D represented in the previous section, the 

SNDOP has the optimal performance index of I*=0, a 

fact ascertained by the execution of algorithm A. 

For the Receding Horizon Controller, the length of 

prediction horizon h is a crucial parameter that must 

meet the constraints already mentioned in Section 

2.2.2. In order to select it, the control structure was 

simulated using different values of h. The results are 

represented in Table 4. The second column shows the 

number of bits encoding a solution (m=10·h), which is 

the main factor determining algorithm ARH's 

complexity and efficiency. The subsequent columns 

provide the best, worst, mean values, and the variance 

of the total overflow found after 30 runs of the ARH, 

respectively. 

Table 4. Simulation of the RHC with Different h Values. 

h m Best Worst Mean Var 
Number 
of runs 

5 50 3 12 7.53 4.67 30 

10 100 3 11 6.86 3.56 30 

16 160 0 5 2.36 1.098 30 

25 250 0 3 1.26 0.547 30 

35 350 0 1 0.10 0.305 30 

By analyzing this table we establish a correlation; 

the poorer the solution, the greater the variance. An 

adequate value seems to be h=16, because it is a 

trade-off between the computational complexity and 

time constraint for ARH. 

In the first simulation series, the evolution in the 

open loop of the system (27)–(33) was simulated. 

Thirty executions of algorithm A were carried out. 

Sewer 

Network 

Model 

Estimated 

influent 

Initial state 

State trajectory 

Qover 

u 
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Algorithm A has greater computational complexity 

compared with ARH, because of its control horizon 

H=40 but it has no time constraint. Some results are 

shown in the first row of Table 5. The column Q
over

 

gives the total overflow found in a typical execution. 

A typical state evolution produced by algorithm A, 

whose particle swarm has evolved until convergence, 

is depicted in Figure 10. For the simulation series 

concerning the closed-loop control structure that uses 

Figure 10. State Evolution in a Typical Execution of A 
Algorithm. 

Table 5. Results of the Simulation Series for the SNDOP. 

Simulation 
model 

h Best Worst Mean Var Qover 

A - 0 4 1.43 0.727 1 
RHC - ARH 16 0 5 2.36 1.098 2 

RHC - ARH 35 0 1 0.10 0.305 0 

ARH, the results from Table 5 show an increase in 

total influent dispersion. The typical value of Q
over

 is 

now 2 volume units (1 vu = ΔV). It is the result of 

introducing the closed loop with the prediction 

mechanism that works for only 16-steps-ahead 

predictions, in contrast to algorithm A, which makes 

predictions in 40 steps. Figure 11 depicts the state 

evolution obtained in a typical simulation using ARH.  

The implementer - who has to decide whether or 

not the RHC structure works well - can use the results 

of the simulation to answer to this issue. 

Figure 11. State Evolution in a Typical Execution of the RHC - 
ARH. 

5 CONCLUSION 
THIS work proposes a systematic procedure to 

create a RHC structure whose controller is based on a 

metaheuristic algorithm. In the first phase, the MbA 

was implemented beginning with the statement of the 

control problem. The metaheuristic was chosen 

according to the previous experience of the designer, 

who also implemented the algorithm and verified its 

efficiency in solving the problem. In the second phase, 

the MbA was slightly modified, as mentioned in 

Section 2.1, in order to create algorithm ARH that is 

included in the controller. The simulation of the RHC 

structure may be considered as the last phase of the 

design procedure. 

The main contribution of this work is the 

systematic procedure itself, which has a 

methodological contribution. The description of this 

design procedure gives the opportunity to underline 

some practical aspects. 
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An important aspect is the structure of the 

objective function to be optimized. The length of the 

prediction horizon will be variable (scheme (a)) or 

fixed (scheme (b)) depending on whether or not the 

the objective function has a terminal penalty term. 

Section 2.2.1 is a complete analysis of all the choices 

that the implementer can make from this point of 

view. 

Other aspects may be considered drawbacks of the 

association between the RHC and MbA, but the 

proposed procedure analyzes these difficulties aiming 

to overcome them when it is possible.  

The procedure has a restrictive time constraint 

mentioned in Section 2.2.2. That is why this method 

can be used for the control of slow nonlinear systems, 

such as chemical batch processes. For a prediction 

horizon equal to h·T, h has to be chosen in such a way 

that the ARH would terminate inside the sampling 

period. It could result in showing a small value of h, a 

fact that could be in contradiction with an acceptable 

quasi-optimal behavior. We may try to select another 

MbA that is less complex or has a better convergence 

speed. 

Another crucial aspect is the good convergence 

speed of algorithm A that must be carefully proven 

and tested. This is useful not only to meet the time 

constraint, but also to ensure the quality of the 

asymptotical stability. 

The simulation is the only way to evaluate the 

MbA quality and closed loop behavior. Moreover, 

owing to the stochastic character of the algorithms A, 

ARH and the entire RHC structure, the evaluation needs 

to reiterate simulations, in order to determine valid 

statistic parameters. 

On the other hand, the association of the RHC plus 

the MbA is for many cases the unique way to solve an 

OCP that has two simultaneous characteristics; (a) the 

process is nonlinear and (b) there is not a feasible 

deterministic solution for the optimization problem. 

Our proposed procedure has algorithmic parts that 

generate ARH and the controller. Obviously, these parts 

can facilitate significantly the implementation of the 

control structure. 

The implementation of the closed loop has a price 

to be paid; a degradation of the quasi-optimal 

behavior. In Section 2.2.3, a simulation tool is 

proposed that establishes how much the RHC structure 

will alter the quasi-optimal character of the 

constructed solution. Afterwards, the control structure 

implementer has to decide whether the RHC structure 

works well. 

The proposed procedure was illustrated by two 

examples of the OCP; a continuous system whose 

objective function includes a terminal penalty term 

and a discrete system with binary control inputs whose 

objective function has only an integral term. The 

simulations were organized such that one can evaluate 

the degradation of the optimal behavior by introducing 

the closed-loop. The optimal character of A was 

compared to that of the RHC, which includes the ARH. 

The simulations showed that the proposed procedure 

resulted in closed-loop control structures exhibiting 

good behavior and can be used in real-time control. 
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