
Intelligent Automation And Soft Computing, 2020
Vol. 26, no. 4, 663–677
DOI: 10.32604/iasc.2020.010101

viorel_minzu@yahoo.fr, viorel.minzu@ugal.ro CONTACT Viorel Minzu

Systematic Procedure for Optimal Controller Implementation Using
Metaheuristic Algorithms

Viorel Minzu and Adrian Serbencu

Control and Electrical Engineering Department, "Dunarea de Jos" University of Galati, Romania

KEY WORDS: Metaheuristic-based algorithm, optimal control, Receding Horizon Control, process model.

1 INTRODUCTION
A very large number of papers describe control

systems that use artificial intelligence techniques for

all the aspects that involve nonlinearities, or

imprecise, incomplete, and uncertain knowledge. We

recall here only a few topics; Model's Parameters

Determination - Altinten (2007), System Identification

- Makas and Yumusak, (2016), Optimization of

Control Parameters - Kesarkar and Selvaganesan

(2015); Aras et al. (2011); Jabri et al. (2011); Zhang et

al. (2018); Optimal Sensors' Placing - Bruant et al.

(2011); and Singh and Hahn (2006), Optimal Control

Problems - Bououden et al. (2015); Naghizadeh, et al.

(2016); Hu, X.B. et al. (2004); Faber et al. (2005);

Qian et al. (2012); and Wong et al. (2016).

Solving an optimal control problem (OCP) means

designing a control structure and implementing it as a

closed-loop structure. This framework is the only one

that takes into consideration real-time information.

One of the control structures used in many

applications is the Receding Horizon Control (RHC).

This one uses a process model (MP) and organizes the

moving of the prediction horizon for example; Hu et

al. (2005a) and Attia et al. (2006). A particular case of

the RHC is the well-known Model Predictive Control

(MPC) that makes at each step a specific action: The

minimization of the prediction errors. There are many

works dealing with the MPC from different points of

view such as; Theoretical works - Clarke (1994);

Hiskens and Gong (2006); Zheng (2010), tutorial

reviews - Christofides et al. (2013), or surveys of

industrial applications - Qin and Badgwell (2003),

Yang et al. (2014), Lopez Francol (2018).

Many papers have considered metaheuristics (e.g.,

Genetic Algorithm, Simulated Annealing, and Particle

Swarm Optimization etc.) in conjunction with the

RHC in order to implement closed-loop structures,

which have been used afterwards in real-time control.

The book by Jayaraman and Siarry (2014) has a

section that shows a survey of this kind of work. The

paper by Goggos and King (1996) introduces a new

technique called the Evolutionary Predictive Control

for the design of predictive controllers. The technique

uses Evolutionary Algorithms to generate and evaluate

a family of optimum predictive controllers having

different design parameters at every sampling instant

via an adaptive process from which the best performer

is selected.

Many works deal with the adequation of GA to

model-based predictive control. The emphasis is

placed on the GA operators' definition. The paper by

Sarimveis and Bafas (2003) proposes a specialized

genetic algorithm optimization method for fuzzy

predictive control based on the Takagi–Sugeno model.

A new approach given in Causa et al. (2008) includes

a prediction based on a hybrid fuzzy model of the

process. The work done by Venkateswarlu and Reddy

(2008) proposes stochastic optimization algorithms

such as the GA and simulated annealing that are

ABSTRACT

The idea for this work starts from the situation in which a metaheuristic-based
algorithm has already been developed in order to solve an optimal control
problem. This algorithm yields an offline "optimal" solution. On the other hand,
the Receding Horizon Control (RHC) structure can be implemented if a process
model is available. This work underlines some of the practical aspects of joining
the RHC to an existing metaheuristic-based algorithm in order to obtain a
closed-loop control structure that can be further used in real-time control. The
result is a systematic procedure that integrates a given metaheuristic-based
algorithm into a RHC structure.

664 MINZU and SERBENCU

combined with a polynomial-type process model to

develop nonlinear model predictive control strategies.

An interesting application of the RHC is related to

the flood control by Blanco et al. (2010). With the

same topic, the paper by Chiang and Willems (2015)

associates evolutionary optimization with the RHC, in

order to obtain a real-time flood control system. This

work is essentially similar to that presented in Section

4, which is the second case study of our paper.

We make the following observations that provide a

better description of the authors' perspective with

regards to this work's topic:

1. The statement of an OCP contains necessary

elements; the process model (PM), functioning

constraints, and objective function that must be

minimized or maximized, initial conditions, and

time horizon.

2. A stand-alone MbA, which is neither included in

nor includes a closed-loop control structure can

solve the OCP and produce an offline "optimal"

solution, which is a sequence of values for the

control variables covering the control horizon.

This control sequence may eventually be used in

real-time but only within an open-loop control

structure, i.e., the control values a priori that are

calculated are sent to the real process at precise

time moments, without taking into consideration

the real-time information. This is a possible but

unusual situation, because unmodeled dynamics,

perturbations, or noises can affect the real process

and significantly change the performance index's

value.

3. Obviously, a closed-loop (feedback) control

structure is not equivalent to a real-time control

structure. For example, the former may be used in

simulations (like in this work) where there is no

real-time information (only eventually a simulated

one), and the simulated time is not synchronized

with a real time clock.

This paper has a rather practical relevance, because

it is addressed in the first place to a practicing

professional engineer who wants to implement an

optimal control structure using an MbA. The MbA

solving the specific optimal control problem is already

developed and tested off-line. The implementation of

the control structure has to join knowledge from soft

computing and control engineering that is not always a

simple task. Our article is addressed to the researcher

that has developed a new metaheuristic algorithm

aiming to use it within an optimal control structure.

The objective of this work is to emphasize some

practical aspects of how to join the RHC to an MbA in

order to obtain a closed-loop control structure that can

be further used in real-time control as a solution to the

given OCP. These practical aspects are taken into

account in the systematic procedure proposed in this

paper, which produces the desired control structure

starting from the statement of the given OCP.

When joining the RHC structure with an MbA, it is

important to establish their relative "position". For

example, in many applications the MbA is the genetic

algorithm (GA). Some authors consider implicitly that

the RHC structure is subordinated to the GA. On the

other hand, others use the RHC structure that includes

a GA. There are very good papers such as Hu and

Chen (2005a); Hu and Chen (2005b) that have

mentioned explicitly the relation between the two

components and justified it in the context of the solved

problem. Of course, when the designer of the control

structure specifies the actions of his algorithm, the two

variants are feasible, because it is always possible to

rearrange the algorithm's actions. The solution

proposed in this paper comes from the confirmed facts

that an MbA has the vocation of optimizing an

objective function, while the RHC explicitly provides

the feedback (see observations 2 and 3). That is why,

in the context of our procedure, the RHC integrates

the MbA into its controller. Therefore, the general

framework with feedback is created by the RHC

structure whose controller repeatedly calls the MbA.

Section 2 of the paper is devoted to the

presentation of the RHC structure and how the MbA

can be integrated into its controller. This description

leads to a systematic procedure that begins with the

design and implementation of a stand-alone algorithm

based on the chosen metaheuristic able to solve the

given OCP. The stand-alone MbA will be slightly

modified to generate an algorithm that can be

integrated into the closed-loop structure, as described

in Sections 2.1. and 2.2, which deals with some

aspects concerning the implementation of the

controller related to the influence of the performance

index and time constraints over the prediction horizon.

In Sections 3 and 4, the proposed procedure is

illustrated by two case studies of the OCPs that use

two different metaheuristics. From the beginning, let

us note that the emphasis is not on the importance or

difficulty of the OCP, or the metaheuristic chosen to

solve the problem or other tools that are concerns of

the computational intelligence that can improve the

metaheuristic's efficiency. The two case studies are

just nontrivial exemplifications of how to implement

the Receding Horizon Controller following the

proposed procedure. Section 3 refers to an OCP with a

nonlinear continuous model and Section 4 describes

an OCP concerning a nonlinear discrete system.

2 OPTIMAL CONTROL STRUCTURE USING
METAHEURISTIC-BASED ALGORITHMS

THE perspective of this paper starts from the

difference between the solution of an OCP and a

closed-loop control structure that implements this

solution. We speak here about an optimization

problem (OP) referring to a dynamic environment

where the values of the decision variables (control

inputs) have to optimize (maximize or minimize) an

INTELLIGENT AUTOMATION AND SOFT COMPUTING 665

objective function and change periodically in order to

adapt to environmental changes. A process model

taking place in the dynamic environment can calculate

for each moment the values of some dependent

variables as a result of prior variation of the decision

variables. The environmental changes are expressed

by the values of the so-called state variables and

controlled variables.

As the theoretical framework of the RHC is already

well-known, only some elements sufficient to join the

RHC with the metaheuristic-based algorithm will be

reviewed in this section. Obviously, all the variables

and functions may have a vectorial character.

Complete mathematical details, such as vector

dimensions, will be avoided to simplify the

presentation.

2.1 Optimal Controller Implementation using
Metaheuristic-based Algorithms

A given OCP considers the environment evolution

on a control horizon [t0, tH], with discrete moments

ti=t0+i·T, i=0,… H, where T is the sampling period and

t0 is the initial moment. If the value X(t0) of the initial

state and the sequence of control inputs U(t0), U(t1),

…, U(tH-1) are known, then the sequence of the state

variables X(t1),…, X(tH-1), X(tH) and the sequence of

controlled (output) variables Y(t1),…, Y(tH-1), Y(tH) can

be calculated using a PM. In this work, we consider

that the PM is a set of differential algebraic equations.

Let Π be the structure of the OCP defined as

 Π =<f, constraints, t0, H, X(t0), J(t0, H, X(t0))>, (1)

where f is the function appearing in the state equation

))(),((tUtXf
dt

dX
 , (2)

J(t0, H, X(t0)) is the objective function, and

"constraints" is the set of all algebraic and differential

constraints imposed by the dynamic environment. To

solve Π means finding the control sequence that

optimizes (maximizes or minimizes) the objective

function J(.) on the control horizon, starting from the

initial state of X(t0).

For different reasons, especially when a

deterministic algorithm is not known, we may decide

to solve this problem using an approaching algorithm

based on a metaheuristic, such as the Genetic

Algorithm, Particle Swarm Optimization, Ant Colony

Systems, Simulated Annealing, etc. The main reason

is the ability of such algorithms to cope with the high

complexity of Π.

For many control applications, a realistic way of

solving Π is to accomplish the procedure in two

phases.

(1) In the first phase, an MbA is designed for

solving Π. Let us denote A(t0, H, X(t0)) as an

algorithm that finds a control sequence that optimizes

the objective function J(t0, H, X(t0)) on the control

horizon [t0, tH] starting from the initial state X(t0); in

another words, it solves Π. Obviously, this algorithm

involves implicitly function f and the "constraints",

which are specific to problem Π. A can also take into

consideration elements that are not mentioned above,

such as the parameters of the process, disturbances,

uncertainties, estimated values for input variables

other than control inputs, etc. In addition, the

computational results of algorithm A must attest to its

efficiency, good convergence, and acceptable

computational complexity.

This phase is equivalent to an off-line solution of

Π, which cannot be applied, because it will generate

an open-loop control system that is extremely

sensitive to the PM quality and disturbances. Hence, a

closed-loop solution that can be further used in real-

time control is compulsory. This will consider, as

initial state values for the computation of predicted

control sequence, only the actual values collected

from the environment or estimated on the basis of real

controlled variables.

(2) The second phase yields a controller integrated

in a closed-loop structure, which implements the

solution of Π. The solution proposed in this paper is to

consider the RHC structure recalled in Figure 1.

We express the evolution of the dynamic

environment by the state variables of X(.). The state

variables are either directly measured or estimated

using variables U(.) and Y(.). As a general rule, the

controller is tasked with minimizing the prediction

error through the control input sequence along the

prediction horizon.

In the proposed systematic approach, the RHC

structure has a few particularities:

 The Receding Horizon Controller integrates a

slightly modified version of algorithm A,

denoted as ARH, because the main adjustment is

the replacement of the control horizon by the

prediction horizon (also called the receding

horizon) through the implementation of the

Receding Horizon mechanism.

 The reference signals are related to the optimal

state trajectory of the dynamic environment.

 The prediction error is a measure of the

difference between the predicted and optimal

state trajectories.

Since the second phase of the described procedure

is compulsory, one may wonder if the first phase is

really necessary.

Remark 1: It is necessary to design and implement

the MbA algorithm A as an offline solution of Π since

it is an effective way to verify whether it has the

following features:

- it is appropriate for solving the given OCP (good

solutions are obtained);

- it has good convergence speed when solving Π, a

fact that must be carefully proven and tested;

666 MINZU and SERBENCU

- its computational complexity is acceptable and can

justify the possibility of using algorithm A for a

RHC structure.

In the sequel, let us consider t0=0 and the discrete

moments tk=k·T will be specified simply by k. The

control horizon is the interval [0, H]. We recall the

following notations:

Process

Model

Receding Horizon

Controller

 Process

objective function

 and state values

other

parameters

constraintsI(U, k)

sequence of

control inputs

X(k)

U(k)

Figure 1. Implementation of the Receding Horizon Control.

- [k, k + h] is the prediction horizon, with h < H,

k =0, 1,… H-h;

- U(k+i|k), i=0... h-1 is the predicted value for

U(k+i) based on knowledge up to moment k;

- X(k+i|k), i=1,..., h is the predicted value for

X(k+i) based on knowledge up to moment k;

Note that

U(k+i|k)  U(k+i), k >0, i=1,..., h-1, (3)

The same thing can be asserted for the state

variables.

Figure 1 suggests how the RHC involves the

predictive control technique. This means that at the

present moment of k when the state variable is X(k),

the performance index J for the interval [k, k + h] is

optimized subject to constraints through an optimal

control sequence

- ocs= <U
*
(k|k),… , U

*
(k+h-1|k)> (4)

The first element of U(k)=U
*
(k|k) of this sequence

is applied to the system. Then the horizon is shifted by

one sample and the optimization is restarted for

interval [k+1, k+h+1]. The optimization is made

within the Receding Horizon Controller.

The fact that the Receding Horizon Controller

integrates ARH is the main point of joining the RHC

with an MbA. But it also includes other parts with

tasks related to real-time functioning. We propose a

Receding Horizon Controller whose outline is given in

Algorithm 1. Step 2 calls algorithm ARH devoted to the

chosen metaheuristic. Using the PM based on

knowledge up to time k, ARH tries to optimize the

objective function J(k, h, X(k)) on the control horizon

of [k, k + h] starting from the initial state of X(k).

Therefore, ARH is equivalent to A(k, h, X(k)) and yields

the best control sequence that it can find during the

current sampling period. This is in fact the predicted

control sequence (pcs):

pcs=<U(k|k), . . . , U(k + h − 1|k)>. (5)

Algorithm 1 Outline of Receding Horizon Controller

1. Get the current value of the state vector, X(k).

2. Call ARH in order to generate pcs.

3. Send the control input U(k) that is the first element

of pcs towards the dynamic system.

Return

The Receding Horizon Controller is called

iteratively by the control program at each sampling of

period k until the end of the control horizon.

2.2 Some Aspects Concerning the
Implementation of the Receding Horizon
Controller

The description of the systematic design procedure

for the controller used within the RHC (see Section

2.1) can be completed with some practical aspects that

will be very useful for the implementer.

2.2.1 Correspondence between the
Performance Index and the Prediction
Horizon

Usually, in our context, the objective function—

and implicitly the performance index—can be

expressed for the sake of simplicity by its continuous

general form as

J=  

ft

t

ff xtMdtttutxL

0

),()),(),((. (6)

The first part is a Lagrange-type term that

measures the quality along the trajectory of the

dynamic system; and the second part is a Mayer-type

term that measures the quality of the trajectory in its

final extremity. If necessary, a discrete form can be

derived. The structure of the performance index is

decisive for the strategy of the RHC related to the

prediction horizon. The Mayer-type term will be

called the terminal penalty in the sequel.

As mentioned in other works Hu and Chen

(2005a); and Hu and Chen (2005b) the prediction

horizon can have different positions inside the control

horizon [0, H]. Figure 2 shows the two possible

situations generated using the RHC structure. In

scheme (a), the prediction horizon includes the final

moment of H of the control horizon. Accordingly, the

prediction horizon's length is the variable having the

value of h=H-k, where k is the current sampling time.

Because k evolves from 0 to H-1, it holds h=H, …, 1.

In scheme (b), the prediction horizon has a constant

length of h < H. Hence, from k=0 until k =H-h, the

controller makes h-steps-ahead predictions. But over

INTELLIGENT AUTOMATION AND SOFT COMPUTING 667

the final segment of the control horizon, from k= H-

h+1 until k= H-1, the prediction horizon's length will

decrease from h-1 to 1.

Figure 2. The Relative Position of the Prediction and the
Control Horizons.

In our opinion, some remarks related to schemes

(a) and (b) have to be underlined.

Remark 2: Schemes (a) and (b) are not options of

the design procedure. Case (a) was presented by some

authors as the conventional dynamic optimization and

scheme (b) as the RHC. Generally, scheme (a) is

compulsory when the performance index includes a

terminal penalty, because this must be calculated, and

consequently, the prediction horizon must include the

final states. Scheme (b) is devoted to the OCPs whose

performance index has only an integral component

concerning the control and state variables.

However, scheme (a) meets the elements that

define the RHC strategy:

- a decision is made by looking ahead for a number

of steps in terms of a given cost/criterion but it is

only implemented by one step;

- the prediction uses a dynamic PM;

- the implementation result is checked and a new

decision is made by taking updated information

into account and looking ahead for other number

of steps.

The prediction horizon "recedes" at each sampling

period but keeps the final extremity. Hence, its length

decreases by one unit at each sampling period.

There is a particular situation when scheme (b)

might be applied to an OCP whose performance index

has a terminal penalty. This is an interesting case

described in some papers such as Hu and Chen

(2005b) when a terminal penalty must be considered

to ensure the effectiveness of the solution. The basic

idea is that the terminal penalty cannot be computed,

because the prediction horizon does not include the

final moment of H but it can be estimated.

The performance index at the moment of k can be

expressed (see Figure 2(b)) by the following equation:

J(k, H, u)=J(k, k+h, u)+J(k+h+1, H, u) +FP(x(tf)), (7)

Where J(k1, k2, u) is the integral component calculated

on interval [k1, k2] for the control sequence u, and

FP(x(tf)) is the final penalty for the final state x(tf)

(that obviously depends on u). Scheme (b) implies that

only the value of J(k, k+h, u) is calculated by ARH. If

the sum of J(k+h+1, H, u) + FP(x(tf)) can be

estimated, the value of J(k, H, u) can be calculated

using this estimation. Generally speaking, there is no

such estimation for each OCP. When such estimation

exists, the receding controller may use scheme (b),

which is more efficient than using scheme (a) from the

point of view of a numerical complexity. In this work,

because we consider as a matter of priority the

dynamic processes modeled by differential algebraic

equations estimating the terminal penalty is even more

difficult.

2.2.2 Time Constraints and the Prediction
Horizon

As in any closed-loop control system, the choice of

T is related to the control engineering aspects, such as

the discretization of the continuous signals and the

time constants of the considered dynamic sub-systems.

The duration of the control horizon is an input data

of the given OCP and is equal to H·T. Hence, if T is

chosen, then the H value can be deduced. The first

constraint that can attest to the ability of A to solve the

given OCP is that the execution time of algorithm A

must be less than the control horizon.

A crucial parameter of algorithm ARH is the

prediction horizon that is equal to h·T. From the point

of view of the control structure's optimal character, the

ideal situation would be to determine the current

control input as being the first element of the optimal

control sequence for the entire control horizon, which

is a solution of A. As shown before, ARH takes into

consideration only the pcs determined for the

prediction horizon. Thus, a larger value for h is

desirable since there is an increased chance of quasi-

optimal behavior along the control horizon. However,

this fact contradicts the execution time of ARH.

The most restrictive time constraint for algorithm

ARH is that the execution time is smaller than the

sampling period. Therefore, h is chosen in such a way

that ARH terminates inside the sampling period. This is

a difficult constraint to meet and is the reason why the

RHC can be used for processes with relatively large

time constants.

2.2.3 Evaluation of the Optimal Behavior of the
Closed-loop Control Structure

In comparison with the "ideal" situation of the

open-loop structure that implements a quasi-optimal

solution given by A, the RHC is a more complex

structure introducing feedback (creation of the closed-

loop structure) accompanied by the prediction

technique. Hence, the RHC generates degraded

optimal behavior, meaning that the control input

sequence and state trajectory involves a deterioration

of the performance index. In order to analyze the

effectiveness of our implementation approach, two

k k+1 H 0

Prediction Horizon

time

k+h

(b)

k k+1 H 0

Prediction Horizon

time

(a)

668 MINZU and SERBENCU

simulation series may be carried out. The first

simulation series consists of a number of executions of

A (e.g., 30–40). The quasi-optimal evolution of the

open loop system is simulated. The average

performance index over the simulation series is

calculated and a particular simulation of A, whose

performance index is the closest to the average, may

be considered as the typical execution.

The second simulation series employs a simulation

model where the real process is identical to the PM

(see Figure 1). As a result, the feedback value of the

real state X(k) is equal to the state value computed by

the PM. As in the first simulation series, the

simulation was carried out a number of times (e.g.,

30–40) to determine the average performance index

and typical execution. By making a comparison with

the "ideal" situation of the open loop, one can

establish how much the RHC structure will alter the

quasi-optimal character of the constructed solution.

2.2.4 Stability Analysis for the Closed-loop
System

One of the first papers that deal with the stability of

the RHC structure is by Mayne and Michalska (1990).

The authors have proven that under certain

assumptions the RHC yields a stable closed-loop

system when applied to a time-invariant nonlinear

system.

Generally speaking, it is impossible to ensure the

applicability of this theorem in our context where the

optimal solution is computed through an approaching

algorithm. But the authors have proven another

important theorem, which validates the use of

suboptimal controls in constructing receding horizon

laws. The suboptimal control value sent to the process

is denoted by h
*
sub(x) for any current state of x. With

our notation from Section 2.1, it holds:

h
*
sub(x(k)) = U (k|k). (8)

This control law yields a closed-loop system,

))(,(* xhxfx sub (9)

that uses the receding horizon strategy and can be

asymptotically stable, if certain constraints are met.

The significance of the above result is very

important, because it shows that exact optimization is

not essential. The approximate optimal control laws

work well in practice with discrete systems and gives

stabilization towards a small neighborhood of the state

space's origin. In our case, if ARH has a good

convergence speed, then pcs approaches well with the

ocs and value


)()(xocsxpcs may be sufficiently

small. This fact involves the stabilization of the

closed-loop system towards a small neighborhood of

the origin. The larger the convergence speed, the

smaller the value


)()(xocsxpcs will be.

3 A RECEDING HORIZON CONTROLLER FOR
THE PROTEIN PRODUCTION

3.1 Protein Production Problem
IN this section, an OCP described in Nikumbh et

al. (2014) is considered. This problem involves the

fed-batch production of an induced foreign protein by

recombination bacteria. In order to maximize

profitability from the fermenter, it is necessary to

determine the optimal evolution of two control inputs,

the inducer and nutrient feed that vary with time. The

given batch time tf is 10 h.

The nonlinear system is described by the following

state equations:

)()(211 tutux  (10)

,))()((
1

2
21212 















x

x
tutu-xgx (11)

0.51
))()((-

100 2
1

1

3
21

1

1
3

x
g

x

x
tutu

x

u
x 
















 (12)
















1

4
21224))()((-

x

x
tutuxgx (13)



























 


1

5
21

1

2
5))()((-

)(4

x

x
tutu

x

tu
x (14)

6
5

5
6

0340

0.09
 - x

x.

x
x 

















 (15)

)1(
0340

0.09
7

5

5
7 x

x.

x
x 

















 (16)

 






















5

7
6

33

3
1

220

220

5.111/13514 x.

x.
x

xx.

x
g (17)

  



































5

5

33

3
2

0.022

0.005

5.111/13514

233.0

x

x

xx.

x
g (18)

There are some algebraic constraints:

1)(),(0 21  tutu (19)

For the initial time ti=0, the initial values of the

seven state variables are

 0 1, 0, 0, 40, 0.1, ,10X (20)

The objective function is

  ft

tff dttuQtxtxJ
0

)()()(241 . (21)

The performance index involves the maximization

of the objective function:

INTELLIGENT AUTOMATION AND SOFT COMPUTING 669

J
tutu)(),(21

max (22)

Our objective is to implement a receding horizon

controller for a real-time control structure using the

MbA and RHC structure.

3.2 Implementation of the Receding Horizon
Controller

As we have already seen, in the first phase of our

procedure, we had to choose a metaheuristic to solve

the considered OCP. In Nikumbh et al. (2014) the

authors used the Biogeography-Based Optimization

(BBO) and obtained good results by considering a

sampling period equal to 1h. In Section 8.6 of the

book by Jayaraman and Siarry (2014), the value Q=0

is considered within the objective function (21).

Consequently, the performance index has only a

terminal penalty term. Besides this value, the case

Q=1.5 will be considered as well in our work, in order

to have an objective function that represents a terminal

penalty together with an integral type term.

We have used in our simulations an evolutionary

algorithm that has similar efficiency in determining

the offline solution. This is algorithm A upon which

the implementation of the RHC structure is based on.

Our intention is not to emphasize the use of another

metaheuristic but to analyze the efficiency of the

closed-loop structure obtained with the proposed

implementation approach.

Every control input is represented in time by a

sequence of 10 values corresponding to each sampling

period, that is, H=10. Finally, a solution is coded by

concatenating the two sequences. Algorithm A uses a

direct encoding with real (non-binary) values and has

some usual characteristics; the population of each

generation has μ individuals; the offspring population

has λ individuals; the selection strategy is based on the

Stochastic Universal Sampling using the rank of

individuals, which is scaled linearly using the

selection pressure; one-point crossover operator that

yields a single offspring; and mutation with global

variance adaptation. Ngen is the number of generations

in which the population is evolving;

Algorithm A may be implemented as a function

that returns the ocs for the Protein Production

Problem:

ocs=A(λ, μ, Ngen, t0, H, X0), (23)

where t0=0 is the initial time and X0 is the initial state

vector. In comparison with Section 2.3.3, A has three

additional arguments (λ, μ, Ngen) for the

parameterization of the evolutionary algorithm. Owing

to the time constraint, ARH will work with smaller

values for these three parameters (λRH, μRH, NRH)

compared with algorithm A. The values used in our

simulations are listed in Table 1.

Table 1. Parameters of the Evolutionary Algorithm.

λ μ Ngen

A 70 40 120

ARH 60 30 60

Because the objective function given by equation

(21) showing a terminal penalty and there is no

estimation of the final state X(tf), algorithm ARH has to

implement a prediction horizon using scheme (a) from

Figure 2. As described in Algorithm 2, the length of

the prediction horizon h decreases by 1 at each

sampling period. The final time is always H. Hence,

the pcs for the Protein Production Problem has 2·h

elements, with h = H,…, 2, 1.

Algorithm 2: ARH using Scheme (a)

Input: Current sampling period: k;

Population size: λRH; Offspring size: μRH;

The current state vector: X(k);

Number of generations: NRH;

Other parameters necessary to run algorithm A

Output: Predicted control sequence pcs

h= H-k

pcs=A(λRH, μRH, NRH, k, h, X(k))

Return pcs

3.3 Simulation Results
As mentioned before, in Section 8.6 of the book by

Jayaraman and Siarry (2014) an optimal solution for

Q=0 is given. Our first goal is to compare this solution

to that one constructed by the RHC structure endowed

with the ARH algorithm.

The algorithm based on the BBO found out a

maximum value for the objective function, Jmax=6.15.

The reported control inputs u1(t) and u2(t) that

maximize the objective function are depicted in Figure

3. The evolution of the state variables obtained by

simulation using these control inputs is presented in

the same figure. The final values are x1(tf)=3.782 and

x4(tf)=1.6263 that confirms the value of Jmax.

For the same problem with Q=0, the RHC structure

was implemented and simulated using the MATLAB

system. Its controller is based on the evolutionary

algorithm represented in the previous section. In our

simulation model, the real process is identical to the

process model used for the state prediction. Because

of its stochastic character, the evaluation of the RHC

structure was made through a simulation series that

consists of 30 executions of the simulation model. The

results are presented in Table 2.

Table 2. Results of the Simulation Series for the RHC Structure.

Best Worst Mean Var Jmax

6.3397 6.0539 6.2821 0.0046 6.288

670 MINZU and SERBENCU

The first four columns of Table 2 show the

maximum, minimum, mean value, and variance of the

performance index, respectively. Column Jmax shows

the performance index value of the typical execution.

The state final values are x1(tf) = 4.0364 and x4(tf) =

1.5578 that confirms the value 6.288. The quasi-

optimal control inputs and the state evolution are

depicted in Figure 4.

Figure 3. Control Inputs and State Variables Produced by the
BBO Algorithm.

In conclusion, the second solution is better than the

first one in spite of the RHC implementation.

The second objective of our simulations is to

evaluate how much the performance index deteriorates

just because the RHC mechanism is used. That is why

the two simulation series described in Section 2.3.3

were carried out. Each simulation series consists of 30

executions on the simulation model. For each

simulation series, a typical execution is selected from

the 30 runs. The typical solution produced by

algorithm A after its population evolved along 120

generations is depicted in Figure 5.

The curves, which show the evolution of variables

x2 and x3 are the values divided by 10 for better

graphical representation. The performance index has a

typical value of Jmax=5.8885.

Figure 6 shows the evolution of the control inputs

and state variables produced by a typical execution of

the RHC with ARH. The results are presented in Table

3, which allows the comparison between the running

of algorithms A and ARH within the RHC.

Figure 4. Evolution of the RHC Structure with the Evolutionary
Algorithm.

Table3. Results of the Simulation Series.

Simulation
Model

Best Worst Mean Var Jmax

A 6.0312 5.7126 5.8884 0.08486 5.8885
RHC - ARH 6.0226 5.3625 5.8600 0.15697 5.8601

The first four columns of Table 3 show the

maximum, minimum, mean value, and variance of the

performance index, respectively. Column Jmax shows

the performance index value of the typical execution.

The degradation of the quasi-optimal character from A

toward ARH is represented by the difference between

the performance indices, which is 0.0284. The relative

decrease of Jmax is only 0.48%. This is the effect of

introducing the loop closing with the prediction

mechanism. Hence, the RHC structure in this case has

INTELLIGENT AUTOMATION AND SOFT COMPUTING 671

good efficiency in keeping the quasi-optimal character

of the OCP solution. Let us note also that the variance

of the performance index doubled its value in

comparison with A.

Figure 5. Control Inputs and State Variables Produced by A
Algorithm.

4 A RECEDING HORIZON CONTROLLER FOR
THE SEWER NETWORK DISCHARGE

4.1 Sewer Network Discharge Problem
IN this section, the sewer network discharge is

presented as an OCP called the Sewer Network

Discharge Optimization Problem (SNDOP). A

nonlinear discrete model for a sewer network (SN)

was proposed and developed in Minzu et al. (2014).

Figure 7 illustrates an example of a SN with 10

retention tanks. The rectangular element represents the

retention tank for wastewater and the circular element

is the collector for all flow capacities that are inputs of

the tanks.

The considered time is discrete, having the control

horizon H, namely t=0, 1,…, H. The influent that

affects the SN is represented by the flow capacities of

di(t), i=1,…, 10, from 10 catchments areas. The

discharge of tank i caused by its evacuation pump is

denoted by ui(t), i=1,…, 10. A characteristic of the SN

is that each tank has only one downstream tank. When

the tanks reach their maximum capacity Mi,

i=1, …, 10, expressed by volume units, there will be

overflows denoted by q
over

i(t).

Figure 6. Control Inputs and State Variables Produced by the
RHC with the ARH.

The state variables represent the remaining

wastewater volumes in the tanks. For example; in

tank i at moment t, there is a wastewater volume of

(xi(t)·ΔV) m
3
:

  10,,1 ,,,1 ,0)(  iMtx ii (24)

 TtxtxtxtX)()()()(1021  (25)

Let qi(t) be the total flow capacity of the

wastewater entering retention tank i. In order to

simplify the model, variables di(t), and ui(t) can be

expressed as integer values. All the water columns

have the same evacuation power, which may be

expressed by the wastewater volume evacuated in

sampling period T. Let ΔV be this volume. Hence, all

the variables have values in multiples of ΔV. These

values are denoted as; Di(t), Ui(t), Qi(t), and Q
over

i(t),

i=1,…, 10 and are integer values. Under these

conditions, a realistic hypothesis has been adopted:

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Minzu,%20V..QT.&newsearch=true

672 MINZU and SERBENCU

{0,1})(tUi (26)

The control input vector is

TtUtUtUtU)]()()([)(1021  (27)

tank 1

tank 2

tank 3

tank 4

d1

d4d2

d3

u1

u2

u3

u4

tank 5

tank 6

tank 7

tank 8

tank 9

d6

d5

d7

d8

u6

u7

u8

u9 tank
10

d10

u10

u5

d9

Figure 7. Sewer Network with 10 Retention Tanks.

The estimated influent is known as input data for all

tanks over the entire time horizon:

)](,),([)(101 tDtDtD  , t=0,…, H-1 (28)

The expressions of Qi, i=1,…, 10, reflects the sewer

network's structure. For our example, it holds;

);()()()(

);()()()(

);()();()()(

);()();()()(

);()()()();()(

);()()();()(

951010

8799

88677

66455

324433

12211

tUtUtDtQ

tUtUtDtQ

tDtQtUtDtQ

tDtQtUtDtQ

tUtUtDtQtDtQ

tUtDtQtDtQ













 (29)

The statement of SNDOP is composed of the

following elements:

♦ the nonlinear discrete system is

1,,0

))()()((min

))()()((min

))(),(,()1(

10101010

1111

























Ht

tUtQtx,M

tUtQtx,M

tUtXtftX



 ,(30)

♦ the initial conditions are

TxxxXX)]0(,),0(),0([)0(10210  ; (31)

♦ the bound constraints are

10,...,1)(,)(0  itxMtx iii N, ; (32)

♦ the objective function is

 


 


1 10

1

))()()(,0max()(
H

ts i
iiii MsUsQsxtI

(33)

The inner sum is equal to the overflow of all tanks

in sampling period s. Hence, I(t) is equal to the total

overflow for all tanks and for all sampling periods on

the time horizon of [t, H].

♦ the performance index is

)0(min
1,,0),(

* II
HttU 




. (34)

The SNDOP consists of finding the control input

values that minimize the total overflow I(0), whereas

influent D(.) is present in the SN and affects the state

of the retention tanks, acting like a disturbance.

Obviously, the estimated influent D and the initial

state of vector X0 are considered to be already known.

The solution of the optimization problem is a

sequence of control inputs, U (t), with t=0, …, H-1.

For a given SN structure, this optimization problem

has the following initial data; T, H, M1,…, M10, the

estimated influent D described by (28), and the initial

state vector X0.

4.2 Implementation of the Receding Horizon
Controller

The BHPSO algorithm introduced in Beheshti et al.

(2015) was specially developed for solving the

SNDOP in Minzu et al. (2015). This is why it may

assume the role of algorithm A in our approach.

Because the aim of this section is to give another

example showing how to implement and analyze the

RHC structure, only the main characteristics of this

algorithm are reviewed.

Let u be a solution of SNDOP. For algorithm A, u

is the position vector of a swarm's particle. Thus

solution u is a sequence of control inputs for all the

tanks and all the sampling periods belonging to the

time horizon. With this assumption, the structure of u

is given as

])(...)(||)(...)([

1

101

0

01001

0

  


  




Ht

ff

t
f

tUtUtUtUu (35)

Hence, the solution is a binary vector having

Hm 10 bits. With regard to the estimated

influent, our simulations used a typical example

corresponding to the situation when the SN is affected

by significant rainfall. The evolution of the estimated

influent di(t) related to some retention tank’s is shown

in Figure 8. Because all the variables from the model

described before have integer values, the estimated

influent is subject to discretization. The result is a

matrix whose element D(t, i), t=0,…, H-1, i=1,…, 10

(expressed as multiples of ΔV) is the continuous

influent di(t) after discretization and quantization, such

that the total volume of influent is preserved. This

matrix is input data for both algorithms A and ARH.

When the initial state and estimated influent D are

set, solution u determines uniquely the state trajectory

of the discrete system (30) and the total overflow

Q
over

=I(0), (see Figure 9). In our implementation, the

evaluation of the objective function was achieved by a

function that calculated the evolution of SN in

compliance with the model (26) - (33). This function

INTELLIGENT AUTOMATION AND SOFT COMPUTING 673

returns the value of the total overflow Q
over

, which has

to be minimized. Implicitly, as indicated in Figure 9,

the evaluation function determinates the sequence of

states X(0),…,X(H), which begins with the initial state.

Figure 8. Example of the Estimated Influent.

Figure 9. The Sewer Network as a Dynamic System.

Algorithm A may be implemented as a function

that returns the ocs for SNDOP:

ocs=A(ns, D, t0, H, X0), (36)

where t0, X0 and ns are respectively the initial time

showing the state vector and the number of particles in

the swarm. There are other parameters necessary to

the configuration of A as a PSO-based algorithm,

which are not covered here. In our simulations, these

parameters have identical values in both algorithms A

and ARH. In principle, owing to time constraints, ARH

may use a swarm with a smaller number of particles

ns.

Algorithm 3: ARH using the scheme (b)

Input: Current sampling period: k;

 Length of prediction horizon: h ;

 Current state vector: X(k);

 Other parameters necessary to run ARH

Output: Predicted control sequence pcs

if k ≤ H-h

 pcs=A(ns, D, k, h, X(k))

else /* H-h<k≤ H-1*/

 pcs=A(ns, D, k, H-k, X(k))

Return pcs

In this case, the objective function given by

equation (33) does not have a terminal penalty term.

This is a favorable context for the computational

complexity of algorithm ARH, because it may

implement a prediction horizon using scheme (b) from

Figure 2. As described in Algorithm 3, the prediction

horizon is the interval [k, k+h]. The length of the

prediction horizon h is constant for the sampling

periods , H-h,, k  10 . However, for the final

segment of the control horizon k=H-h+1,…, H-1 the

prediction horizon decreases by 1 at each sampling

period. Algorithm ARH uses the same estimated

influent D as algorithm A, but only the lines of matrix

D correspond to the current prediction horizon. The

real influent Dreal, which is unknown, will act in the

circumstances of the real-time control but will be

considered in our simulations after some hypotheses

are made concerning its value.

4.3 Simulation Results
The analysis of the Receding Horizon Controller

for the SNDOP was made through simulations that

comply with the procedure described in Section 2.2.3.

In order to complete the definition of our problem, the

remaining parameters have been set as:

M1=10; M 2=14; M 3=6; M 4=20; M 5=50; M 6=10;

M7=14; M 8=6; M 9=20; M 10=40.

X0=[3 3 3 3 3 2 2 2 2 2]
T
; T=120 s; H=40.

Hence, the control horizon has 80 min. The size of the

swarm has been set to ns=20, for both algorithms A

and ARH. For the initial state X0 and for the estimated

influent D represented in the previous section, the

SNDOP has the optimal performance index of I*=0, a

fact ascertained by the execution of algorithm A.

For the Receding Horizon Controller, the length of

prediction horizon h is a crucial parameter that must

meet the constraints already mentioned in Section

2.2.2. In order to select it, the control structure was

simulated using different values of h. The results are

represented in Table 4. The second column shows the

number of bits encoding a solution (m=10·h), which is

the main factor determining algorithm ARH's

complexity and efficiency. The subsequent columns

provide the best, worst, mean values, and the variance

of the total overflow found after 30 runs of the ARH,

respectively.

Table 4. Simulation of the RHC with Different h Values.

h m Best Worst Mean Var
Number
of runs

5 50 3 12 7.53 4.67 30

10 100 3 11 6.86 3.56 30

16 160 0 5 2.36 1.098 30

25 250 0 3 1.26 0.547 30

35 350 0 1 0.10 0.305 30

By analyzing this table we establish a correlation;

the poorer the solution, the greater the variance. An

adequate value seems to be h=16, because it is a

trade-off between the computational complexity and

time constraint for ARH.

In the first simulation series, the evolution in the

open loop of the system (27)–(33) was simulated.

Thirty executions of algorithm A were carried out.

Sewer

Network

Model

Estimated

influent

Initial state

State trajectory

Qover

u

674 MINZU and SERBENCU

Algorithm A has greater computational complexity

compared with ARH, because of its control horizon

H=40 but it has no time constraint. Some results are

shown in the first row of Table 5. The column Q
over

gives the total overflow found in a typical execution.

A typical state evolution produced by algorithm A,

whose particle swarm has evolved until convergence,

is depicted in Figure 10. For the simulation series

concerning the closed-loop control structure that uses

Figure 10. State Evolution in a Typical Execution of A
Algorithm.

Table 5. Results of the Simulation Series for the SNDOP.

Simulation
model

h Best Worst Mean Var Qover

A - 0 4 1.43 0.727 1
RHC - ARH 16 0 5 2.36 1.098 2

RHC - ARH 35 0 1 0.10 0.305 0

ARH, the results from Table 5 show an increase in

total influent dispersion. The typical value of Q
over

 is

now 2 volume units (1 vu = ΔV). It is the result of

introducing the closed loop with the prediction

mechanism that works for only 16-steps-ahead

predictions, in contrast to algorithm A, which makes

predictions in 40 steps. Figure 11 depicts the state

evolution obtained in a typical simulation using ARH.

The implementer - who has to decide whether or

not the RHC structure works well - can use the results

of the simulation to answer to this issue.

Figure 11. State Evolution in a Typical Execution of the RHC -
ARH.

5 CONCLUSION
THIS work proposes a systematic procedure to

create a RHC structure whose controller is based on a

metaheuristic algorithm. In the first phase, the MbA

was implemented beginning with the statement of the

control problem. The metaheuristic was chosen

according to the previous experience of the designer,

who also implemented the algorithm and verified its

efficiency in solving the problem. In the second phase,

the MbA was slightly modified, as mentioned in

Section 2.1, in order to create algorithm ARH that is

included in the controller. The simulation of the RHC

structure may be considered as the last phase of the

design procedure.

The main contribution of this work is the

systematic procedure itself, which has a

methodological contribution. The description of this

design procedure gives the opportunity to underline

some practical aspects.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 675

An important aspect is the structure of the

objective function to be optimized. The length of the

prediction horizon will be variable (scheme (a)) or

fixed (scheme (b)) depending on whether or not the

the objective function has a terminal penalty term.

Section 2.2.1 is a complete analysis of all the choices

that the implementer can make from this point of

view.

Other aspects may be considered drawbacks of the

association between the RHC and MbA, but the

proposed procedure analyzes these difficulties aiming

to overcome them when it is possible.

The procedure has a restrictive time constraint

mentioned in Section 2.2.2. That is why this method

can be used for the control of slow nonlinear systems,

such as chemical batch processes. For a prediction

horizon equal to h·T, h has to be chosen in such a way

that the ARH would terminate inside the sampling

period. It could result in showing a small value of h, a

fact that could be in contradiction with an acceptable

quasi-optimal behavior. We may try to select another

MbA that is less complex or has a better convergence

speed.

Another crucial aspect is the good convergence

speed of algorithm A that must be carefully proven

and tested. This is useful not only to meet the time

constraint, but also to ensure the quality of the

asymptotical stability.

The simulation is the only way to evaluate the

MbA quality and closed loop behavior. Moreover,

owing to the stochastic character of the algorithms A,

ARH and the entire RHC structure, the evaluation needs

to reiterate simulations, in order to determine valid

statistic parameters.

On the other hand, the association of the RHC plus

the MbA is for many cases the unique way to solve an

OCP that has two simultaneous characteristics; (a) the

process is nonlinear and (b) there is not a feasible

deterministic solution for the optimization problem.

Our proposed procedure has algorithmic parts that

generate ARH and the controller. Obviously, these parts

can facilitate significantly the implementation of the

control structure.

The implementation of the closed loop has a price

to be paid; a degradation of the quasi-optimal

behavior. In Section 2.2.3, a simulation tool is

proposed that establishes how much the RHC structure

will alter the quasi-optimal character of the

constructed solution. Afterwards, the control structure

implementer has to decide whether the RHC structure

works well.

The proposed procedure was illustrated by two

examples of the OCP; a continuous system whose

objective function includes a terminal penalty term

and a discrete system with binary control inputs whose

objective function has only an integral term. The

simulations were organized such that one can evaluate

the degradation of the optimal behavior by introducing

the closed-loop. The optimal character of A was

compared to that of the RHC, which includes the ARH.

The simulations showed that the proposed procedure

resulted in closed-loop control structures exhibiting

good behavior and can be used in real-time control.

6 REFERENCES
Altinten, A., (2007). Generalized predictive control

applied to a ph neutralization process. Computers

and Chemical Engineering, 31(10), 1199-1204.
Aras, O. et al. (2011). Optimization of scaled

parameters and setting minimum rule base for a
fuzzy controller in a lab-scale pH process.
Industrial and Engineering Chemistry Research,
3335-3344.

Attia, S.A. et al., (2006). Voltage Collapse Avoidance
in Power Systems: A Receding Horizon Approach.
Intelligent Automation & Soft Computing, 12(1),
9–22.

Beheshti, Z. et al., (2015). Memetic binary particle
swarm optimization for discrete optimization
problems. ELSEVIER, Information Sciences 299,
p. 58-84

Blanco, T.B. et al., (2010). Flood regulation using
nonlinear model predictive control. Control
Engineering Practice 18, 1147-1157

Bououden, S. et al., (2015). An ant colony

optimization-based fuzzy predictive control

approach for nonlinear processes, Information

Sciences, Elsevier. 299, 143-158.

Bruant, I. et al., (2011). Optimization of Piezoelectric

Sensors Location and Number Using a Genetic

Algorithm. Mechanics of Advanced Materials and

Structures, Taylor Francis, 18 (7), 469 - 475
Causa, J. et al., (2008). Hybrid fuzzy predictive

control based on genetic algorithms for the
temperature control of a batch reactor; Computers
and Chemical Engineering, 32(12) 3254-3263.

Chiang, P-K., Willems, P., (2015). Combine
Evolutionary Optimization with Model Predictive
Control in Real-time Flood Control of a River
System. Water Resource Management, 29: 2527–
2542

Christofides, P.D. et al., (2013). Distributed model
predictive control: A tutorial review and future
research directions. Computers and Chemical
Engineering 51, 21-41.

Clarke, D.W., 1994. Advances in Model-based
Predictive Control. Oxford University Press.

Faber, R. et al. (2005). Dynamic optimization with

simulated annealing. Computers and Chemical

Engineering 29, 273–290
Goggos, V., King, R., (1996). Evolutionary predictive

control. Computer Chemical Engineering 20
(Suppl 2) (6-7), S817-S822.

Kesarkar, A. and Selvaganesan, N., (2015) Tuning of
optimal fractional-order PID controller using an
artificial bee colony algorithm. Systems Science &
Control Engineering, 3:1, 99-105.

Hiskens, I.A., Gong, B., (2006). Voltage Stability
Enhancement Via Model Predictive Control of

676 MINZU and SERBENCU

Load. Intelligent Automation & Soft Computing,
12(1), 117–124.

Hu, X.B. et al. (2004). On-line free-flight path
optimization based on improved genetic
algorithms. Engineering Application of Artificial
Intelligence 17, 897-907.

Hu, X.B., Chen, W.H., (2005a). Genetic algorithm
based on receding horizon control for arrival
sequencing and scheduling. Engineering
Application of Artificial Intelligence 18(2005),
633-642.

Hu, X.B., Chen, W.H., (2005b). Genetic algorithm
based on receding horizon control for real-time
implementations in dynamic environments; 16th
Triennial World Congress, Prague, Elsevier IFAC
Publications.

Jabri, K. et al., (2011). Particle swarm optimization
based tuning of a modified Smith predictor for
mould level control in continuous casting. Journal
Process Control 21(2), 263-270.

Jayaraman, V.K., Siarry, P. (Editors.), (2014);
Applications of Metaheuristics in Process
Engineering, ISBN 978-3-319-06507-6, Springer.

Mayne, D.Q., and H. Michalska, (1990). Receding

horizon control of nonlinear systems, IEEE

Transactions on Automatic Control. 35, 814-824

Makas, H. and Yumusak, N., (2016). System

identification by using migrating bird’s

optimization algorithm: a comparative

performance analysis. Turkish Journal Of

Electrical Engineering & Computer Science,

1879-1900.

Lopez-Francol, C., (2018). Robot Pose Estimation

Based on Visual Information and Particle Swarm

Optimization, Intelligent Automation & Soft

Computing, 24(2), 431-442.
Minzu, V. et al., (2014). Sewer network discharge

control using a multi-agent approach. Proceedings
of the 18th International Conference on System
Theory, Control and Computing; Sinaia, Romania,
ISBN 978-1-4799-4602-0 ©2014 IEEE, 779– 784;

Minzu, V. et al., (2015). A Binary Hybrid Topology
Particle Swarm Optimization Algorithm for Sewer
Network Discharge. Proceedings of the 19th
International Conference on System Theory,
Control and Computing, Cheile Gradistei,
Romania, ISBN 978-1-4799-8480-0©2015 IEEE,
627-634.

Naghizadeh, R.A. et al., (2016) An Adaptive

Approach for Simulation of Inrush Current in

Three-phase Transformers Considering Hysteresis

Effects, Electric Power Components and Systems,

44(6), 673-682
Nikumbh, S. et al., (2014). Biogeography-based

optimization for dynamic optimization of chemical
reactors, in: Jayaraman, V.K., Siarry, P. (Editors..,
Applications of Metaheuristics in Process
Engineering, ISBN 978-3-319-06507-6, Springer,
201-216.

Qin, S.J., Badgwell, T.A., (2003). A survey of
industrial model predictive control technology.
Control Engineering Practice, 11, 733-764

Qian, F. et al., (2012). Novel hybrid evolutionary
algorithm for dynamic optimization problems and
its application in an ethylene oxide hydration
reactor. Industrial and Engineering Chemistry
Research 51(49) 15974-15985.

Sarimveis, H., Bafas, G., (2003). Fuzzy model
predictive control of non-linear processes using
genetic algorithms. Fuzzy Sets and Systems 139(1),
59-80.

Singh, A.K., Hahn, J., (2006). Sensor location for
stable nonlinear dynamic systems: multiple sensor
case, Industrial and Engineering Chemistry
Research 45(10), 3615-3623.

T. Wong, P.L,. et al., (2016) Empirical Comparison of

Differential Evolution Variants for Industrial

Controller Design. International Journal of

Computational Intelligence Systems, 9(5), 957-

970.

Venkateswarlu, C., Reddy, A.D., (2008). Nonlinear

model predictive control of reactive distillation

based on stochastic optimization. Industrial and

Engineering Chemistry Research. 47(18), 6949-

6960.

Yang, Y. et al., (2014). Predictive Control Strategy

Based on Extreme Learning Machine for Path-

Tracking of Autonomous Mobile Robot.

Intelligent Automation & Soft Computing, 21(1),

1–19.

Zhang, W. et al., (2018). BDI Agent and QPSO-based

Parameter Optimization for a Marine Generator

Excitation Controller. Intelligent Automation and

Soft Computing, 1-10.

Zheng, T., (2010). Model Predictive Control. Edited

by Tao Zheng, ISBN 978-953-307-102-2,

Publisher: Sciyo.

7 NOTES ON CONTRIBUTORS
V. Mînzu received ME degree

in Computer Engineering, from

the Polytechnic Institute of

Bucharest, Romania in June

1981, Ph.D. degree in

Automation Systems from

University of Galati Romania

in December 1993, and MS

and Ph.D. degrees in Computer

Science and Automation from the University of

Franche-Comté, France in May 1995. He also received

Doctor Honoris Causa degree, from the Le Havre

University, France in July 2009. Currently, he is

professor within the Control and Electrical

Engineering Department, "Dunarea de Jos" University

of Galati, Romania, teaching Automation Systems and

Optimal Control Techniques, (Member of the IEEE,

Control Systems Society, and Member of the IFAC

Technical Committee 5.2).

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Minzu,%20V..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6982513&refinements%3D4294967269%2C4291944822%26ranges%3D2012_2014_p_Publication_Year%26matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28p_Authors%3AMinzu%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6982513&refinements%3D4294967269%2C4291944822%26ranges%3D2012_2014_p_Publication_Year%26matchBoolean%3Dtrue%26searchField%3DSearch_All%26queryText%3D%28p_Authors%3AMinzu%29
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6961601
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6961601

INTELLIGENT AUTOMATION AND SOFT COMPUTING 677

A.E. Serbencu received Ph.D.

degree in Automation Systems

from the University of Galati

Romania in June 2017. He

works at the Control and

Electrical Engineering

Department, "Dunarea de Jos"

University of Galati, Romania.

He is associate professor at this

University. His research

interests are in artificial intelligence applied in control

systems, robotics and optimal control.

