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Abstract: The vehicle edge network (VEN) has become a new research hotspot 
in the Internet of Things (IOT). However, many new delays are generated during 
the vehicle offloading the task to the edge server, which will greatly reduce the 
quality of service (QOS) provided by the vehicle edge network. To solve this 
problem, this paper proposes an evolutionary algorithm-based (EA) task 
offloading and resource allocation scheme. First, the delay of offloading task to 
the edge server is generally defined, then the mathematical model of problem is 
given.  Finally, the objective function is optimized by evolutionary algorithm, 
and the optimal solution is obtained by iteration and averaging. To verify the 
performance of this method, contrast experiments are conducted. The 
experimental results show that our purposed method reduces delay and improves 
QOS, which is superior to other schemes. 
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1 Introduction 
Recently, the IOT is a research hotspot of academic and industrial sessions. It consists of all things in 

life that can connect to the internet, such as mobile phones, laptops, vehicles, etc., with limited CPU 
capacity and energy characteristics [1]. Vehicle network, as one of the important branches, has become a 
new research field. With the advent of the 5G era, virtual reality technology (VR), automatic driving and 
other applications in vehicle network have put forward new requirements for vehicle communication with 
low delay and low energy consumption [2]. Previous studies have focused on transferring data to cloud 
computing centers for data processing and feedback of results [3]. Although it takes less time than local 
processing, the process of data transfer creates additional delays because the physical distance in the cloud 
center is too remote for mobile devices. MEC technology can solve this problem very well, it transfers the 
computation of data from the center of cloud computing to the edge of mobile network, and is closer to the 
vehicle in physical distance [4,5]. By MEC technology, the vehicle can bypass the Internet delay, which can 
reduce the computation delay and transmission delay. However, the computing power of the edge server is 
also limited in reality, and it cannot support the computing tasks of all mobile users in the region [6,7]. 
Therefore, the reasonable allocation of computing resources in the edge server is very important for delay-
sensitive applications. In the vehicle edge network, this dynamic task offloading scheme is an effective way 
to reduce the delay of the network. It is decided by the mobile user according to the requirement of service 
quality and the computing resources of the edge server, that is, either offload the computing task to the edge 
server for task execution, or the task will be done locally in the mobile device. 

Although task offloading is an effective solution for delay-sensitive applications such as automatic 
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driving. However, issues such as which tasks are offloaded to the edge server and which edge servers are 
selected to perform the offloaded tasks have not been resolved. How to allocate computing resources of 
edge servers effectively becomes a new challenge. In 2014, a threshold strategy-based service migration 
mechanism in mobile micro-clouds was proposed [8]. The problems of service performance and service 
migration became important when users move to the coverage areas of different base stations. They 
modeled the problem as a Markov decision process (MDP) and demonstrated that the optimal strategy for 
service migration was a threshold strategy when mobile users follow a random walk mobile model. 
Aiming at the problem of computing offloading decision among mobile device users, the problem of 
decentralized computing offloading decision among mobile users as a decentralized computing offloading 
game was described [9]. This method can realize the Nash equilibrium of the game and concretize the 
efficiency ratio of the concentrated optimal solution, and finally realize the efficient computing unloading 
of mobile cloud computing. 

Based on the current research situation, an evolutionary algorithm-based task offloading and 
resource allocation scheme, which is used for increasing the delay caused by the unreasonable task 
offloading and resource allocation, is proposed in this paper. First, we concretize all offloading delay in 
the vehicle edge network, then the total delay is mathematically modeled. Finally, the evolutionary 
algorithm is used to optimize the target problem by initializing population, calculating fitness, selecting, 
crossover and mutation. And then the optimal solution can be obtained after 100 iterations. Based on the 
real-time task and resource situation, the optimal proportion of task offloading and the optimal scheme of 
resource allocation can be obtained finally. 

This paper is organized as follows: In Section 2, related work will be discussed. Section 3 describes 
the network model and problem definition. And our proposed method is introduced elaborately in Section 
4. Section 5 gives the experimental results of the proposed scheme. Finally, a conclusion is given in 
Section 6. 

2 Related Work 
In edge networks, task offloading and computing resource management have been the focus of 

research in mobile edge computing. Liu et al. [10] studied the computational resource management 
problem of delay sensitive class applications in mobile edge networks. They jointly considered the 
allocation of radio and computational resources to achieve the goal of reducing service delays. First, the 
delay of the service requested by the mobile user is modeled, including wireless delay, network delay and 
computing delay: 

, ,
,

( )k k
k k n k n

n Nk k n
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τ
∈

= + +∑  (1) 

where kd  is the task size of the user k, kR  is the data transfer rate. , (0,1)k na ∈  represents whether mobile 
user k transfer a task to MEC Server n. ,k nτ  is the network delay between mobile user k and MEC Server 
n. kc  represents the computing resources needed to complete the task of user k. ,k nf is the computing 
resources allocated by MEC Server n. 

Then, a delay minimization problem that jointly considers uplink transmission power, task allocation, 
and computational resource allocation is formed. Finally, using the proposed joint radio and 
computational resource management (iRAR) algorithm, the delay problem is optimized and its 
advantages are verified by a large number of simulations. 

Luo et al. [11] focused on reducing energy consumption for task unloading in MEC. The authors first 
consider the energy consumption generated by the interaction between tasks and perform mathematical 
modeling. Then, the task execution flow is identified by computing k-hop connectivity, so that a directed 
graph is constructed based on the task interaction matrix and the delay of each task execution flow is 
formulated. Finally, the energy consumption minimization problem is expressed as a quadratic constrained 
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integer mixed quadratic programming problem, and an effective heuristic method is proposed. 
Although many scholars have studied resource allocation schemes in mobile edge networks. 

However, they only consider the time consumption of task offloading or the additional energy 
consumption caused by the process. Moreover, there are only two options for mobile user's task uninstall, 
all transfer and no transfer, ignoring the computing power of mobile user itself.  

3 System Model and Problem Definition 
3.1 Network Model 

We consider a vehicle edge computing system, as shown in Fig. 1, in which i vehicles are randomly 
distributed in the communication range of j MEC servers, which are connected by optical fiber between 
them. All vehicles in the system need to run computing-intensive and delay-sensitive services with the 
help of MEC servers. Each vehicle can only establish a connection with one MEC server and offload the 
task to that MEC server. When a vehicle is in multiple MEC server communication range at the same 
time, the vehicle needs to select the nearest MEC server to establish a connection according to the 
distance between the vehicle and the server. 

2 2
, ( ) ( )i j i j i jd x x y y= − + −  (2) 

where ( , )i ix y  is the location information of the vehicle i, ( , )j jx y  the location information of the MEC 
server j. 

Each vehicle has computing tasks, which can be processed locally or unloaded to a MEC server for 
execution. We denote the unloading ratio of the task j of the vehicle i as , [0,1]i jx ∈ , 0 as not transferred to 
the MEC server, and 1 as all tasks transferred to the MEC server for execution. We assume that in the 
vehicle edge computing system, the MEC server has sufficient computing resources to complete the task 
of vehicle publishing, and does not consider the energy consumption of the MEC server. 

Cell 1

Cell 2

Cell M

MEC Sever 1

MEC Sever 2

MEC Sever M

 

Figure 1: Vehicle edge computing system 

3.2 Cost of Local Model 
Denote the data size of the task, the highest tolerance delay as ,i jD  (bit), jσ (s) respectively. For task 
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j, the consumption of completing the task is mainly composed of two parts: 1. The energy consumption 
required to complete the task 2. The time taken to complete the task. For the local computing module, 
when  , 1i jx ≠ , the remaining ,1 i jx−  tasks will be done locally. 

3.2.1 Local Execution Delay 
For the partly task performed locally, the latency is generated from calculating the task: 

, ,
,

(1 )
= i j i j kL

i j L
i

x D C
T

f
− ⋅ ⋅

 (3) 

where kC  (cycles/bit) represents the number of CPU cycles of 1 bit data, and L
if  (cycles/second) 

represents the computing capacity of the vehicle i. 

3.2.2 Local Execution Energy Consumption 
The local computational energy consumption is generated by the vehicle i performing the remaining 

tasks. We use ,
L
i jE  to represent the local computational energy consumption corresponding to the task j: 

, , ,(1 )L
i j i j i j k iE x D C Z= − ⋅ ⋅ ⋅  (4) 

where iZ  (J/cycle) is the energy consumption per CPU cycle. 

3.3 Cost of MEC Model 
The whole offloading process consists three steps if the vehicle i decides to offload part of the task to 

the MEC server for execution: 1. The vehicle i offloads the relevant data of the task to the MEC server j 
(data size, maximum tolerance delay). 2. MEC server j assign computing resources to execute tasks. 3. 
MEC server j feedback the result of the task to the vehicle i. Hence, for vehicle i, delay and energy 
consumption are generated by these three processes. 

3.3.1 Latency on MEC Sever 
The delay of offloading a task to the MEC server is generated by the following three processes: 

offload the task, MEC server executes the task, and MEC server feedbacks the result of the task. 

Latency of Offloading Task 
According to the first step, when the vehicle decides to offload part of the task to the MEC server, it 

needs to upload the relevant data to the MEC server, and the delay of the task offloading is expressed as 
,
o

i jT : 
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where ,
up

i jr  represents the data transfer rate of the uplink between the vehicle i and the MEC server j, 
which is expressed as: 

, , 2log (1 )up
i j i jr B SINR= +  (6) 

where ,i jB  is the allocated channel bandwidth and SINR  is the signal-to-noise ratio. SINR  can be 
obtained by the following formula: 
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where ,
T

i jP  is the transmission power, ,i jO  is the channel gain between the vehicle i and the MEC server j, 
which can be expressed as: 

, ,i j i jO d α−=  (8) 
where α  is the path loss factor and here is set to -4 [12]. 

Latency of Offloading Computing 
For the computing delay in the second step, the MEC server will assign a certain computing resource 

to execute the task after receiving the task by the vehicle, which can be expressed as: 
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Where M
jf  is the computing resource assigned by the MEC server to the task j, and its size is limited by 

the total computing resource of the MEC server Mf : 

1
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Latency of Result Feedback 
In the last step, the MEC server j will feedback the task execution results to the vehicle i, and the 

time required is the time the vehicle i receives the task results from the downlink, which is expressed as: 
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where ε  is the ratio of output data to input data, here we set to 0.1 [13–15]. ,
d

i jr  is the data transmission 
rate of the downlink. For vehicles i, we assume that the transmission rate of the uplink is the same as the 
downlink. 

Overall, we represent the total time MEC server to complete the task as follows: 

, , , ,
MEC o M d

i j i j i j i jT T T T= + +  (12) 

3.3.2 Energy Consumption on MEC Sever 
In the vehicle edge network, we do not consider the energy consumption of MEC servers. So for 

vehicles i, we divide the process of generating energy consumption into three steps, specifically: 1. 
Energy consumption for offloading task data 2. Energy consumption for task calculation 3. Energy 
consumption for receiving feedback 

Energy Consumption of Offloading Task 
Firstly, after the vehicle i decides to offload part of the task to the MEC server, the relevant data 

needs to be uploaded to the MEC server, and the energy consumption of this part can be expressed as ,
up
i jE : 

, , , ,
up
i j i j i j i jE x D W= ⋅ ⋅  (13) 

where ,i jW  is the transmission energy consumption of a bit data. 
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Energy Consumption of Local Computing 
Secondly, when the vehicle i upload part of the task to the MEC server, the remaining tasks need to 

be performed locally, and the energy consumption of this part has been stated in 3.2.2, which is no longer 
stated here. 

Energy Consumption of Receiving Feedback 
Finally, MEC server j need to feedback the task result to the vehicle i after executing the task, and 

the vehicle needs to consume energy to receive the task result, which is expressed as: 

, , , ,
d
i j i j i j i jE x D Wα= ⋅ ⋅ ⋅  (14) 

Above all, the total energy consumption of the vehicle i to complete the task is generated by the 
above three processes. We express the total energy consumption as: 

, , , ,
up L d

i j i j i j i jE E E E= + +  (15) 

3.4 Problem Formulation 
In our proposed vehicle edge network system, we consider the delay and energy consumption cost 

synthetically. The total system cost is defined as the weighted sum of total energy consumption and delay, 
and a new cost function is proposed:  

, , ,i j i j i jC T Eλ µ= ⋅ + ⋅  (16) 
where + 1λ µ = , λ  and µ  are the weights of delay and energy consumption, respectively. The values of 
λ  and µ  can be adjusted according to the type of service and the remaining energy of the vehicle. For 
example, when the remaining energy of the vehicle is less than 20%, the value of µ  will be much bigger 
than λ . In our system, the task we study is delay-sensitive services such as automatic driving, so the 
requirement for delay is higher, λ  is set to 0.8 [16–19]. 
The delay of task needs to consider the time of execution of local tasks and the time of execution of tasks 
offloaded to the MEC. The maximum value of both is the total time spent by the task:  

{ }, , ,max ,L MEC
i j i j i jT T T=  (17) 

Our goal is to minimize the total system cost by jointly optimizing the task offloading decision of the 
vehicle i and the resource allocation strategy of the MEC server. In addition, the constraints of limited 
communication and computing resources need to be considered. We define this joint optimization 
problem as: 
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(18) 

where the constraint C1 indicates that the value of the offload strategy is a value between 0 and 1. 
Constraint C2 ensures the delay constraint of the computational task, and jσ  indicates the highest 
tolerance delay. Constraint C3 shows that the sum of the computing resources allocated by all tasks 
cannot exceed the computing resources of the MEC server. And constraint C4 ensures that the sum of 
bandwidth allocated by all tasks cannot exceed the total channel bandwidth. 
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4 Proposed Method 
P1 is a single-objective optimization function. Our goal is to find optimal task offloading and MEC 

server resource allocation strategies to minimize the total cost. However, as the dimension of the variables 
increases, the computational complexity will increase dramatically. To solve this optimization problem, 
we propose an optimal task offloading and resource allocation scheme based on evolutionary algorithms. 

4.1 Evolution Algorithm 
Evolutionary algorithm is a computational model that simulates biological evolution in nature. It can 

automatically accumulate the knowledge of solution space in the process of evolution and control the 
search process adaptively to obtain the optimal solution of the target function. EA is a mature global 
optimization method with high robustness and wide applicability. Therefore, we use the optimal task 
offloading and resource allocation scheme based on evolutionary algorithm to minimize the cost function, 
specifically including the following five steps: 1. Population initialization; 2. Calculate individual fitness; 
3. Selection; 4. Mutation; 5. Crossover. 

4.1.1 Population Initialization 
First, according to the characteristics of the problem (minimization problem) and the range of 

variables, N population individuals are randomly generated in the solution space: 

{ }, , ,(0) (0) ;a 1,2, , ;b 1,2, ,L U
a a b a b a bX x x x N M≤ ≤ = =   (19) 

where N  represents the population size, M  is the dimension of the solution space. ,
L
a bx  and ,

U
a bx  are the 

upper and lower bounds of the range of values for the M dimension variables, respectively. The value of 
,b (0)ax  are as follow: 

, , , ,(0) (0,1) ( )L U L
a b a b a b a bx x rand x x= + ⋅ −  (20) 

where (0,1)rand  denotes a random number, which is on the interval (0, 1). 

4.1.2 Calculate Individual Fitness 
The second step is to calculate the individual fitness, which can reflect the gap between the 

individual of each population and the optimal solution of the problem. Individuals with high fitness have 
a greater chance of being selected for the next evolution. The fitness of individual population can be 
obtained by fitness function. Considering that our objective function is a minimization problem, the 
fitness function Fit  can be defined as follow: 

max , , max
,

( ), ( )
0 ,

a b a b
a b

f f x f x f
Fit

others
− <

= 


 (21) 

where , ( )a bf x  is the objective function, maxf  is the maximum of , ( )a bf x . 

4.1.3 Selection 
After setting the fitness function, the individual population needs to be screened to leave better 

offspring for the next round of selection. We determine the rules of selection according to the fitness 
value of the individual. First, we call the sum fitness of all individuals in the population as the total fitness. 
Then divide the fitness of each individual by the total fitness to obtain the probability of the individual 
being selected. We express the selection probability as: 

1

(i)(i)
(i)N

i

FitP
Fit

=

=
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4.1.4 Mutation 

In the g-th iteration, for individual { }, , ,(g) (g) ;a 1,2, , ;b 1,2, ,ML U
a a b a b a bX x x x N≤ ≤ = =  , three 

individuals 1(g)rX , 2 (g)rX , 3 (g)rX  are randomly selected from it, and r1≠r2≠r3. After mutation, an 
intermediate (g 1)aV + is produced: 

1 2 3(g 1) (g) ( (g) (g))a r r rV X F X X+ = + ⋅ −  (23) 
where 1r , 2r , 3r  is the random number within the interval and F  is the scaling factor. 

4.1.5 Crossover 
At the last step, the g-th generation population { }(g)aX  and its mutated intermediate { }(g 1)aV +  are 

cross-operated between individuals: 

,
,

,

(g 1), (0,1)
(g 1)

(g),
a b

a b
a b

V if rand
u

X otherwise
ω+ ≤+ = 


 (24) 

where ω  is the cross probability between two individuals. 
In summary, the flow chart of the proposed method is shown in Fig. 2: 

Initial population

Start

Calculate the fitness 
of the individual

The fitness value satisfies the 
condition or g>100

Selection

Mutation

Crossover

End

g=g+1

YES

NO

 

Figure 2: Flow chart of the proposed method 

5 Simulation 
In this section, the environmental settings of the experiment and the results of the experiment are 

presented to demonstrate the performance of our proposed method. First, the number of all vehicles and 
MEC servers in the experiment, communication resources and computing resources, and the relevant 
parameters are set as shown in Tab. 1: 
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Table 1: The parameters of experiment 

Parameter Value 
Total bandwidth  1 × 106 (Hz) 
Number of vehicle 9  
Number of MEC server 3 
Total CPU rate of MEC 4 × 1010 (cycles/s) 
CPU rate of vehicle 5 × 108 (cycles/s) 
Task data size 1,2,3 (MB) 
Unit processing energy consumption 1/7.3 × 108 (J/cycle) 
The transmission and receiving energy 
consumptions of vehicle 1.42 × 10-7 (J/bit) 

Tolerance delay of tasks 0.4,0.6,0.8 (s) 
CK 1900 (cycles/bit) 
The received power  0.4 (W) 
The noise power 0 (W) 
The interference power 4 (W) 

To demonstrate the function and performance of the proposed method, we introduce two other 
computational offloading strategies: 1. The local offloading policy (LE), i.e., the task performs all 
computational tasks locally; 2. MEC execution policy (ME), i.e., all tasks are offloaded to the MEC server. 

 
Figure 3: The value of objective function obtained by evolutionary algorithm 

Table 2: The value of decision variables 

Number ,i jx  ,i jB (Hz) M
jf (cycles/s) 

Vehicle 1 0.24 667572 9.2×107 

Vehicle 2 0.91 80536 4.9×108 

Vehicle 3 0.66 63507 2.8×108 

As shown in Fig. 3, the average objective function value of the population individual reaches the 
maximum at the 92nd generation, and the optimal solution of the objective function is 0.187. The values 
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of the decision variables are shown in Tab. 2. 
We compare the proposed scheme with the ME and LE schemes, and the results are shown in Fig. 4, 

which shows that our method is better. Compared to the LE scheme, our scheme significantly reduces the 
cost of completing the user’s task, which is only 13% of the cost of the LE scheme, which is manifested 
in the fact that the user can get the required at little time and energy. Compared with the ME scheme, the 
cost of Vehicle 2 and Vehicle 3 decreased slightly, by 9% and 34% respectively, while the cost of Vehicle 
1 decreased by 76%. So from the overall point of view of MEC server M, our scheme is better than the 
ME scheme and can provide better QOS. 

 
Figure 4: Performance comparison with ME and LE algorithms 

5 Conclusion 
In this paper, we combine the definition of vehicle edge network delay with evolutionary algorithm 

to improve service quality. First, all delays and energy consumption during vehicle task offloading are 
defined, including three processes: 1. Task offloading 2. Task computation 3. Result feedback. Then, this 
cost problem is modeled. Finally, the evolutionary algorithm is used to optimize the problem, including 
population initialization, calculating individual fitness, selection, mutation and crossover, and the optimal 
solution is obtained by iteration. By comparing experiments, we prove the superiority of this method, 
which can reduce communication delay and improve service quality (QOS). 
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