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Abstract: In the deep learning field, “Capsule” structure aims to overcome the 
shortcomings of traditional Convolutional Neural Networks (CNN) which are 
difficult to mine the relationship between sibling features. Capsule Net (CapsNet) 
is a new type of classification network structure with “Capsule” as network 
elements. It uses the “Squashing” algorithm as an activation function and Dynamic 
Routing as a network optimization method to achieve better classification 
performance. The main problem of the Brain Magnetic Resonance Imaging 
(Brain MRI) recognition algorithm is that the difference between Alzheimer’s 
disease (AD) image, the Mild Cognitive Impairment (MCI) image, and the 
normal image is not significant. It is difficult to achieve excellent results using a 
multi-layer CNN. However, CapsNet can be in the case of a shallower network, 
which can accommodate more useful feature information for identifying brain 
MRI. In this paper, we designed a shallow CapsNet to identify patients with 
brain MRI by binary classification. Compared with VGG16, Resnet34, 
DenseNet121 and ResNeXt50. Experimental results illustrate that CapsNet is 
superior to CNN network in its accuracy and F1-score. The indicators were 
86.67% and 83.33%, respectively. Furthermore, we show that the capsule 
network shows excellent performance in brain MRI recognition compared with 
those popular networks. 
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1 Introduction 
Alzheimer’s disease (AD) is a degenerative neurological degenerative disease that develops 

insidiously. The patient’s ability to perform daily life is progressively reduced with a variety of 
neuropsychiatric and behavioral disorders. Frequent in the elderly, usually the condition is progressively 
aggravated, and gradually loses the ability to live independently, 10 to 20 years after the onset of death 
due to complications. The pre-clinical phase of Alzheimer’s disease is also known as mild cognitive 
impairment (MCI), a transitional state between normal and severe. Therefore, the accurate diagnosis of 
Alzheimer’s disease and mild cognitive impairment is of great significance. 

Brain magnetic resonance imaging is an important imaging diagnostic tool for brain diseases. 
Disease identification and prediction based on MRI images is an important issue in the medical field. 
Traditional medical imaging diagnostic methods rely on years of experience and clinical research by 
clinicians to manually identify patients with corresponding diseases. The emergence of machine learning 
methods provides an intelligent solution to the identification problem in the medical field. 

Traditional medical imaging diagnostic methods rely on years of experience and clinical research by 
clinicians to manually identify patients with corresponding diseases. The emergence of machine learning 
methods provides an intelligent solution to the identification problem in the medical field. Among them, 
the deep learning method has been widely used in various research fields. Classification and segmentation 
networks such as ResNet [1–3] exhibit excellent performance in various neighborhoods of computer 
vision. These networks are based on various variants developed on the Convolutional Neural Network 
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(CNN). At the same time, this kind of method has been successfully applied to the identification and 
prediction of medical imaging research fields such as Dilated Heart Disease and prostate cancer [4–5]. 

Capsule networks (CapsNet) represent a recent breakthrough in neural network architectures [6]. 
Because the difference between brain MRI images and normal human images is not significant, multi-
layer CNN networks are difficult to achieve better results, CapsNet can accommodate more feature 
information in the case of shallower networks. And get a better classification effect. Based on the 
literature [6], this paper firstly used a shallow capsule network to identify three-class patients with brain 
3D MRI images to test the recognition performance of the capsule network structure and such medical 
data. In this paper, the method is used in the brain 3D MRI dataset, and compared with ResNet18 [1], 
ResNeXt50 [7], DenseNet121 [8] and VGG16 [2]. Experimental results illustrate that CapsNet is superior 
to CNN network in accuracy and F1-score. Compared with traditional methods and multi-layer CNN 
networks, the capsule network has excellent performance in brain MRI recognition, which can effectively 
identify whether brain MRI images are patients, and indicates that capsule neurons act as a network. 
Structural unit performance is better than traditional CNN [6]. 

2 Related Work 
The network structure based on CNN has achieved great success in the fields of computer vision and 

medicine [9–12]. Compared with traditional medical imaging, artificial design or designation of image 
features for patient diagnosis, machine learning, especially deep learning methods, can assist physicians to 
provide preliminary quantitative and qualitative evaluation of medical diagnosis, thereby saving a lot of labor 
costs. However, the difference between the image of the patients’ brain MRI and the healthy people’s brain 
MRI is not significant (as shown in Fig. 1. a: The brain MRI of an Alzheimer’s disease patient; b: a mild 
cognitive impairment patient; c: a healthy person). The shallower classification methods such as multi-layer 
CNN and SVM are difficult to extract effective image classification features from the weaker images. 
Therefore, it is not possible to achieve a good recognition effect.  

                       
 (a) (b) (c) 

Figure 1: Brain magnetic resonance imaging 

CNN is good at detecting specific features in pictures, such as detecting nose and eyes, but it is 
difficult to find out the relationship between features, such as the size and direction of the view. A face 
photo exchanged with the nose and nose may be misidentified by CNN as a real face. Based on the 
visualization system theory proposed by Hinton, Capsule and Capsule Net (CapsNet) came into being to 
overcome the shortcomings of the CNN method [6]. Hinton pointed out that there is a tree-like analytical 
structure for each fixed visual position, and each parse tree consists of a fixed multi-layer the neural 
network [13]. Each layer of neural network is composed of many different “capsule” neurons [14]. Unlike 
traditional neuron output scalar values, capsule neurons are vectors that contain some special information, 
such as similarity, direction, size, angle, etc., and finally, determine the activation value of the capsule 
neurons based on the modulus of the vector (output value. CapsNet uses the squashing algorithm as the 
vector activation function and uses the dynamic routing algorithm to replace the dropout of the fully 
connected network in the CNN, making the network features more multi-layered and achieving better 
algorithm performance. 
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3 Method 
In view of the problem that the 3D image space size and voxel size are not uniform in the original 

data of the brain porcelain, we first resample the image so that the resolution is 31.0   1.0   1.0 mm× × . 
Then three 2D images in the middle position in the 3D image are selected and resize to a size of 
128  128× . According to the pre-processing operation, the input size of the network is 128  128× . 

The CapsNet network structure is shown in Fig. 3. It is a shallow network structure consisting of 
only two convolutional layers and one fully connected layer (i.e., Digital Capsule). The network uses the 
processed 128  128×  2D image as a network input. The image first passes through the Pre-Conv layer 
without pooling. For the image difference between a patient and a normal person, we designed the image 
of the traditional convolution layer with the step size of 2, the convolution kernel is 9  9× , the output 
channel number is 256, and the activation function is ReLU. The local feature pre-fetching, the output of 
this layer is 60 60 256× × , which can reduce the problem of receptive domain overlap. Traditionally, 
CNN and fully connected networks use scalars as entities, while capsules use multidimensional vectors as 
entities, which facilitates network feature extraction for entities. Among them, the Pre-Conv layer is the 
lowest level of multidimensional entities [6]. The Pre-Conv layer output is transferred to the Capsule 
Layer (shown in the red dashed box in Fig. 2). The upper vector input iu  is multiplied by ijW  to get the 
middle vector  |j iu . The vector js  is the sum of the product of ijc  and  |j iu . The ijc  is updated by 
Dynamic Routing algorithm (see in 3.5) with  |j iu  and the Capsule’s output, which is calculated from 
Squashing activation function (see in 3.4). The capsule layer mainly comprises two parts: A main capsule 
sublayer and a digital capsule sublayer. 

 

Figure 2: Capsule 

3.1 Primary Capsule 
The Primary Capsule is the first layer of the capsule layer and consists of an inactive function and a 

non-pooled convolution and reshape. This layer is intended to convert the non-“encapsulated” Pre-Conv 
layer feature input of the upper layer into an “encapsulated” feature for later layer processing. For the 
brain MRI data, we design a step size of 2, a convolution kernel size of 9 9× , and a traditional 
convolutional layer of 26 26 256× ×  size to maintain a small spatial dimension. Unlike traditional CNN, 
this layer does not design a pooling layer or uses an activation function, but instead converts the output to 
a 26 26 32 8× × ×  capsule layer output. Among them, 32 8×  in the output can be regarded as a vector 
output of 32 channels with a dimension of 8 (8D), or as a 676 (i.e., 26 26× ) 32-channel 8D “one-
dimensional” vector output. And in the 26 26×  size region, weight sharing between these capsules 
reduces the over-fitting problem by reducing the training parameters. The dimensional transformation 
here is the soul of CapsNet, and it is also the original intention of the capsule design. The processing may 
include vector information of some special information, such as similarity, direction, size, angle, etc., 
which is more conducive to improving the classification performance, and finally determines the 
activation value (output value) of the capsule neuron according to the modulus length of the vector. 
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Figure 3: Capsule network 

3.2 Digital Capsule 
The Digital Capsule is the second layer of the capsule layer. The digital capsule layer uses a vector as 
input compared to the input in the traditional neuron as a scalar. The main function of this layer is to 
replace the traditional Fully Connected Layer (FC), transforming the 676 32×  8-D capsule of the main 
capsule sub-layer into two (for the two-class problem) 8-D capsule, and finally using it. The vector 
modulus length of the two capsules represents the predicted probability of the corresponding two 
classifications. The digital capsule sublayer is the core of the capsule network. The two main capsule-
specific algorithms are applied to this layer. The main model is shown in Fig. 3. The network uses brain 
MRI as input. Where Pre-Conv layer (light green) is a simple CNN layer for extracting features. Capsule 
layer is the point of the network including Primary Capsule layer (light-blue) and Digital Capsule layer 
(blue). The output of the Capsule layer is connected to Output (pink part) and Reconstruction layers 
(orange part) for inferring or training. 
Let the input of the first layer capsule be ( )lK ( )lD -dimensional vector ( )( l

i i ∈u u  , ( )(0,..., ))li K∈  
single capsule concrete realization equation as shown in  Eqs. (1)–(4). 


|i j i ij=u u W                                                                                                (1) 

where 
( )1

|ˆ
lD

j i

+

∈u  , 
( ) ( )1l lD D

ij

+×∈W  , |ˆ j iu  is the affine transformation of iu , the transformation requires 
that each row or column in the matrix W  is 1 and ijW  is the weight matrix. 

iSoftmax( )i =c b                                                                                                (2) 

Among them, the weight ic  is obtained by the “routing softmax” operation, and ijb  is the 
logarithmic prior probability of the capsule i and the capsule j, which is obtained by iterative calculation 
by the “dynamic routing” algorithm (see 3.5 for details). 

|ˆj ij j i
i

c=∑s u                                                                                                (3) 

where js  is the weighted sum of the “predictive vector” calculated by |ˆ j iu . 

( )jj squashing=v s                                                                                                                                    (4) 

where jv  is js  calculated by Eq. (3) (see 3.4 for details). Eq. (3) is similar to the weighted summation 
operation of traditional neurons: |j i ij ia w x b= + . Eq. (4) is similar to the activation function of traditional 
neurons such as sigmoid, ReLU, tanh and so on.    
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3.3 Reconstruction Layer 
The reconstruction layer is next to the capsule layer and consists of three fully connected layers. We 

design dimensions for the brain MRI dataset size of 512, 4096, and 128 128 16384× = , respectively. In 
order to introduce the reconstructed error loss function to optimize the model, the output of the last layer 
of the reconstructed block is designed as the input image size. The introduction of reconstruction errors in 
this network structure can effectively improve the accuracy of the overall model. 

3.4 Squashing 
It can be seen from Fig. 2 and Eq. (4) that the capsule activation function is a Squashing function, 

and the specific calculation Eq. (4) is as shown in the Eq. (5). This function is a non-linear activation 
function that maintains the input vector dimensions unchanged. This function has the following 
characteristics: 
 The value range of jv  is limited to [0,1) , so the length of the output vector can represent the 

probability of occurrence of an entity. The larger the modulus, the greater the probability that the 
entity will appear. 

 The function is monotonically increasing, so “encourage” the long-formed vector and “compress” the 
smaller vector. 

 
Figure 4: Squashing activation function 
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2
1

j j
i

jj
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+

s s
v

ss
                                                                                               (5) 

That is, the “activation function” of Capsule is actually a compression and redistribution of the 
length of the vector. The relationship between the modulus of the function output vector and the mode of 
the input vector is shown in Fig. 4. Above shown the function curve of the modulus of the input vector js  
and the modulus of the output vector jv  The function curve of the Squashing function is similar to the 
positive semi-axis part of the Sigmoid function. When the input mode length approaches infinity, the 
output approaches 1.  

3.5 Dynamic Routing 
From Eq. (2), the capsule network needs to iteratively calculate the logarithmic prior probability of 

capsules and capsules through a dynamic routing algorithm. Hinton pointed out that “finding the best 
(processing) path is equivalent to (correctly) processing the image”. This is one of the reasons for 
introducing dynamic routing in the Capsule framework. 
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One way to find the “best path” is to pick the input vector that best matches the output vector. The 
degree of compliance is characterized by the inner product of the output vector and the input vector (the 
linearly transformed vector). The algorithm gains greater weight by updating the iterative weights to 
make input vectors that contribute more to the output vector. The specific algorithm is shown in 
Algorithm 1, and its action area is shown by a red dashed box in FIG. This update algorithm is easy to 
converge. The literature [6] considers that the algorithm is iterative 3 times. Similar to other algorithms, 
dynamic routing also has over-fitting problems. Although increasing the number of iterations of dynamic 
routing can improve the recognition accuracy, it will reduce the generalization of the algorithm. 

The ic  in Eq. (3) is the sum of the logarithmic prior probabilities calculated for the upper input 
capsule (see the Algorithm 1 Step (3) for its value update), initialized to 0 in the first iteration, and passed 
the Algorithm 1 Step (6)  iterative update. The weight ic  is calculated by the softmax function in Step (3). 
Finally, the capsules i are sorted by their prior probability from large to small and passed to the capsule of 
the next layer. The “prediction vector” .js  in the Eq. (3) is calculated by the Step (4) of the algorithm 1. 

Finally, the output ( )1l + th layer capsule jv  is calculated by the Step (5) of Algorithm 1 (see the Eq. (5) 

for the Squashing function). Finally, the input |ˆ j iu  is multiplied by the output jv  and added to ijb , and 

the value is the updated value of ijb . The dynamic routing algorithm is shown in Algorithm 1. 

Algorithm 1 Dynamic Routing 
Require: Input vector |ˆ j iu ; route number r ; The number of current layer l  
Ensure: Output vector jv  

1: For all l  layer capsules i  and all ( 1)l +  layer capsules j : ←b 0 ; 
2: while 0r ≠  do 
3:    For all l  layer capsules i : 
 ( )isoftmaxi ←c b   
4:    For all ( 1)l +  layer capsules j : 
 |ˆj ij j ic←∑s u   
5:    For all ( 1)l +  layer capsules j : 
 ( )jsquashj ←v s   
6:    For all l  layer capsules i  and all ( 1)l +  layer capsules j  : 
 |ˆij ij j i jb b← + ⋅u v   
7:    1r r← −  
8: end while 
9: return jv  

4 Method 
We divide the loss function into two parts: Boundary loss and reconstruction loss. In the capsule 

network, we pass the vector length of a capsule as the probability of the existence of this entity. Boundary 
loss: Use a loss function similar to SVM. 

( )2
max 0,T c cL T m+= − v                                                                                                                       (6) 

( ) ( )2
1 max 0,F c cL T mλ −= − −v                                                                                                           (7) 

magin m rL L L= +                                                                                               (8) 
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where cT  is the c  category information. 1cT = , if the c  category exists, else 0cT = . In Eq. (6) and Eq. 

(7), m+  and m−  take 0.9 and 0.1, respectively, as the upper and lower boundaries of cv‖ ‖ to avoid false 
positives and false negatives. 

5 Experiments 
5.1 Experimental Configuration 

The experiment was based on Python 3.6.7, Ubuntu 16.04, and Tensorflow 1.10, running on a GPU 
model NVIDIA GeForce RTX 2080 TI. To ensure the consistency of the results of the comparison 
experiment (ResNet18, ResNeXt50, DenseNet121, VGG16), we trained 500 cycles (batch size is 32). 
Each experiment used a five-fold cross-validation to select the test set and training set. Finally, the 
average value of each index of the results of the five experiments was used as the evaluation amount. The 
specific settings of each experiment are as follows: 

CapsNet: Super parameters µ  and λ  are set to 0.0005 and 0.5 respectively. The loss function is 
same as Eq. (8). The trained optimizer uses Adam optimizer [15] and the learning rate is adjusted to 1E-3. 
The total number of training rounds is 500 rounds [16–18]. 

ResNet18 ResNeXt50 DensetNet121 VGG16: The loss function is categorical cross-entropy. The 
trained optimizer uses the Adam optimizer and the learning rate is adjusted to 1E-3. The total number of 
training rounds is 500 rounds. 

5.2 Dataset 
The data set is a 3D MRI scan of the human head and consists of three categories, healthy samples, 

MCI samples, and AD samples. The data set contains 68 samples of Alzheimer's disease patients, 151 
samples of MCI patients, and 81 samples of healthy people. 

5.2 Analysis of Experiments 
The average accuracy and standard deviation of the five-fold cross-validation for each model test are 

shown in Tab. 1. From the accuracy in the table, it can be seen that CapsNet performs well in the 
automatic diagnosis of MRI patients in the brain. However, it can be seen from the standard deviation in 
the table that the robustness of CapsNet remains to be verified. The F1-score of five-folder experiment 
shown in Tab. 1 illustrate that our method got a great performance. 

Table 1: Accuracy and standard deviation of the 5-folder experiment 

Model CapsNet ResNet18 ResNeXt50 DenseNet121 VGG16 
Folder 1 0.8500 0.8500 0.8667 0.8000 0.8333 
Folder 2 0.9000 0.8167 0.8167 0.8333 0.8333 
Folder 3 0.8667 0.8500 0.8167 0.8333 0.8333 
Folder 4 0.8500 0.8500 0.8167 0.8500 0.8333 
Folder 5 0.8667 0.8167 0.8500 0.8333 0.8333 
Max Acc 0.9000 0.8500 0.8667 0.8500 0.8333 
Min Acc 0.8500 0.8167 0.8167 0.8000 0.8333 
Mean Acc 0.8667 0.8368 0.8333 0.8300 0.8333 
Std 0.0204 0.0182 0.0236 0.0183 0.0000 
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Table 2: F1-score of the 5-folder experiment 

Model F1score 
CapsNet 0.8333 
ResNet18 0.8312 
ResNeXt50 0.8190 
DenseNet121 0.8222 
VGG16 0.8014 
max F1score 0.8333 
min F1score 0.8014 
mean F1score 0.8214 

Fig. 5 shows the convergence of the various loss functions in the CapsNet network. It can be seen 
from Fig. 5 that after the boundary loss rapidly converges, the reconstruction error can play an important 
role in training. When the reconstruction error training begins to decrease, this also illustrates the imaging 
identity of the data set. Comparing the total loss with the boundary loss, it can be seen that the main 
contribution of the training comes from the boundary loss, which is consistent with the design idea. 

6 Conclusion 
CapsNet is shallow, but exceed the deeper traditional neural network of VGG16 in this classification 

experiment. This shows that the “capsule” structure has great potential for development as a variant of 
CNN and traditional neurons. Compared to traditional neurons, the neural input of a capsule is no longer a 
scalar input, but a vector input.  

 

Figure 2: Loss curve. The figure shows reconstruction loss (top left), margin loss (bottom left) and total 
loss (top right) 

CapsNet has a great performance in the data set of this experiment and can perform well in fine-
grained classification. 

However, it should be pointed out that since the dynamic routing algorithm requires more 
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dimensional parameters to train, the amount of parameters required by this algorithm increases 
exponentially with the input and output sizes. Therefore, the structure of CapsNet for a large number of 
classification problems (such as image segmentation) will consume a lot of GPU display storage 
resources. We cannot use a single GPU for training, even in the current hardware environment. This also 
limits the fact that this method is not recommended as an intermediate layer in a multi-layer network, but 
rather as an output layer (or closer to the output layer). 

The main problem facing the brain MRI is that the difference between the diseased image and the 
normal image is not significant. It is difficult to achieve excellent results using a multi-layer CNN 
network, and the capsule network CapsNet can be in the case of a shallower network. It accommodates 
more feature information and is useful for identifying brain MRI. We utilized a shallow capsule network 
to identify patients with brain MRI in a three-class classification, and compared with VGG16, ResNet18 
and so on. The experimental results show that the capsule network is compared with the popular networks 
in brain MRI recognition. The aspect shows excellent performance. 
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