

Computers, Materials & Continua CMC, vol.65, no.3, pp.2687-2705, 2020

CMC. doi:10.32604/cmc.2020.011232 www.techscience.com/journal/cmc

Information Flow Security Models for Cloud Computing

Congdong Lv1, *, Ji Zhang2, Zhoubao Sun1 and Gang Qian1

Abstract: Cloud computing provides services to users through Internet. This open mode
not only facilitates the access by users, but also brings potential security risks. In cloud
computing, the risk of data leakage exists between users and virtual machines. Whether
direct or indirect data leakage, it can be regarded as illegal information flow. Methods,
such as access control models can control the information flow, but not the covert
information flow. Therefore, it needs to use the noninterference models to detect the
existence of illegal information flow in cloud computing architecture. Typical
noninterference models are not suitable to certificate information flow in cloud computing
architecture. In this paper, we propose several information flow models for cloud
architecture. One model is for transitive cloud computing architecture. The others are for
intransitive cloud computing architecture. When concurrent access actions execute in the
cloud architecture, we want that security domain and security domain do not affect each
other, that there is no information flow between security domains. But in fact, there will be
more or less indirect information flow between security domains. Our models are
concerned with how much information is allowed to flow. For example, in the CIP model,
the other domain can learn the sequence of actions. But in the CTA model, the other domain
can’t learn the information. Which security model will be used in an architecture depends
on the security requirements for that architecture.

Keywords: Cloud computing security, information flow security, noninterference,
noninterference models.

1 Introduction
Cloud computing provides a variety of services over the network. This open environment,
while being convenient for users to access and use, also poses a potential security risk and
leads to an increasing number of attacks from inside or outside the cloud. In cloud
computing, there is a risk of data leakage between virtual machines or users. Whether it is
direct or indirect data leakage, it can be regarded as illegitimate flow of information.
Approaches such as access control the explicit flow of information, implicit flow of

1 Nanjing Audit University, Nanjing, 211815, China.
2 Center for Data Science, Courant Institute of Mathematical Sciences, New York University, New York,

10011-8868, USA.
* Corresponding Author: Congdong Lv. Email: lvcongdonglv@163.com.
Received: 28 April 2020; Accepted: 20 May 2020.

2688 CMC, vol.65, no.3, pp. 2687-2705, 2020

information cannot be controlled, and a non-disruptive model is needed to detect the
presence of illegitimate traffic in the cloud computing infrastructure.
In cloud computing, multi-user access to resources is a typical synchronization system. The
system, the user’s access to resources without the established priorities. When multiple
users access the same resource at the same time, it can cause an access violation. Based on
this kind of access conflict, malicious users get information about other users accessing the
corresponding resources. For security reasons, malicious users should not obtain such
information. However, the existing non-interference model cannot characterize this
abnormal information flow.
A sequence of actions of a user visiting the same resource at a time is taken as a motion
vector or set of actions. In order to prevent such abnormal information flow, there should
be no flow of information between the action vectors or the generating domains of the
action-focused action or the flow of information should satisfy the rules of information
flow stipulated by the system. In view of the existing non-interference model can only deal
with the sequence of sequential actions and cannot handle the set of simultaneous actions,
a variety of methods for processing simultaneous sets of actions are proposed and based on
these methods, the information flow suitable for cloud computing architecture Analyzed
non-interference models. Among them, the first model is suitable for analyzing information
flow-secure of cloud computing architecture under transitive policy. The others are
applicable to cloud computing architecture information under intransitive policy. The
difference between these models lies in the different control of the system flow of
information strength.

2 Related works
In cloud computing, there are works on the cloud components about the theory of
information flow security, such as the formal description and analysis, verification and so
on. Early, a complete functional formal proof of the operating system microkernel was
performed. It provided a way to formally analyze complex systems [Chen, Wu, Shao et al.
(2016)]. Then, a security tool was used to retrofit KVM, showing how their approach can
support a widely-used full-featured hypervisor integrated with a commodity operating
system. The implementation had a trusted computing base of only a few thousand lines of
code, many orders of magnitude less than KVM. They showed that the security tool
protected the confidentiality and integrity of virtual machines running unmodified guest
operating systems while only incurring modest performance overhead for real application
workloads [Li, Koh and Nieh (2019)]. Virtual machine migration will take a lot of time.
And in the process of migration, their security will become a problem [Li, Li, Zhang et al.
(2019)]. One solution made use of mainstream tools and architectures, like the Linux
integrity measurement architecture, the open attestation platform and the Docker container
engine, making it practical and readily available in a real-world scenario. Compared to a
standard Docker deployment, their solution enabled run-time verification of container
applications at the cost of a limited overhead [De and Lioy (2019)]. At the same time, a
privacy-aware multi-authority cipher text policy ABE scheme with accountability was
proposed, which hid the attribute information in the cipher text and allowed to trace the
dishonest user identity who shared the decryption key. The efficiency analysis

Information Flow Security Models for Cloud Computing 2689

demonstrated that the new scheme was efficient, and the computational overhead in the
tracing algorithm was only proportional to the length of the identity [Li, Chen, Chow et al.
(2018)]. The API is a bridge between cloud service providers and users. The security of
cloud computing relies heavily on the security of the API. RBAC-based two-phase access
control mechanism was put forward on the cloud-based API level. The access mechanism
allowed only white-list users to access [Rizvi and Mitchell (2015)]. In the analysis of cloud
computing environment, security is the biggest problem [Zhang, Chang, Yan et al. (2019)].
A non-interference model was proposed as the basis for analysis of the feasibility of the
behavior, but did not consider the concurrency of behavior in cloud computing [Zhang,
Zhang, Chen et al. (2017)].
In information flow security analysis of cloud computing, the flow of key information
based on virtualized systems using DFL (Data Flow Logic) was discussed [West, Li and
Missimer (2016)]. The benefits of different users in the cloud computing environment was
analyzed. Chinese wall model was used in the cloud computing environment [Zeng,
Koutny and Watson (2015)]. The current disk storage reuse in cloud storage was analyzed
from the perspective of privacy data stealing. Technology, the issue of using illegal
information flow to steal data from a target virtual machine by using methods such as
hidden channel attacks in a cloud environment was studied [Srivastava and Kumar (2015)].
The advantages and disadvantages of a multi-user SaaS environment were analyzed,
especially between users whether it can be properly isolated for the information flow
security issues such as resource management and resource scheduling [Bzemer and
Zaidman (2010)]. A hidden channel was constructed to steal other user data from disks that
were not properly physically isolated by measuring file access time [Wang, Sun and Jajodia
(2012)]. Security level of the cloud environment in different security domains between the
isolation problems was discussed. A hypervisor-based isolated kernel was designed to
achieve different levels of sensitive data isolation [Li, Yan, Chen et al. (2019]. A broadcast
proxy re-encryption was proposed for data sharing [Ge, Liu, Xia et al. (2019)]. A secure
data query framework for cloud computing was proposed. Cloud service was used to check
queried data from fog network when fog network provided queried data to users [Gu, Wu,
Yin et al. (2020)].
Information flow security is a top priority for a series of security issues in cloud computing.
Because cloud computing system is too large and complex, it is difficult to formally
describe and analyze it. In the discussion of isolation of the secure kernel, when one virtual
machine performs an operation, the other virtual machines should be completely unaware
of the fact that no information flows between the virtual machines [Zhao, Sanán and Zhang
(2016)]. The internal operations of a virtual machine do not result in changes in the system
state visible to other virtual machines and that no information flows between the virtual
machines [Xu, Liu and Zhu (2017)].
The “perception” and “impact” of virtual machines and virtual machines fit into the
semantics provided by a non-disruptive model in the field of information flow. Therefore,
from the perspective of information flow, this paper analyzes the characteristics of
information exchange in cloud computing environment, and formally describes and
verifies the information flow in the cloud environment as a whole. The corresponding non-
interference model is proposed and the non-interference model is used the flow of

2690 CMC, vol.65, no.3, pp. 2687-2705, 2020

information in the cloud computing infrastructure is controlled to verify the implicit flow
of information in the cloud computing infrastructure [Navamani, Yue and Zhou (2018)].
The interference-free model ensures that there is no uncontrolled flow of information in
the cloud computing architecture, including explicit and implicit flows. Controlling the
flow of information in a cloud environment can circumvent many kinds of security threats
that may lead to the disclosure of sensitive data, including the escape of virtual machines,
the stealing of virtual machines, and the hidden channels in cloud computing [Di and
Lombardi (2018)]. Therefore, the formal research of cloud computing environment based
on information flow has strong practical significance.
The ultimate goal of introducing a non-interference model is to ensure that there is no
illegitimate flow of information in the system, so how to verify that the system meets the
non-interference model has always been an important topic. The usual verification method
is based on the “extended theorem” [Zhao, Liu and Guo (2018)]. The method first
constructs an “extension theorem” and then reduces the global constraint of the information
flow security attribute to a part that involves only one-step state transition Verification of
conditions. This technique establishes the relationship between system security and a single
state transition command, hence the term “extension theorem”. At present, this method
effectively solves the verification problem of non-interference attributes on transitive
systems. However, this method is no longer suitable for systems without transitive
[Schoepe (2018)]. The main problem is that the method is reliable, but not complete.
Reliability means that if the local conditions are satisfied, the system can be concluded that
the security attributes are satisfied, Incompleteness means that if the local conditions are
not met, it cannot be concluded that the system does not satisfy the security attributes. In
addition to “Extended Theorem”, some domestic and foreign scholars have also developed
some other verification methods for non-interference attributes. The verification problem
of non-intrusive model was transformed into the problem of language inclusion of
automaton, which is incomplete [Georget, Jaume and Piolle (2017)]. The verification of
unperturbed attributes on deterministic systems was reduced to reachability problems,
which can then be verified with the aid of reachability detection techniques [Barthe, Betarte
and Campo (2019)]. Then verify the cloud computing architecture to meet the interference-
free model? In this paper, the “extended theorem” of non-interference model in cloud
computing is given and the decision algorithm to satisfy the non-interference model is
given according to “extended theorem”.

3 Cloud security models
In order to facilitate the formal description of the model, the elements involved in the model
are mathematically defined as shown in Tab. 1.
In cloud computing, multiple actions may occur at the same time t, called a concurrent
action set, writing 𝑎𝑎 = {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛}, where the elements in the set are repeatable.

Information Flow Security Models for Cloud Computing 2691

Table 1: Cloud architecture
Element
Set

Elements and their
meanings

Description

𝑈𝑈 𝑈𝑈 = {𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑛𝑛}，
U𝑖𝑖 represents a user in
the cloud computing
environment

Cloud user set

𝑉𝑉 𝑉𝑉 = {𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉𝑛𝑛}，
V𝑖𝑖 represents a server
in a cloud computing
environment

Cloud server set

𝐷𝐷 𝐷𝐷 = 𝑈𝑈 ∪ 𝑉𝑉，𝐷𝐷𝑖𝑖
represents a security
zone in a cloud
computing
environment

Domain set

𝑆𝑆 𝑆𝑆 =
{𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛}，𝑠𝑠𝑖𝑖
represents cloud
status，s0 represents
the initial status

Cloud status set

𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 = {𝑟𝑟,𝑤𝑤}，𝑟𝑟 is
read，𝑤𝑤 is write

User behavior
set

𝑇𝑇 𝑇𝑇 = {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛}，
𝑇𝑇𝑖𝑖 represents the tense
of a behavior

Time status set

𝐸𝐸 𝐸𝐸 = {𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛}，
𝐸𝐸𝑖𝑖 represents the
environment of a
behavior

Environmental
status set

𝐴𝐴 𝐴𝐴 = {𝐴𝐴𝐴𝐴,𝑇𝑇,𝐸𝐸}, 𝐴𝐴𝐴𝐴, 𝑇𝑇
and 𝐸𝐸 constitute
behavior set

Behavior set

𝑂𝑂 𝑂𝑂 = {𝑂𝑂1,𝑂𝑂2, … ,𝑂𝑂𝑛𝑛}，
𝑂𝑂𝑖𝑖 represents a user
view in the cloud
computing
environment

User view set

𝑜𝑜𝑜𝑜𝑠𝑠 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠𝑖𝑖), 𝜇𝜇 ∈ 𝐷𝐷, 𝑠𝑠𝑖𝑖 ∈
𝑆𝑆, output function

Security domain
in a state of
view

𝑑𝑑𝑜𝑜𝑑𝑑 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎),𝑎𝑎 ∈ 𝐴𝐴,
function to get the
action to take place in
the security domain

Occurrence of
action Security
domain

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠 ∙ 𝛼𝛼,𝑎𝑎)，𝑠𝑠 ∈
𝑆𝑆，𝑎𝑎 ∈ 𝐴𝐴, 𝛼𝛼 ∈ 𝐴𝐴∗,
 𝑠𝑠 ∙ 𝛼𝛼𝑎𝑎 is for short, 𝑠𝑠 ∙
𝜀𝜀 = 𝑠𝑠，𝜀𝜀 is null

Step by step
function

2692 CMC, vol.65, no.3, pp. 2687-2705, 2020

→ Information flow
policy

information flow
between
domains

Concurrent and asynchronous hybrid cloud computing architecture, both concurrent sets
of actions, there are asynchronous action sequences. Traditional interference-free models
can not handle the flow of information in this hybrid cloud computing architecture and
need to be scaled up to create a non-disruptive model that is suitable for hybrid cloud
computing architectures.
In passing the cloud computing architecture, a non-disruptive formal semantics is described
based on the function cpurge. Given a policy →, the function is defined as: 𝐴𝐴∗ × 𝐷𝐷 ⟼ 𝐴𝐴∗,
𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼) represents a subsequence of action a where 𝑎𝑎 ∈ 𝛼𝛼 and 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜇𝜇. In the
action sequence 𝑎𝑎 ∙ 𝛼𝛼, where 𝑎𝑎 is a single action, not a concurrent action set, the function
𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇() is formalized as shown in Eq. (1). 𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝑎𝑎 ∙ 𝛼𝛼) =

�
𝜀𝜀,𝑎𝑎 ∙ 𝛼𝛼 is null

𝑎𝑎 ∙ 𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼), if 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜇𝜇
𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼), if 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) ↛ 𝜇𝜇

 (1)

when 𝑎𝑎 = {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛} is a concurrent action set, the formal formulation of function
𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇() is as in Eq. (2).
𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎1} ∪ {𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼) =

= �
𝜀𝜀,𝑎𝑎 ∙ 𝛼𝛼 is null

{𝑎𝑎1} ∪ 𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼), if 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎1) → 𝜇𝜇
𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼), others

 (2)

Among them, the set operator ∪ allows the same element in the collection.
For cloud computing architecture AR, transfer policy → , action sequence 𝛼𝛼 ∈ 𝐴𝐴∗ and
security domain 𝜇𝜇 ∈ 𝐷𝐷, where 𝛼𝛼 may contain one or more sets of concurrent actions, both
of which have 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠0 ∘ 𝛼𝛼) = 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇�𝑠𝑠0 ∘ 𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼)� , then the cloud computing
architecture AR for policy → is CP secure. That is, the view of each security realm is
affected only by the actions that affect the security realm µ . The formal description of
equivalence is as follows:
Definition 3.1 For the hybrid cloud computing architecture AR, transfer policy →,
action sequence 𝛼𝛼,𝛼𝛼′ ∈ 𝐴𝐴∗ and security domain 𝜇𝜇. When 𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼) = 𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼′),
have 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠0 ∘ 𝛼𝛼) = 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠0 ∘ 𝛼𝛼′), then said cloud computing architecture AR for the
policy → is CP-Secure.
In a nonintransitive cloud computing architecture, for any sequence of actions that occurs
arbitrarily on the security domain μ, the function 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠 represents the largest sequence
of actions to the action sequence that can affect μ. This definition is based on the function
𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇:𝐴𝐴∗ × 𝐷𝐷 ⟼ 𝑃𝑃(𝐷𝐷). csource represents a set of fields in an action sequence that
produce an action on a flow of information in a secure domain. For the action sequence
𝑎𝑎 ∙ 𝛼𝛼, where c is a formalized expression as in Eq. (3) when a is a single action rather than
a concurrent action set.
𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝑎𝑎 ∙ 𝛼𝛼) =

Information Flow Security Models for Cloud Computing 2693

= �
{𝜇𝜇},𝑎𝑎 ∙ 𝛼𝛼 is null

𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼) ∪ {𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎)},∃𝜐𝜐: 𝜐𝜐 ∈ 𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼) ∧ 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜐𝜐
𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼), others

 (3)

when 𝑎𝑎 = {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛} is a concurrent action set, the formal formulation of function
𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠 is as in Equation 3.4.
𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎1} ∪ {𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼) =

=

⎩
⎪
⎨

⎪
⎧ {𝜇𝜇},𝑎𝑎 ∙ 𝛼𝛼 is null

𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼) ∪
{𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎1)},∃𝜐𝜐: 𝜐𝜐 ∈ 𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼) ∧ 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎1) → 𝜐𝜐

𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼), others

 (4)

𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼) represents a set of action-producing domains for the security domain 𝜇𝜇
with information flow in action sequence 𝛼𝛼, which contains the security of direct or indirect
information flow for the security domain 𝜇𝜇 in all action sequences Eq. (3) can handle the
sequence of actions, you can also use Eq. (4) processing. Therefore, the function 𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇
is formally formulated using Eq. (4).
The function𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠 : 𝐴𝐴∗ × 𝐷𝐷 ⟼ 𝐴𝐴∗ indicates the sequence of actions in the action
sequence that have direct or indirect information flow to the security zone. For the action
sequence 𝑎𝑎 ∙ 𝛼𝛼, where 𝑎𝑎 is a single action, its formal formulation is as in Eq. (5).
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝑎𝑎 ∙ 𝛼𝛼) =

= �
𝜀𝜀,𝑎𝑎 ∙ 𝛼𝛼 is null

𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼),𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜔𝜔 ∈ 𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼)
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼), others

 (5)

when 𝑎𝑎 = {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛} is a concurrent action set, the formal formulation of function
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠 is as in Eq. (6).
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎1} ∪ {𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼) =

= �
𝜀𝜀,𝑎𝑎 ∙ 𝛼𝛼 is null

{𝑎𝑎1} ∪ 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼), if 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜔𝜔 ∈ 𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇(𝛼𝛼)
𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝜇𝜇({𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} ∙ 𝛼𝛼), others

 (6)

The set operator ∪ here allows for the same element in the set. A single action is a special
case of an action set. The action sequences that can be handled by Eq. (5) can also be
handled using Eq. (6). The function 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠 is formally formulated using Eq. (6).
Definition 3.2 For the intransitive policy → , the action sequence 𝜶𝜶,𝜶𝜶′ ∈ 𝑨𝑨∗ and the
security domain 𝝁𝝁 , if 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝝁𝝁(𝜶𝜶) = 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝝁𝝁(𝜶𝜶′) , there are 𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶) =
𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶′), then hybrid cloud computing architecture AR for policy → is CIP-secure.
Given a set X and A, the set 𝑇𝑇(𝑋𝑋,𝐴𝐴) represents a minimal set containing the condition "if
𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇 and 𝑧𝑧 ∈ 𝐴𝐴, (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝑇𝑇." That is, 𝑇𝑇(𝑋𝑋,𝐴𝐴) is a triplet tree, the left node and the
middle node come from the intermediate calculation value, and the left node and the middle
node of the leaf node are ε and the right node is the action in the set A.

2694 CMC, vol.65, no.3, pp. 2687-2705, 2020

Given a policy →, for any security domain 𝜇𝜇 ∈ 𝐷𝐷, the function 𝑐𝑐𝑠𝑠𝑎𝑎:𝐴𝐴∗ ⟼ 𝑇𝑇({𝜀𝜀},𝐴𝐴) for the
action sequence 𝑎𝑎 ∙ 𝛼𝛼, where 𝑎𝑎 is a single action and a is a single action When, the concrete
expression is as shown in Eq. (7).

𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇(𝛼𝛼 ∙ 𝑎𝑎) = �
𝜀𝜀,𝑎𝑎 ∙ 𝛼𝛼 𝑐𝑐𝑠𝑠 𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛

�𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇(𝛼𝛼), 𝑐𝑐𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)(𝛼𝛼),𝑎𝑎�,𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜇𝜇
𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇(𝛼𝛼), others

 (7)

When 𝑎𝑎 = {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛} is a concurrent action set, the first problem to be solved is which
actions in {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛} have information flow on the security domain μ, and what are the
generating domains of these actions. Function 𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇():𝐴𝐴∗ × 𝐷𝐷 ⟼ 𝑃𝑃(𝐷𝐷) , the input
parameters for the concurrent action set, the output of the security domain set. The set of output
security domains is a collection of generated domains for actions that concentrate on the
security domain μ for input concurrent actions. 𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎 is formally described as Eq. (8).
𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1} ∪ {𝑎𝑎𝑛𝑛}) =

= �
𝜀𝜀,𝑎𝑎 ∙ 𝛼𝛼 is null

𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}) ∪ {𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛)}, if 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛) → 𝜇𝜇
𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}), others

 (8)

Function 𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇():𝐴𝐴∗ × 𝐷𝐷 = 𝐴𝐴∗, the input parameters for the concurrent action set,
the output for the concurrent action set. Output Concurrent Sets of Actions As a collection
of inputs that concurrently concentrate on actions that have a stream of information on the
security domain µ, a formal description is given in Eq. (9).
𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1} ∪ {𝑎𝑎𝑛𝑛}) =

= �
𝜀𝜀,𝑎𝑎 ∙ 𝛼𝛼 is null

𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}) ∪ {𝑎𝑎𝑛𝑛}, 𝑐𝑐𝑖𝑖 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛) → 𝜇𝜇
𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}), others

 (9)

Based on function 𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇() and function 𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇() , function 𝑠𝑠𝑎𝑎𝜇𝜇() can be
described as Eq. (10).
𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇(𝛼𝛼 ∙ {𝑎𝑎1, … ,𝑎𝑎𝑛𝑛}) =

=

⎩
⎪
⎨

⎪
⎧ 𝜀𝜀,𝛼𝛼 ∙ 𝑎𝑎 is null

�
𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇(𝛼𝛼), 𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1,…,𝑎𝑎𝑛𝑛})(𝛼𝛼),

𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛}) � , if 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜇𝜇

𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇(𝛼𝛼), others

 (10)

In function 𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1,…,𝑎𝑎𝑛𝑛})(𝛼𝛼), we need to extend the function 𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇 . Let 𝛸𝛸 be a
security domain set, 𝑐𝑐𝑠𝑠𝑎𝑎𝜇𝜇 extended function 𝑐𝑐𝑠𝑠𝑎𝑎𝛸𝛸 described as in Eq. (11).
𝑐𝑐𝑠𝑠𝑎𝑎𝛸𝛸(𝛼𝛼 ∙ 𝑎𝑎) =

= �
𝜀𝜀,𝛼𝛼 ∙ 𝑎𝑎 is null

�𝑐𝑐𝑠𝑠𝑎𝑎𝛸𝛸(𝛼𝛼), 𝑐𝑐𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)(𝛼𝛼),𝑎𝑎�, 𝑐𝑐𝑖𝑖 ∃𝜐𝜐: 𝜐𝜐 ∈ 𝛸𝛸 ∧ 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) → 𝜐𝜐
𝑐𝑐𝑠𝑠𝑎𝑎𝛸𝛸(𝛼𝛼), others

 (11)

Information Flow Security Models for Cloud Computing 2695

If 𝛼𝛼 is the next action in function 𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝜇𝜇({𝑎𝑎1,…,𝑎𝑎𝑛𝑛})(𝛼𝛼), the function 𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎 and the
function 𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎 need to be extended. Let 𝛸𝛸 be a set of security domains, 𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎
extended function 𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸described in Eq. (12).
𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1} ∪ {𝑎𝑎𝑛𝑛}) =

= �
𝜀𝜀,𝑎𝑎 is null

𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}) ∪ {𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛)}, 𝑐𝑐𝑖𝑖 ∃𝜐𝜐: 𝜐𝜐 ∈ 𝛸𝛸 ∧ 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛) → 𝜐𝜐
𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}),𝑜𝑜𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝑠𝑠

 (12)

𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎 is extended to function 𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸, as described in Eq. (13).
𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1} ∪ {𝑎𝑎𝑛𝑛}) =

= �
𝜀𝜀,𝑎𝑎 is null

𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}) ∪ {𝑎𝑎𝑛𝑛}, if ∃𝜐𝜐: 𝜐𝜐 ∈ 𝛸𝛸 ∧ 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛) → 𝜐𝜐
𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}), others

 (13)

In summary, given a common processing function, the function 𝑐𝑐𝑠𝑠𝑎𝑎 as in Eq. (14).
𝑐𝑐𝑠𝑠𝑎𝑎𝛸𝛸(𝛼𝛼 ∙ 𝑎𝑎) =

=�
𝜀𝜀,𝛼𝛼 ∙ 𝑎𝑎 is null

�𝑐𝑐𝑠𝑠𝑎𝑎𝛸𝛸(𝛼𝛼), 𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛸𝛸(𝑎𝑎)(𝛼𝛼),𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸(𝑎𝑎)� , if 𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸(𝑎𝑎) ≠ 𝛬𝛬
𝑐𝑐𝑠𝑠𝑎𝑎𝛸𝛸(𝛼𝛼), others

 (14)

Definition 3.3 For the non-delivery policy →, the action sequence 𝜶𝜶,𝜶𝜶′ ∈ 𝑨𝑨∗ and the
security domain 𝝁𝝁, there are obs when c𝒕𝒕𝒕𝒕𝝁𝝁(𝜶𝜶) = 𝒄𝒄𝒕𝒕𝒕𝒕𝝁𝝁(𝜶𝜶′), we have 𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶) =
𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶′), then cloud computing architecture AR is CTA-secure for policy →.
The function 𝑑𝑑𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎 is a set of security domains, 𝐴𝐴∗ × 𝐷𝐷∗ = 𝑃𝑃(𝐷𝐷), which is a set of
domains that have information flow for any security domain in the security domain set. It
is described as Eq. (15).
𝑑𝑑𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1} ∪ {𝑎𝑎𝑛𝑛}) =

= �
𝜀𝜀,𝛼𝛼 ∙ 𝑎𝑎 is null

𝑑𝑑𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}) ∪ {𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛)}, if ∃𝜐𝜐: 𝜐𝜐 ∈ 𝛸𝛸 ∧ 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛) → 𝜐𝜐
𝑑𝑑𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}), others

 (15)

, which 𝑑𝑑𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎}) = {𝑎𝑎} is equal to 𝑑𝑑𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸(𝑎𝑎) = {𝑎𝑎}.
Function 𝑑𝑑𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎 is an action set, 𝐴𝐴∗ × 𝐷𝐷∗ = 𝐴𝐴∗, which is a set of domains that have
information flow for any security domain in the security domain set. It is described as
Eq. (16).
𝑑𝑑𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … , 𝑎𝑎𝑛𝑛−1} ∪ {𝑎𝑎𝑛𝑛}) =

= �
𝜀𝜀,𝛼𝛼 ∙ 𝑎𝑎 is null

𝑑𝑑𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}) ∪ {𝑎𝑎𝑛𝑛}, if ∃𝜐𝜐: 𝜐𝜐 ∈ 𝛸𝛸 ∧ 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎𝑛𝑛) → 𝜐𝜐
𝑑𝑑𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝛸𝛸({𝑎𝑎1, … ,𝑎𝑎𝑛𝑛−1}), others

 (16)

Function cobs represents view set, function 𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑋𝑋(𝑠𝑠0) is described by Eq. (17). Function
𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑋𝑋(𝑠𝑠0𝛼𝛼) is described by Eq. (18).

𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑋𝑋(𝑠𝑠0) = ⋃ {𝑜𝑜𝑜𝑜𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)(𝑠𝑠0)}𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)∈𝑋𝑋 (17)

2696 CMC, vol.65, no.3, pp. 2687-2705, 2020

𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑋𝑋(𝑠𝑠0𝛼𝛼) = ⋃ {𝑜𝑜𝑜𝑜𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)(𝑠𝑠0𝛼𝛼)}𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)∈𝑋𝑋 (18)
Function 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑤𝑤 represents the set which is construct by view and actions. It is described
by Eq. (19).
𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑤𝑤𝑋𝑋(𝛼𝛼 ∙ 𝑎𝑎) =

= �
𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑋𝑋(𝑠𝑠0𝛼𝛼),𝛼𝛼 ∙ 𝑎𝑎 is null

𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑤𝑤𝑋𝑋(𝛼𝛼)𝑑𝑑𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑋𝑋(𝑎𝑎) ∘ 𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑋𝑋(𝑠𝑠0𝛼𝛼), if 𝑑𝑑𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑋𝑋(𝑎𝑎) ≠ 𝛬𝛬
𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑤𝑤𝑋𝑋(𝛼𝛼) ∘ 𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑋𝑋(𝑠𝑠0𝛼𝛼), others

 (19)

Given a set X and A, the set 𝑇𝑇(𝑋𝑋,𝐴𝐴) represents a minimal set containing the condition “”if
𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇 and 𝑧𝑧 ∈ 𝐴𝐴, (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝑇𝑇.” That is, 𝑇𝑇(𝑋𝑋,𝐴𝐴) is a triplet tree, the left node and the
middle node come from the intermediate calculation value, and the left node and the middle
node of the leaf node are ε and the right node is the action in the set A.
Given the policy → , for any security domain 𝜇𝜇 ∈ 𝐷𝐷 , the function 𝑠𝑠𝑜𝑜𝜇𝜇:𝐴𝐴∗ ⟼ 𝛵𝛵((𝐴𝐴 ∪
𝑂𝑂)∗,𝐴𝐴), specifically expressed as in Eq. (20).
𝑐𝑐𝑠𝑠𝑜𝑜𝑋𝑋(𝛼𝛼 ∙ 𝑎𝑎) =

= �
𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠0),𝛼𝛼 ∙ 𝑎𝑎 is null

𝑐𝑐𝑠𝑠𝑜𝑜𝑋𝑋(𝛼𝛼), 𝑐𝑐𝑖𝑖 𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑋𝑋(𝑎𝑎) = 𝛬𝛬
�𝑐𝑐𝑠𝑠𝑜𝑜𝑋𝑋(𝛼𝛼), 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑋𝑋(𝑎𝑎)(𝛼𝛼),𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠(𝑎𝑎)�, others

 (20)

Given a set X and A, the set 𝑇𝑇(𝑋𝑋,𝐴𝐴) represents a minimal set containing the condition "if
𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇 and 𝑧𝑧 ∈ 𝐴𝐴, (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝑇𝑇." That is, 𝑇𝑇(𝑋𝑋,𝐴𝐴) is a triplet tree, the left node and the
middle node come from the intermediate calculation value, and the left node and the middle
node of the leaf node are ε and the right node is the action in the set A.
Given the policy →, for any security domain 𝜇𝜇 ∈ 𝐷𝐷, the function 𝑐𝑐𝑠𝑠𝑜𝑜𝜇𝜇:𝐴𝐴∗ ⟼ 𝛵𝛵(𝑂𝑂(𝐴𝐴 ∪
𝑂𝑂)∗,𝐴𝐴), specifically expressed as in Eq. (21).
𝑐𝑐𝑐𝑐𝑠𝑠𝑜𝑜𝑋𝑋(𝛼𝛼 ∙ 𝑎𝑎) =

=

⎩
⎪
⎨

⎪
⎧ 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠0),𝛼𝛼 ∙ 𝑎𝑎 is null

𝑐𝑐𝑐𝑐𝑠𝑠𝑜𝑜𝑋𝑋(𝛼𝛼), if 𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑋𝑋(𝑎𝑎) = 𝛬𝛬
(𝑐𝑐𝑐𝑐𝑠𝑠𝑜𝑜𝑋𝑋(𝛼𝛼), 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑤𝑤𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑋𝑋(𝑎𝑎)(𝛼𝛼), 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑋𝑋(𝑎𝑎)−𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑋𝑋(𝑎𝑎)(𝛼𝛼 ∙ 𝑎𝑎),

,𝑎𝑎𝑠𝑠𝑜𝑜𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠(𝑎𝑎)), others

 (21)

Definition 3.4 For any action sequence 𝜶𝜶,𝜶𝜶′ ∈ 𝑨𝑨∗ , and 𝒄𝒄𝒕𝒕𝒐𝒐𝝁𝝁(𝜶𝜶) = 𝒄𝒄𝒕𝒕𝒐𝒐𝝁𝝁(𝜶𝜶′), have
𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶) = 𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶′), then Hybrid Cloud Computing Architecture AR is
Policy → CTO-secure.
Definition 3.5 For any action sequence 𝜶𝜶,𝜶𝜶′ ∈ 𝑨𝑨∗, and 𝒄𝒄𝒊𝒊𝒕𝒕𝒐𝒐𝝁𝝁(𝜶𝜶) = 𝒄𝒄𝒊𝒊𝒕𝒕𝒐𝒐𝝁𝝁(𝜶𝜶′), have
𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶) = 𝒐𝒐𝒐𝒐𝒐𝒐𝝁𝝁(𝒐𝒐𝟎𝟎 ∘ 𝜶𝜶′), then Hybrid Cloud Computing Architecture AR is
Policy → CITO-secure.

4 Extended theorems and decision algorithms of models
Because each non-interference model is defined as a recursive definition, it is difficult to
determine directly, and the recursive definition needs to be extended by using the extension

Information Flow Security Models for Cloud Computing 2697

theorem. This section gives extended theorems for CP-secure, CIP-secure, and CTA-secure,
as well as the decision algorithm based on the extended theorem.

4.1 Extended theorems and decision algorithms of CP-secure
Given the cloud computing architecture AR, ~µ represents the relationship between the two
states of the cloud computing architecture AR, given the policy →, for any 𝜇𝜇 ∈ 𝐷𝐷, 𝑎𝑎 ∈ 𝐴𝐴,
𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, the following three conditions :
(1) Output Consistency (𝑂𝑂𝐴𝐴𝐶𝐶𝐶𝐶): 𝑠𝑠~𝜇𝜇𝑠𝑠 ⇒ 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠) = 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠);
(2) Single-step Consistency (𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶): 𝑠𝑠~𝜇𝜇𝑠𝑠 ⇒ 𝑠𝑠 ∙ 𝑎𝑎~𝜇𝜇𝑠𝑠 ∙ 𝑎𝑎;
(3) Local Respect (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶): 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) ↛ 𝜇𝜇 ⇒ 𝑠𝑠~𝜇𝜇𝑠𝑠 ∙ 𝑎𝑎
Theorem 4.1 Given the cloud computing architecture AR and policy →, the cloud
computing architecture AR is CP-secure if the cloud computing architecture meets
the requirements of 𝑶𝑶𝑶𝑶𝑶𝑶𝑪𝑪, 𝑺𝑺𝑶𝑶𝑶𝑶𝑪𝑪, and 𝑳𝑳𝑳𝑳𝑶𝑶𝑪𝑪.
According to the extended theorem, the decision algorithm of CP-secure is given. First,
find all the states in the state set S that satisfy the relationship of ~𝜇𝜇. Then, determine
whether the state meets the output consistency, single-step consistency and policy
compliance. Algorithm is as follows:
Algorithm 4.1 CP-secure decision algorithm
Input: Cloud computing architecture and architecture information flow policy
Output: Cloud computing architecture meets or does not meet CP-secure
Begin
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝜇𝜇 ∈ 𝐷𝐷// Traverse the security domain set
{

//Initialize the set P and 𝑄𝑄[𝜇𝜇]. P represents the traversed state
// 𝑄𝑄[𝜇𝜇] represents the state binary satisfying the relation ~𝜇𝜇

 𝑃𝑃 = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;𝑄𝑄[𝜇𝜇] = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 // Traverse the security status set 𝑆𝑆
 {
 𝑃𝑃 = 𝑃𝑃 ∪ {𝑠𝑠};// Add state s to set P
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 − 𝑃𝑃 // Traverse the security status set 𝑆𝑆 − 𝑃𝑃
 𝑐𝑐𝑖𝑖(𝑠𝑠~𝜇𝜇𝑠𝑠) // Judge whether the state s and t satisfy the relation ~𝜇𝜇
 𝑄𝑄[𝜇𝜇] = 𝑄𝑄[𝜇𝜇] ∪ {(𝑠𝑠, 𝑠𝑠)}; //Addd (𝑠𝑠, 𝑠𝑠) to 𝑄𝑄[𝜇𝜇]

}
/****Judge Output Consistency (𝑂𝑂𝐴𝐴𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set 𝑄𝑄[𝜇𝜇]
//Judge whether the two state views that satisfy the relationship are the same
 𝑐𝑐𝑖𝑖(𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠) ≠ 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠))
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠；// Cloud computing architecture is not CP-secure

2698 CMC, vol.65, no.3, pp. 2687-2705, 2020

/**** Judge Single-step Consistency (𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set 𝑄𝑄[𝜇𝜇]

𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝐴𝐴 //Traverse the action set A
{
 Flag = False; //Set access Flag

 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set 𝑄𝑄[𝜇𝜇]
 //Judge whether (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) satisfy the relationship ~𝜇𝜇

 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) == (𝑠𝑠, 𝑠𝑠))
 Flag = True;// Cloud computing architecture is CP-secure
 𝑐𝑐𝑖𝑖(𝐹𝐹𝑛𝑛𝑎𝑎𝑐𝑐 == 𝐹𝐹𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠) //(𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) don't satisfy the relationship ~𝜇𝜇
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠;// Cloud computing architecture is not CP-
secure

}
/****Judge Local Respect (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 //Traverse the set 𝑆𝑆

𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝐴𝐴 //Traverse the action set 𝐴𝐴
 𝑐𝑐𝑖𝑖(𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) ↛ 𝜇𝜇) //Judge whether 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) flow information to security
domain 𝜇𝜇
 // If the action a does not change the state, do not judge, else if the
change of state, to determine whether the two states meet the relationship ~𝜇𝜇
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎) ≠ 𝑠𝑠)
 {
 𝐹𝐹𝑛𝑛𝑎𝑎𝑐𝑐 == 𝐹𝐹𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠; // Set access Flag

𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set𝑄𝑄[𝜇𝜇]
//Judge whether (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠) satisfy the relationship ~𝜇𝜇

 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠) == (𝑠𝑠, 𝑠𝑠))
 Flag = True;// Cloud computing
architecture is CP-secure

 𝑐𝑐𝑖𝑖(𝐹𝐹𝑛𝑛𝑎𝑎𝑐𝑐 == 𝐹𝐹𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠) // (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠) don't satisfy the
relationship ~𝜇𝜇
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠 ;// Cloud computing
architecture is not CP-secure
 }

}
return 𝐴𝐴𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠; // Cloud computing architecture is CP-secure
End

Information Flow Security Models for Cloud Computing 2699

4.2 Extended theorems and decision algorithms of CIP-secure
Given the cloud computing architecture AR, ~µ represents the relationship between the two
states of the cloud computing architecture AR, given the policy →, for any 𝜇𝜇 ∈ 𝐷𝐷, 𝑎𝑎 ∈ 𝐴𝐴,
𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, the following three conditions :

(1) Output Consistency (𝑂𝑂𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶): 𝑠𝑠~𝜇𝜇𝑠𝑠 ⇒ 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠) = 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠);
(2) Single-step Consistency (𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶): 𝑠𝑠~𝜇𝜇𝑠𝑠⋀𝑠𝑠~𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)𝑠𝑠 ⇒ 𝑠𝑠 ∙ 𝑎𝑎~𝜇𝜇𝑠𝑠 ∙ 𝑎𝑎;
(3) Local Respect (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶): 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) ↛ 𝜇𝜇 ⇒ 𝑠𝑠~𝜇𝜇𝑠𝑠 ∙ 𝑎𝑎

Theorem 4.1 Given the cloud computing architecture AR and policy →, the cloud
computing architecture AR is CIP-secure if the cloud computing architecture meets
the requirements of 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶, 𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶, and 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶.
According to the extended theorem, the decision algorithm of CIP-secure is given. First,
find all the states in the state set S that satisfy the relationship of ~𝜇𝜇. Then, determine
whether the state meets the output consistency, single-step consistency and policy
compliance. Algorithm is as follows:
Algorithm 4.2 CIP-secure decision algorithm
Input: Cloud computing architecture and architecture information flow policy
Output: Cloud computing architecture meets or does not meet CIP-secure
Begin
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝜇𝜇 ∈ 𝐷𝐷// Traverse the security domain set
{

//Initialize the set P and 𝑄𝑄[𝜇𝜇]. P represents the traversed state
// 𝑄𝑄[𝜇𝜇] represents the state binary satisfying the relation ~𝜇𝜇

 𝑃𝑃 = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;𝑄𝑄[𝜇𝜇] = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 // Traverse the security status set S
 {
 𝑃𝑃 = 𝑃𝑃 ∪ {𝑠𝑠};// Add state s to set P
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 − 𝑃𝑃 // Traverse the security status set 𝑆𝑆 − 𝑃𝑃
 𝑐𝑐𝑖𝑖(𝑠𝑠~𝜇𝜇𝑠𝑠) // Judge whether the state s and t satisfy the relation ~𝜇𝜇
 𝑄𝑄[𝜇𝜇] = 𝑄𝑄[𝜇𝜇] ∪ {(𝑠𝑠, 𝑠𝑠)}; // Addd (𝑠𝑠, 𝑠𝑠) to 𝑄𝑄[𝜇𝜇]

}
/**** Judge Output Consistency (𝑂𝑂𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set 𝑄𝑄[𝜇𝜇]
//Judge whether the two state views that satisfy the relationship are the same
 𝑐𝑐𝑖𝑖(𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠) ≠ 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠))
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝐼𝐼𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠;// Cloud computing architecture is not CIP-secure
/**** Judge Single-step Consistency (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 //Traverse the set 𝑆𝑆

2700 CMC, vol.65, no.3, pp. 2687-2705, 2020

𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝐴𝐴 //Traverse the action set 𝐴𝐴
 𝑐𝑐𝑖𝑖(𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) ↛ 𝜇𝜇) //Judge whether 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) has information flow on the
security domain 𝜇𝜇
 //If the action a does not change the state, do not judge, if the
change of state, to determine whether the two states meet the relationship ~𝜇𝜇
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎) ≠ 𝑠𝑠)
 {
 𝐹𝐹𝑛𝑛𝑎𝑎𝑐𝑐 == 𝐹𝐹𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠; // Set access Flag

𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set 𝑄𝑄[𝜇𝜇]
 //Judge whether (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) satisfy the relationship ~𝜇𝜇

 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠) == (𝑠𝑠, 𝑠𝑠))
 Flag = True;// Cloud computing
architecture is CIP-secure

 𝑐𝑐𝑖𝑖(𝐹𝐹𝑛𝑛𝑎𝑎𝑐𝑐 == 𝐹𝐹𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠) /// (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) don't satisfy the
relationship ~𝜇𝜇
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠 ;// Cloud computing
architecture is not CIP-secure
 }

}
/*** Judge Local Respect (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝜇𝜇 ∈ 𝐷𝐷//Traverse the set 𝐷𝐷
{

//Initialize P，P represents the traversed state
 𝑃𝑃 = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿; 𝑃𝑃 = 𝑃𝑃 ∪ {𝜇𝜇};
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑐𝑐 ∈ 𝐷𝐷 − 𝑃𝑃 // Traverse the security domain set 𝐷𝐷 − 𝑃𝑃
 {

// Find a tuple that satisfies both domains simultaneously
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ (𝑄𝑄(𝜇𝜇) ∩ 𝑄𝑄(𝑐𝑐))
 {
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝜇𝜇 // Traverse every action in µ

//Judge whether the state (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) satisfy the relationship ~𝑣𝑣
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) 𝑛𝑛𝑜𝑜𝑠𝑠 𝑐𝑐𝑛𝑛 𝑄𝑄[𝑐𝑐])
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝐼𝐼𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠;//Not satisfied, return not
CIP-secure
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝑐𝑐 //Traverse every action in 𝑐𝑐

//Judge whether the state (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) satisfy the relationship ~𝜇𝜇
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) 𝑛𝑛𝑜𝑜𝑠𝑠 𝑐𝑐𝑛𝑛 𝑄𝑄[𝜇𝜇])

Information Flow Security Models for Cloud Computing 2701

 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝐼𝐼𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠;//Not satisfied, return not
CIP-secure

}
}

}
return 𝐼𝐼𝑁𝑁_𝐴𝐴𝐼𝐼𝑃𝑃_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠; // Cloud computing architecture is CIP-secure
End

4.3 Extended theorems and decision algorithms of CTA-secure
Given the cloud computing architecture AR, ~µ represents the relationship between the two
states of the cloud computing architecture AR, given the policy →, for any 𝜇𝜇 ∈ 𝐷𝐷, 𝑎𝑎 ∈ 𝐴𝐴,
𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, the following three conditions:

(1) Output Consistency (𝑂𝑂𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶): 𝑠𝑠~𝜇𝜇𝑠𝑠 ⇒ 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠) = 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠)；
(2) Single-step Consistency (𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶):

①𝑠𝑠~𝜇𝜇𝑠𝑠⋀𝑠𝑠~𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)𝑠𝑠 ⇒ 𝑠𝑠 ∙ 𝑎𝑎~𝜇𝜇𝑠𝑠 ∙ 𝑎𝑎；
②𝑠𝑠~𝜇𝜇𝑠𝑠⋀𝑎𝑎, 𝑜𝑜 are two concurrent action of domain 𝜇𝜇 ⇒ 𝑠𝑠 ∙ 𝑎𝑎𝑜𝑜~𝜇𝜇𝑠𝑠 ∙ 𝑜𝑜𝑎𝑎；

(3) Local Respect (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶): 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) ↛ 𝜇𝜇 ⇒ 𝑠𝑠~𝜇𝜇𝑠𝑠 ∙ 𝑎𝑎。
Theorem 4.3 Given the cloud computing architecture AR and policy →, the cloud
computing architecture AR is CTA-secure if the cloud computing architecture meets
the requirements of 𝑂𝑂𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶, 𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶, and 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶.
According to the extended theorem, the decision algorithm of CTA-secure is given. First,
find all the states in the state set S that satisfy the relationship of ~𝜇𝜇. Then, determine
whether the state meets the output consistency, single-step consistency and policy
compliance. Algorithm is as follows:
Algorithm 4.3 CTA-secure decision algorithm
Input: Cloud computing architecture and architecture information flow policy
Output: Cloud computing architecture meets or does not meet CTA-secure
Begin
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝜇𝜇 ∈ 𝐷𝐷// Traverse the security domain set
{

//Initialize the set P and 𝑄𝑄[𝜇𝜇]. P represents the traversed state
// 𝑄𝑄[𝜇𝜇] represents the state binary satisfying the relation ~𝜇𝜇

 𝑃𝑃 = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;𝑄𝑄[𝜇𝜇] = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 //Traverse the security status set 𝑆𝑆
 {
 𝑃𝑃 = 𝑃𝑃 ∪ {𝑠𝑠};// Add state s to set P
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 − 𝑃𝑃 // Traverse the security status set 𝑆𝑆 − 𝑃𝑃
 𝑐𝑐𝑖𝑖(𝑠𝑠~𝜇𝜇𝑠𝑠) // Judge whether the state s and t satisfy the relation ~𝜇𝜇

2702 CMC, vol.65, no.3, pp. 2687-2705, 2020

 𝑄𝑄[𝜇𝜇] = 𝑄𝑄[𝜇𝜇] ∪ {(𝑠𝑠, 𝑠𝑠)}; // Add (𝑠𝑠, 𝑠𝑠) to 𝑄𝑄[𝜇𝜇]
}
/**** Judge Output Consistency (𝑂𝑂𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set 𝑄𝑄[𝜇𝜇]
//Judge whether the two state views that satisfy the relationship are the same
 𝑐𝑐𝑖𝑖(𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠) ≠ 𝑜𝑜𝑜𝑜𝑠𝑠𝜇𝜇(𝑠𝑠))
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑇𝑇𝐴𝐴_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠 ;// Cloud computing architecture is not CTA-
secure
/**** Judge Single-step Consistency (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶)***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑠𝑠 ∈ 𝑆𝑆 //Traverse the security status set 𝑆𝑆

𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝐴𝐴 //Traverse the action set 𝐴𝐴
 𝑐𝑐𝑖𝑖(𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) ↛ 𝜇𝜇) // Judge whether 𝑑𝑑𝑜𝑜𝑑𝑑(𝑎𝑎) has information flow on the
security domain 𝜇𝜇
 // If the action a does not change the state, do not judge, if the
change of state, to determine whether the two states meet the relationship ~𝜇𝜇
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎) ≠ 𝑠𝑠)
 {
 𝐹𝐹𝑛𝑛𝑎𝑎𝑐𝑐 == 𝐹𝐹𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠; // Set access Flag

𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄[𝜇𝜇] //Traverse the set 𝑄𝑄[𝜇𝜇]
 //Judge whether (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠) satisfy the relationship ~𝜇𝜇

 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠) == (𝑠𝑠, 𝑠𝑠))
 Flag = True;// Cloud computing
architecture is CTA-secure

 𝑐𝑐𝑖𝑖(𝐹𝐹𝑛𝑛𝑎𝑎𝑐𝑐 == 𝐹𝐹𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠) // (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠) don't satisfy the
relationship ~𝜇𝜇
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑇𝑇𝐴𝐴_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠 ;// Cloud computing
architecture is not CTA-secure
 }

}
/*** Judge Local Respect (𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶)***/
/*** ∥𝜇𝜇 represents concurrent relations ***/
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝜇𝜇 ∈ 𝐷𝐷//Traverse the security domain set 𝐷𝐷
{
 𝐽𝐽 = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;𝐾𝐾[𝜇𝜇] = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿;
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 𝑐𝑐𝑛𝑛 𝜇𝜇
 𝐽𝐽 = 𝐽𝐽 ∪ {𝑎𝑎};
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑜𝑜 𝑐𝑐𝑛𝑛 𝜇𝜇 − 𝐽𝐽

Information Flow Security Models for Cloud Computing 2703

 𝑐𝑐𝑖𝑖(𝑎𝑎 ∥𝜇𝜇 𝑜𝑜)
 𝐾𝐾[𝜇𝜇] = 𝐾𝐾[𝜇𝜇] ∪ {(𝑎𝑎, 𝑜𝑜)};
}
𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝜇𝜇 ∈ 𝐷𝐷//Traverse the security domain set D
{
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑎𝑎, 𝑜𝑜) ∈ 𝐾𝐾[𝜇𝜇]
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ 𝑄𝑄(𝜇𝜇)
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎𝑜𝑜, 𝑠𝑠 ∙ 𝑜𝑜𝑎𝑎) 𝑛𝑛𝑜𝑜𝑠𝑠 𝑐𝑐𝑛𝑛 𝑄𝑄[𝜇𝜇])
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑇𝑇𝐴𝐴_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠;//Not satisfied, return not CTA-
secure

// Initialize the set P, P represents the traversed state
 𝑃𝑃 = 𝑁𝑁𝑈𝑈𝐿𝐿𝐿𝐿; 𝑃𝑃 = 𝑃𝑃 ∪ {𝜇𝜇};
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑐𝑐 ∈ 𝐷𝐷 − 𝑃𝑃 // Traverse the security domain set 𝐷𝐷 − 𝑃𝑃
 {

// Find the state binary that satisfies both domains simultaneously
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ (𝑠𝑠, 𝑠𝑠) ∈ (𝑄𝑄(𝜇𝜇) ∩ 𝑄𝑄(𝑐𝑐))
 {
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝜇𝜇 // Traverse every action in µ

// Judge whether (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) satisfy the relationship ~𝜇𝜇
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) 𝑛𝑛𝑜𝑜𝑠𝑠 𝑐𝑐𝑛𝑛 𝑄𝑄[𝑐𝑐])
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑇𝑇𝐴𝐴_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠; // Not satisfied, return
not CTA-secure
 𝑖𝑖𝑜𝑜𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑎𝑎 ∈ 𝑐𝑐 // Traverse every action in 𝑐𝑐

// Judge whether (𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) satisfy the relationship ~𝜇𝜇
 𝑐𝑐𝑖𝑖((𝑠𝑠 ∙ 𝑎𝑎, 𝑠𝑠 ∙ 𝑎𝑎) 𝑛𝑛𝑜𝑜𝑠𝑠 𝑐𝑐𝑛𝑛 𝑄𝑄[𝜇𝜇])
 return 𝐼𝐼𝑁𝑁_𝐴𝐴𝑇𝑇𝐴𝐴_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠 ;// Not satisfied, return
not CTA-secure

}
}

}
return 𝐴𝐴𝑇𝑇𝐴𝐴_𝑆𝑆𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠; // Cloud computing architecture is CTA-secure
End

5 Conclusion
In cloud computing, there are not only the concurrent execution but also the asynchronous
execution. A variety of methods exist to deal with concurrent actions and asynchronous
actions. Based on these methods, the concepts of CP-secure, CIP-secure, CTA-secure
CTO-secure and CITO-secure.

2704 CMC, vol.65, no.3, pp. 2687-2705, 2020

Cloud computing architecture is divided into two cases of transmission and non-
transmission. CP is suitable for delivery. CP-secure can also be applied to non-delivery
scenarios, and cloud computing architecture is the most secure (as opposed to several other
security models) if cloud-based security is used in a non-delivery scenario, and the
availability of cloud computing infrastructure is minimal. For non-delivery cases,
considering the security requirements and availability requirements of the cloud computing
architecture, the cloud computing architecture meets different security models, with the
highest security being CTO-secure, CITO-secure, CTA-secure and CIP-secure from
highest to lowest.
In this paper, the extended theorem and decision algorithm of non-interference model are
also given. By extending the theorem and decision algorithm, we can judge whether it
meets the non-interference model for a given cloud computing. If the non-interference
model is not satisfied, if the non-interference model is satisfied, there is no illegitimate
information flow.

Funding Statement: Natural Science Research Project of Jiangsu Province Universities
and Colleges (No. 17KJD520005, Congdong Lv). It proved money for this paper.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Barthe, G.; Betarte, G.; Campo, J. D. (2019): System-level non-interference of constant-
time cryptography. Part I: Model. Journal of Automated Reasoning, vol. 63, no. 1, pp. 1–51.
Bzemer, C. P.; Zaidman A. (2010): Multi-tenant SaaS applications: maintenance dream
or nightmare? Proceedings of the Joint ERCIM Workshop on Software Evolution and
International Workshop on Principles of Software Evolution, pp. 88-92.
Chen, H.; Wu, X; Shao, Z.; Joshua, L.; Ronghui, G. (2016): Toward compositional
verification of interruptible OS kernels and device drivers. Programming Language Design
and Implementation, vol. 51, no. 6, pp. 431-447.
De, B. M.; Lioy, A. (2019): Integrity verification of docker containers for a lightweight
cloud environment. Future Generation Computer Systems, vol. 97, no. 3, pp. 236-246.
Di, P. R.; Lombardi, F. (2018): Virtualization technologies and cloud security:
advantages, issues, and perspectives. From Database to Cyber Security, pp. 166-185.
Ge, C.; Liu, Z.; Xia, J.; Fang, L. (2019): Revocable identity-based broadcast proxy re-
encryption for data sharing in clouds. IEEE Transactions on Dependable and Secure
Computing.
Georget, L.; Jaume, M.; Piolle, G. (2017): Verifying the reliability of operating system-
level information flow control systems in Linux. IEEE/ACM, International FME Workshop
on Formal Methods in Software Engineering, pp. 10-16.
Gu, K.; Wu, N.; Yin, B.; Jia, W. J. (2020): Secure data query framework for cloud and
fog computing. IEEE Transactions on Network and Service Management, vol. 17, no. 1,
pp. 332-345.

Information Flow Security Models for Cloud Computing 2705

Li, G.; Yan, J.; Chen, L.; Wu, J.; Lin, Q. et al. (2019): Energy consumption optimization
with a delay threshold in cloud-fog cooperation computing. IEEE Access, vol. 7, no. 1, pp.
159688-159697.
Li, H. X.; Li, W. J.; Zhang, S. G.; Wang, H. D.; Pan, Y. et al. (2019): Page-sharing-
based virtual machine packing with multi-resource constraints to reduce network traffic in
migration for clouds. Future Generation Computer Systems, vol. 96, no. 2, pp. 462-471.
Li, J.; Chen, X.; Chow, S. S. M.; Huang, Q.; Wong, D. S. et al. (2018): Multi-authority
fine-grained access control with accountability and its application in cloud. Journal of
Network and Computer Applications, vol. 112, no. 4, pp. 89-96.
Li, S. W.; Koh, J. S.; Nieh, J. (2019): Protecting cloud virtual machines from hypervisor
and host operating system exploits. IEEE 28th Security Symposium, pp. 1357-1374.
Navamani, B. A.; Yue, C.; Zhou, X. (2018): Discover and Secure (DaS): An automated
virtual machine security management framework. IEEE 37th International Performance
Computing and Communications Conference, pp. 1-6.
Rizvi, S.; Mitchell, J. (2015): A semi-distributed access control management scheme for
securing cloud environment. International Conference on Cloud Computing, pp. 501-507.
Schoepe, D. (2018): Flexible information-flow control. Chalmers University of
Technology, Department of Computer Society and Engineering, pp. 115-126.
Srivastava, H.; Kumar, S. A. (2015): Control Framework for secure cloud computing.
Journal of Information Security, vol. 6, no. 1, pp. 12-23.
Wang, Z.; Sun, K.; Jajodia, S. (2012): Disk storage isolation and verification in cloud.
IEEE Global Communications Conference, pp. 771– 776.
West, R.; Li, Y.; Missimer, E. S. (2016): A virtualized separation kernel for mixed-
criticality systems. ACM Transactions on Computer Systems, vol. 34, no. 3, pp. 201-212.
Xu, X.; Liu, G.; Zhu, J. (2017): Cloud data security and integrity protection model based
on distributed virtual machine agents. IEEE International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, pp. 6-13.
Zeng, W.; Koutny, M.; Watson, P. (2015): Formal verification of secure information
flow in cloud computing. Workshop on Information Security Applications, pp. 103-116.
Zhang, F.; Zhang, C.; Chen, W.; Hu, F.; Xu, M. (2017): Noninterference analysis of
trust of behavior in cloud computing system. Journal of Computer, vol. 45, no. 7, pp. 1-15.
Zhang, S.; Chang, Y.; Yan, L.; Sheng, Z.; Yang, F. et al. (2019): Quantum
communication networks and trust management: A survey. Computers, Materials &
Continua, vol. 61, no. 3, pp. 1145-1174.
Zhao, W.; Liu, J.; Guo, H. (2018): Etc-iot: Edge-node-assisted transmitting for the cloud-
centric internet of things. IEEE Network, vol. 32, no. 3, pp. 101-107.
Zhao, Y.; Sanán, D.; Zhang, F. (2016): Reasoning about information flow security of
separation kernels with channel-based communication. International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 791-810.

	Information Flow Security Models for Cloud Computing
	Congdong Lv0F , *, Ji Zhang1F , Zhoubao Sun1 and Gang Qian1

	5 Conclusion
	Funding Statement: Natural Science Research Project of Jiangsu Province Universities and Colleges (No. 17KJD520005, Congdong Lv). It proved money for this paper.
	References

