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Abstract: The application of deep learning in the field of object detection has 
experienced much progress. However, due to the domain shift problem, applying an 
off-the-shelf detector to another domain leads to a significant performance drop. A 
large number of ground truth labels are required when using another domain to train 
models, demanding a large amount of human and financial resources. In order to avoid 
excessive resource requirements and performance drop caused by domain shift, this 
paper proposes a new domain adaptive approach to cross-domain vehicle detection. Our 
approach improves the cross-domain vehicle detection model from image space and 
feature space. We employ objectives of the generative adversarial network and cycle 
consistency loss for image style transfer in image space. For feature space, we align 
feature distributions between the source domain and the target domain to improve the 
detection accuracy. Experiments are carried out using the method with two different 
datasets, proving that this technique effectively improves the accuracy of vehicle 
detection in the target domain. 
 
Keywords: Deep learning, cross-domain, vehicle detection. 

1 Introduction 
Vehicle detection is a fundamental problem in computer vision. Due to the research 
progress of convolutional neural network (CNN) in recent years, the vehicle detection 
method based on CNN has made significant achievements. Researchers [Song, Liang, Li et 
al. (2019)] have proposed a vision-based vehicle detection and counting system to detect 
vehicles. This segmentation method can provide higher vehicle detection accuracy, 
especially for the detection of small vehicles. Other scholars [Zhang and Zhu (2020)] have 
conducted vehicle detection using fast image registration and You Only Look Once version 
3 (YOLOv3) network. This method can achieve satisfactory and competitive moving 
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vehicle detection results. However, variability issues that commonly exist in object 
detection, such as shooting angles, the scene environment, and image quality, will lead to a 
domain shift between the source domain and the target domain. As shown in Fig. 1 below, 
Kitti [Geiger, Lenz, Stiller et al. (2013)] and Cityscapes [Cordts, Omran, Ramos et al. 
(2016)] datasets used in the field of autonomous driving show obvious domain shifts. 
 

   
Figure 1: Domain shifts in Kitti and Cityscapes datasets 

The left example image shows the Kitti dataset, and the right one shows Cityscapes. 
Although there are two datasets covering the urban scenes, images in those datasets vary 
in different external environments and lighting.  
Such domain shifts can lead to a significant performance drop. In addition, annotating the 
data requires significant human and financial resources. Domain adaptation is one 
method to solve these problems.  
The focus of this work is the problem of unsupervised domain adaptation, in which the 
source domain has complete data annotations, but the target domain has no data 
annotations, and the data distribution of the source domain and the target domain is 
different within the same detection task. A new domain adaptation method for vehicle 
detection in then proposed, and the detection accuracy of the model under different 
datasets is improved through testing and verification among different datasets.  

2 Literature review 
2.1 Object detection 
In recent years, CNN [Wu, Liu and Liu (2019)] has been widely used in the field of 
object detection, and the region-based CNN (RCNN) method has advanced significantly. 
Object detection methods based on CNN can be divided into two categories: the two-
stage method and the single-stage method. The two-stage method is based on RCNN and 
mainly extracts the bounding box from images, then trains a network to recognize each 
region of interest (ROI) [Girshick, Donahue, Darrell et al. (2014)]. The method of sharing 
convolutional feature graph for all ROI was proposed to expand RCNN. Region proposal 
network (RPN) was then employed in Fast RCNN [Girshick (2015)], which provided 
high accuracy but low speed. Single-stage methods include YOLO [Redmon, Divvala, 
Girshick et al. (2016); Redmon and Farhadi (2018)] and SSD [Liu, Anguelov, Erhan et al. 
(2016); Fu, Liu, Ranga et al. (2017)]. The advantage of this type of method is that there is 
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no need to extract a bounding box, and it is high speed but low accuracy. 

2.2 Domain adaptation 
Domain adaptation is a special transfer learning method as it attempts to solve the 
learning problem in which the target domain is without annotations while the source 
domain has complete annotations. It has been studied for a long time in the field of 
computer vision. Pan et al. [Pan, Tsang, Kwok et al. (2011)] found that Transfer 
Component Analysis (TCA), a kernel method based on maximum mean discrepancy 
(MMD) [Zhang, Liu, Luo et al. (2018)], was able to learn better feature representation 
across domains. Based on MMD, Long et al. [Long, Wang, Ding et al. (2013); Long, 
Cao, Wang, et al. (2015); Long; Zhu, Wang et al. (2016)] found that hidden network 
features in a reproducing kernel Hilbert space and explicitly measures the difference 
between the two domains using MMD and its variants. Sun et al. [Sun, Feng and Saenko 
(2016)] attempted to minimize the domain shift by aligning the second-order statistics of 
feature distribution between the source and target domain. 

2.3 Image style transfer 
In recent years, deep learning technology based on convolutional neural network has 
been popularized, and research into image style transfer has also flourished. By 
employing a convolutional neural network that can effectively extract image features, 
researchers [Gatys, Ecker and Bethge (2016)] proposed an automatic method for image 
style transfer. They believed that the image of style transfer should contain both content 
features and style features of the image. Gatys et al. [Gatys, Bethge, Hertzmann et al. 
(2016)] further presented an image style transfer method that could retain the color of the 
original image, so that the final generated image could obtain the texture features of the 
image while still retaining the color distribution. Johnson et al. [Johnson, Alahi and Li 
(2016)] proposed an image style transfer method based on feedforward network, and 
divided the transfer method into two different networks: image conversion network and 
loss function network. Dumoulin et al. [Dumoulin, Shlens, Kudlur et al. (2016)] set up a 
transfer network containing multiple style diagrams, pointing out that some parameters of 
various styles in the network could be shared. 
The recently proposed CycleGAN model [Chen, Li, Sakaridis et al. (2018)] is a 
promising method for unpaired image style transfer. It has yielded convincing results, 
such as converting aerial images to Google maps or Monet paintings to images. Using 
this method, cycle consistency loss is employed to regularize the generative model and 
preserve the transferred image's structural information. However, this approach only 
ensures that a region is occupied by an object before image style transfer and after 
image style transfer. The semantics of pixels are not guaranteed to be consistent with 
this, only cycle consistency loss [Li, Liang, Jia et al. (2018); Bousmalis, Silberman, 
Dohan et al. (2017); Hoffman, Tzeng, Park et al. (2017); Zhu, Park, Isola et al. (2017)] 
proposed the use of semantic labeled images as additional signals to regularize the 
generative models of CycleGAN to generate the same segmentation images. However, 
this method requires the training of additional segmented networks, which can slow 
down the whole training process. For certain tasks, such as object detection, the same 
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consideration is not required for all pixels. 

3 Proposed method 
In this paper, we propose a vehicle detection method based on Faster RCNN. Faster 
RCNN model architecture mainly includes three main parts: a convolutional layer of 
shared extracted feature map, RPN, and ROI. In addition, the feature maps are extracted 
from the input images through the convolutional neural network, generally employing 
VGG16 or ResNet-50. In this paper, the convolutional layer of VGG16 is used as a 
feature extractor.  
To extract the characteristics of the figure, the RPN network generates a bounding box 
and conducts preliminary object detection to the bounding box, which feature map with 
the results back to the last convolutional layer diagram and unify the ROI size. ROI 
pooling will then input the region to the full connection layer, which will return to the 
position of the target domain and use ROI to category forecast. The training loss is 
composed of the loss of the RPN and the loss of the ROI, and is defined as: 

roirpnd LLL +=                                                                                                                 (1) 

Both the training loss of the RPN and ROI has two loss terms: One is used for 
classification, that is, to predict how accurate the probability is, and the other is a 
regression loss on the box coordinates for better localization. The loss function can be 
written as: 

BAii LLtpL +=}){},({                                                                                                       (2) 

where LA is the loss of classification, and LB is the loss of regression. LA is formulated as: 
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The anchor generated by the RPN module is only divided into the foreground and 
background. The label of the foreground is 1, and the label of the background is 0. 
During the training of RPN, 256 anchors are selected, which are the Ncls in Eq. (3).  
where Pi is the probability of anchor prediction as the target, with the ground-truth label 
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where ti={tx, ty, tw, th} is a vector representing the offset predicted by the anchor during 
the RPN training phase. ti

* is the same vector as the ti dimension, indicating that the offset 
of the anchor is relative to ground-truth during the RPN training phase, and λ is used to 
weigh Lcls and Lreg with a default value of 10. Lreg can be written as: 
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where R is the smoothL1 loss function, which is defined as: 
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3.1 Image space based domain adaptation
 

The CycleGAN model is used for image style transfer in the image space. Specifically, the 
image style is transferred from the target domain dataset Kitti to the source domain dataset 
Cityscapes. The images generated by the image style transfer are labeled with the 
corresponding images in the source domain dataset Cityscapes. The image generated by the 
image style transfer is shown in Fig. 2, and contains the image information from both datasets. 

 
Figure 2: Generated image by image style transfer 

As can be seen from Fig. 2, the generated image using the CycleGAN model contains the 
external environment and lighting of the target domain dataset Cityscapes. Specifically, 
the task of CycleGAN is to transfer the image style from source domain A to target 
domain B. In order to train the unpairing data, two GAN [Liu and Tuzel (2016); Zhang 
and Dana (2017); Mao, Li, Xie et al. (2017)] loss functions are calculated. The training of 
the whole network is carried out according to reference [Girshick, Donahue, Darrell et al. 
(2014)]. The whole cycle consistency loss is formulated in Eq. (8): 

]||))(([||]||))(([||),( 1~1~ bbffEaaffEffL BAABBbABBAAaBAABcyc −+−=                   (8) 

The items in Eq. (8) are shown in Fig. 3. The meaning of the first item of this loss 
function is that the image in source domain A should be similar to the original image a 
after the generator GA is used to generate the fAB(a), and then fAB(a) changes from the 
generator GA to the fBA(fBA(a)). The second item of the loss function is that image b in 
target domain B generates fBA(b) after being acted on by generator GB, and then fBA(b) 
changes from generator GA to fBA(b), which should be similar to the original image b. 
After adding constraints in this way, a certain relationship is established between 
unmatched data. In Fig. 3, we show the domain adaptation based on image space through 
first converting the source domain A to the target domain B, and then using it to train the 
vehicle detection network. 
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Figure 3: Architecture of CycleGAN 

3.2 Feature space based domain adaptation 
In feature space, for the object detection model Faster RCNN, feature-based domain 
adaptation is the domain adaptation of feature map extracted by convolutional neural 
network. In this paper, the domain classifier is added to the two levels of the low feature 
map and the high feature map, and used to classify different domains. The added domain 
classifier is shown in the last phase of Fig. 4. 

 
Figure 4: The added block of domain classifier (FS module) 

In Fig. 4, GRL is the gradient reversal layer [Ganin and Lempitsky (2015)] and Conv is 
the convolutional layer. The added block of domain classifier is referred to as FS module. 
The convolutional feature map corresponds to the input of the added block, and the 
function of the domain classifier is to determine the domain of each image block. 
With cross-entropy loss, the calculation formula of domain classifier loss based on 
feature graph is as follows: 
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where Ii shows that the training image has i images, so that Di represents the domain 
of the training image. Di=0 represents the source domain and Di=1 represents the 
target domain. The output results of domain classifier based on feature map are 
recorded as Pi

(u,v).  

3.3 Method description 
The main idea of domain adaptation based on feature map is to extract features with 
domain invariance. The worse the classification effect of domain classifier, the better the 
common representation of the feature map to the source domain and target domain. 
Therefore, the smaller the adaptation loss function of the above domain, the better the 
adaptability of the model in the target domain. Thus, we need to optimize the parameters 
of domain classifier to minimize the domain adaptation loss based on feature map and 
optimize the parameters of the whole convolutional network to maximize the loss. In the 
process of the practical experiment, referring to the practice in reference [Ganin and 
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Lempitsky (2015)], the method of gradient drop is employed in training, and a gradient 
reversal layer (GRL) is introduced at the same time. When passing through the GRL 
layer, the gradient reversed the direction to optimize the basic network. The function of 
this layer is to satisfy both the parameter optimization requirements of Faster RCNN and 
the domain adaptation components. The architecture of the vehicle detection model is 
shown in Fig. 5. 

 
Figure 5: Architecture of the vehicle detection model 

As can be seen from Fig. 5, detection network is enhanced with domain classification for 
multi-feature level based adversarial training. FS module is implemented on the block 1 
and block 2 of the network, which affects the parameters of the convolutional layer.  
Two novel components are introduced in our feature space based domain adaptation. The 
domain classifier is added after feature map and the last convolutional layer. It is 
suggested that the final training loss of the network is the sum of all parts, which can be 
written as: 

    )( lowhighd LLLL ++= λ                                                                                                           (10) 

where λ is a trade-off parameter to balance the Faster RCNN loss and our newly added 
domain adaptation classifiers. In the method process, the CycleGAN model of image 
style transfer is first carried out on the image space. Namely, the CycleGAN model is 
used to generate several images corresponding to the number of the Kitti dataset, and the 
generated dataset is assumed to be A. The data annotations in source domain dataset 
Cityscapes are then used in dataset A. When training the model, the corresponding 
images and annotations in source domain dataset Cityscapes and dataset A are used to 
obtain the pre-training model. The domain classifier is carried out in the feature space, 
that is, the domain classifier is trained using the target data. From the perspective of 
domain adaptation, the smaller the loss function of the domain classifier, the better the 
adaptability of the model to the target domain. After completing the three-part training, 
the model is saved, and the images of the target domain are used for testing.  
In this paper, the CycleGAN model and the idea of domain classifier are applied to 
domain adaptive vehicle detection for the first time. In the past, CycleGAN model was 
mostly used for image style transfer. Previous works have largely only applied domain 
classifier to a single feature map. In contrast, it is applied to domain adaptive vehicle 
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detection in our method in combination with feature-based domain adaptive vehicle 
detection network. We then apply domain classifier to two different feature maps. 
Namely, the idea of domain classifier is used for reference in the feature-based domain 
adaptive vehicle detection network. 

4 Implementation 
4.1 Dataset 
Two datasets were used for the vehicle detection experiments: Kitti [Geiger, Lenz, Stiller et 
al. (2013)] and Cityscapes [Cordts, Omran, Ramos et al. (2016)]. The Cityscapes dataset is 
the image segmentation dataset used in autonomous driving and is generally employed to 
evaluate the performance of visual methods in semantic understanding of urban scenes. The 
Cityscapes dataset has 2975 training images and 500 images for validation. 
The Kitti dataset was made by the Karlsruhe Institute of Technology in Germany and the 
Toyota Technological Institute in the United States. Toyota currently holds the largest 
global evaluation dataset for the computer vision method of autonomous driving. It 
contains urban, rural, and highway scenarios, including collections of real image data. In 
this paper, a total of 7481 labeled images were used for the experiment. Mutual domain 
adaptive experiments of Cityscapes and Kitti datasets were conducted to verify the 
effectiveness of the proposed method in solving domain adaptive problems caused by 
different scenes in vehicle detection.  

4.2 Evaluating metrics 
As this experiment only calculated the Average Precision (AP) for this category of 
vehicle, the effectiveness of the model on the vehicle detection task was measured. 
Generally speaking, the higher the AP is, the better the detection effect will be. Several 
concepts and definitions are first introduced here to describe the evaluation process. 
When evaluating the effect of target detection, the AP index was used as follows:  

∫=
1
0 )( dRRPAP                                                                                                             (11) 

where P is the precision rate, and R is the recall rate. The accuracy rate represents the 
proportion of true positive (TP) among the detected targets, that is, the proportion of 
detected vehicles that were the true targets of vehicles. The recall rate indicates the 
proportion of all positive samples in the entire test set that were correctly identified as 
positive samples, that is, the proportion of vehicles correctly detected in the real vehicle 
target. The formula is as follows: 

FPTP
TPP
+

=                                                                                                                   (12) 

FNTP
TPR
+

=                                                                                                                   (13) 

Classifying the positive example correctly as a positive example means that the number 
of vehicles was correctly detected and denoted as TP. Classifying the positive example 
incorrectly as a negative example means that the vehicle target was not detected as the 
number of vehicles and denoted as FN (false negative). Classifying the negative example 
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correctly as a negative example means that the target of non-vehicle was detected as the 
number of vehicles and denoted as TN (true negative). Classifying the negative example 
incorrectly as a positive example means the target of a vehicle was not detected as the 
number of vehicles and denoted as FP (false positive). 
In the calculation of accuracy and recall, the coincidence rate between the bounding box 
and the ground truth box was set to IOU (intersection over union). 

GP

GP

BOXBOX
BOXBOXIOU

∪
∩

=                                                                                                        (14) 

where BOXP is the bounding box, BOXG is the ground truth box, ∩ is the intersection 
area between the bounding box and the ground truth box, and ∪ is the combined area of 
the bounding box and the ground truth box. 

4.3 Implementation details 
Constrained by the GPU memory, we scaled the height of the image to 256 in the training 
stage and then cropped image patches with a size of 256×256 for the image space based 
on CycleGAN. The training images in the source data had complete annotations, while 
the test images in the target data had no labeling information. Both datasets were 
converted to VOC [Everingham, Eslami, Van Gool et al. (2015)] dataset format, and both 
focused on the category of vehicle. The initial parameters of the convolutional network 
were those of the pre-trained VGG16 network on ImageNet, and Caffe framework was 
adopted. Training was conducted a total of 50,000 times, the learning rate of the first 
40,000 was 0.001, while that of the last 10,000 iterations gradually decreased. The weight 
of domain adaptation loss was set to 0.1. 

4.4 Results and analysis 
We evaluated our proposed domain adaptive model for vehicle detection in two different 
scenarios: 1) The source domain training images were 2975 images in Cityscapes, the 
target domain training images were 7481 images in Kitti, and the target domain test 
images were 7481 images in Kitti; 2) The source domain training images were 7481 
images in Kitti, the target domain training images were 2975 images in Cityscapes, and 
the target domain test images were 500 images in Cityscapes. 
Figs. 6-9 show the visualized performance comparison with the results of vehicle 
detection before and after adaptation. In Figs. 6 and 8, due to domain shift, vehicle 
detection results were not accurate enough to detect small and multiple vehicles. In Figs. 
7 and 9, compared with the image of vehicle detection before adaptation, the result was 
accurate enough to detect small and multiple vehicles. 
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Figure 6: Example images of vehicle detection before adaptation in the first scenario 

 

Figure 7: Example images of vehicle detection after adaptation in the first scenario 
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Figure 8: Example images of vehicle detection before adaptation in the second scenario 

 
Figure 9: Example images of vehicle detection after adaptation in the second scenario 

Figs. 10 and 11 show the comparison of the PR curves of different methods on two 
different datasets. It can be seen from the PR curves in Figs. 10 and 11 that the 
performance of the proposed method was superior to FRCNN and FRCNN in the wild 
[Chen, Li, Sakaridis et al. (2018)] in two different scenarios. 
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Figure 10: P-R curve in the first scenario 

 
Figure 11: P-R curve in the second scenario 

Four kinds of comparative experiments were conducted: 1) Only Faster RCNN model 
was used; 2) Faster RCNN model was used in combination with image space; 3) Faster 
RCNN model was used in combination with feature space; 4) Faster RCNN model was 
used in combination with image space and feature space (our method). The comparative 
experimental results in two different scenarios are shown in Tabs. 1-4. 
Tabs. 1 and 2 show the comparison of experimental results of different methods in the 
first scenario, and Tabs. 3 and 4 are the result of the second scenario. 

Table 1: Comparison of difference methods in the first scenario 

Method AP (%) 

Faster RCNN 52.5 
Faster RCNN+Image space 57.7 

Faster RCNN+Feature space 58.5 
Faster RCNN+Image space+Feature space 64.8 
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Table 2: Compared with other methods in the first scenario 

Method AP (%) 

Faster RCNN 52.5 
YOLOv3[Redmon] 51.8 

FRCNN in the wild [Chen] 62.9 
Our method 64.8 

 
Table 3: Comparison of difference methods in second scenario 

Method AP (%) 
Faster RCNN 28.8 

Faster RCNN + Image space 36.6 

Faster RCNN+ Feature space 37.4 

Faster RCNN + Image space + Feature space 40.8 
 

Table 4: Compared with other methods in the second scenario 

Method AP (%) 
Faster RCNN 28.8 

YOLOv3 [Redmon] 29.1 

FRCNN in the wild [Chen] 38.5 
Our method 40.8 

According to the information in Tabs. 1-4, we can summarize the following conclusions:  
(1) The improved model based Faster RCNN combined with image style transfer 
technology and domain adaptation theory improved the accuracy of vehicle detection in 
different scenarios. It proves that this method is effective in solving the problem of poor 
performance of the detection model due to the domain shift between the source domain 
and the target domain. 
(2) The image style transfer technology and domain adaptive concept improved accuracy. 
In the first scenario, the image style transfer technique was used to improve the original 
model by 5.2%, the domain adaptation components based on the two feature maps 
improved the model by 6%, and both methods applied simultaneously improved the 
model by 12.3%. In the second scenario, the image style transfer technique was used to 
improve the contrast of the original model by 7.8%, the domain adaptation components 
based on the two feature maps improved the model by 8.6%, and both methods used 
simultaneously improved the model by 12%. 
(3) Compared with the current state-of-the-art methods, our technique achieved the best 
result in different scenarios. The results of the experiments provide proof that our method 
is the most competitive in solving domain adaptive problems. 
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5 Conclusion 
This work aimed to solve the problem of performance drop in the detection model due to 
the domain shift between the source domain and target domain in vehicle detection tasks. 
A new domain adaptive vehicle detection model based on feature space and image space 
was proposed that achieved good results in unsupervised vehicle detection domain 
adaptive tasks. The problem of domain adaptive vehicle detection in more complex 
scenarios will be studied in the future. 
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