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Abstract: Deep learning technology has been widely used in computer vision, speech 
recognition, natural language processing, and other related fields. The deep learning 
algorithm has high precision and high reliability. However, the lack of resources in the edge 
terminal equipment makes it difficult to run deep learning algorithms that require more 
memory and computing power. In this paper, we propose MoTransFrame, a general model 
processing framework for deep learning models. Instead of designing a model compression 
algorithm with a high compression ratio, MoTransFrame can transplant popular convolutional 
neural networks models to resources-starved edge devices promptly and accurately. By the 
integration method, Deep learning models can be converted into portable projects for Arduino, 
a typical edge device with limited resources. Our experiments show that MoTransFrame has 
good adaptability in edge devices with limited memories. It is more flexible than other model 
transplantation methods. It can keep a small loss of model accuracy when the number of 
parameters is compressed by tens of times. At the same time, the computational resources 
needed in the reasoning process are less than what the edge node could handle. 
 
Keywords: Edge computing, convolutional neural network, model transformation, model 
compression. 

1 Introduction 
As a hot spot in artificial intelligence, deep learning technology has been sought after by 
academics and industries in recent years. Deep learning technology has been focusing on 
computer vision, natural language processing, speech recognition, and bringing about 
new related products [Cheng, Wang, Zhou et al. (2017)]. Since deep learning training and 
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reasoning need a lot of computation power [Li, Ota and Dong (2018)], artificial 
intelligence applications based on deep learning usually appears in the powerful cloud 
computing data center [Liu, Tang, Li et al. (2019)]. 
The edge terminal equipment with limited resources is ubiquitous in various application 
scenarios. Its popularity has attracted extensive attention from the academic and industry to 
deploy deep learning models in resource-constrained [Chen, Yu, Liu et al. (2019)] terminal 
devices to make intelligent applications more accessible to users. To improve models 
reasoning efficiency, edge computing intelligence technology [Guo, Liu, Xiao et al. (2019)] 
integrates the complementary advantages of local inference and server computing power 
[Liu, Cai, Xu et al. (2015)]. It achieves the purpose of significantly reducing the delay and 
energy consumption [Wu, Zhang, Cai et al. (2020)] in deep learning model reasoning. 
Edge computing is of current importance. One manifestation is that many large 
companies have invested billions of dollars in edge computing technology. In 2008, the 
number of edge terminals which were officially announced, exceeded the total number of 
living humans. It is estimated the number of edge devices will reach 50 billion by 2020. 
However, combining edge computing and machine learning has brought new experiences, 
new opportunities, and new challenges to smart homes [Cai, He, Sun et al. (2017)], smart 
factories, and smart city industries. In addition, that combination can enable the 
intelligent edge device to perform calculations and inferences locally. Thus, it helps 
terminal saving time to transfer data to the cloud, protecting the data privacy, reducing 
network traffic [Zhang, Lu, Li et al. (2019)]. 
Running deep learning on edge nodes can provide services and process tasks more 
quickly. The edge here refers to consumer products that perform calculations locally. 
Although popular deep learning models have achieved the best accuracy in many 
classification and prediction applications [Zhang, Wang, Lu et al. (2019)], CNN’s 
reasoning for edge nodes is still challenging due to severe limits of computing resource. 
Deep Learning models are known for their large sizes and high computational costs [Li, 
Zhou and Chen (2018)]. Arduino series development boards have very constrained 
resources; Tab.1 compares Arduino with similar IoT processors. The broad proliferation 
of MCUs relative to desktop GPUs and CPUs stems from the fact they are cheaper and 
consume several orders of less powerful than desktop GPUs and CPUs. 

Table 1: Processors for ML inference: Performance comparison of similar chips 
Edge Platform Processor Type SRAM Flash Power Frequency Price 

Raspberry Pi 2B  ARM Cortex-A7 IoT 1 GB 1GB+ 1.20 W 900 MHz $38.00 

STM32 F723 ARM Cortex-M7 IoT 256 KB 512 KB 170 mW 216 MHz $11.85 

FRDM-K64F ARM Cortex-M4 IoT 256 KB 1 MB 
58 mW 
 

120 MHz $35.00 

Micro:Bit  ARM Cortex-M0 IoT 16 KB 256 KB 18 mW 16 MHz $13.21 

Arduino MKR1000 ARM Cortex-M0 IoT 32 KB 256 KB 14 mW 48 MHz $37.40 

Arduino Mega  ATmega2560 IoT 8 KB 256 KB ~1 mW 16 MHz $28.00 
Arduino Micro ATmega32u4 IoT 2.5 KB 32 KB ~1 mW 16 MHz $18.80 
Arduino Uno  ATmega328P IoT 2 KB 32 KB ~1 mW 16 MHz $11.86 
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The key problem of edge intelligence is how to deploy large deep learning models in the 
resource-constrained edge node, including deep learning model’s compression, models 
transplantation [Rastegari, Ordonez, Redmon et al. (2016)], and collaborative scheduling 
between edge servers and terminal devices. 
The general deep learning model is composed of multiple types of networks layers. Since 
the demand for computing resource and the amount of output data is different in various 
network layers, a simplistic idea is to divide the entire deep learning model into two parts, 
in which a large part is divided into edge servers for calculation, as shown in Fig. 1, and a 
small portion of the calculations that require fewer resources runs on the local node [Teng, 
Ota, Liu et al. (2020)]. It can reduce the inference delay of the deep learning model by 
collaborating cloud and edge [Huang, Zhang, Zeng et al. (2020)]. However, choosing 
different model partition points will lead to different calculation times. 

Edge 
server Deep learning 

network training

Deep learning 
reasoning

Edge 
device

 

Figure 1: Portion of the calculation is kept locally in the terminal device 
Choosing an inappropriate segmentation point may result in an edge node being unable to 
perform calculations due to limited resources, such as the several tasks which need more 
calculations are kept in the computation center and thus will increase network latency [Li, 
Wang and Kong (2018)]. The objective of this research is to answer the following questions: 
(a) How to transplant a deep learning model to the edge node? 
(b) Is it feasible to run a deep learning model for a resource-scarce edge node? 
(c) What measures can be taken to transplant the deep learning model to the edge node 
easily and quickly? 
(d) What is the next step needed to apply deep learning to edge computing? 
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Figure 2: Four-stage pipeline for Model Transfer Framework 

Our goal is to transplant small and medium-sized convolutional neural network models to 
low-resources edge devices directly, thus, the inference can be performed on the edge 
device locally. To meet this end, we propose a model transformation framework: a four-
stage pipeline as shown in Fig. 2. This framework can not only realize the rapid 
transplantation of the model in the terminal nodes, but also significantly reduce the 
memory usage during the model reasoning locally. Firstly, the network structure is 
adapted or trimmed to a lightweight during model training. Several fine-tuning methods 
of deep learning training can be performed at this stage to maximize the model accuracy. 
Secondly, only the important part of different type of features are extracted after the 
model is already trained and saved in the first stage, thus, only the necessary parameters 
in the already trained model are saved. Some variables, such as environmental variables, 
are not necessary parameters [Yu, Cai, Wang et al. (2019)] for model reasoning, we do 
not need to keep them. The redundant part of the model variables can be removed as 
much as possible. Thirdly, the inference rules of the deep learning classification 
algorithm are analyzed. Fill in the extracted parameters according to reasoning rules and 
use automatic coding to generate Arduino project files i.e., the transformed model. 
Fourthly, the Arduino project can be compiled and run on the edge embedded platform 
directly, such as, Arduino mega.  
The rest of this paper is organized as follows: Section 2 discusses the related work of the 
optimization of deep learning model. Section 3 introduces the process and methodology 
of the model transfer framework proposed and the experimental work. Section 4 presents 
the results and observations from the experiments. Section 5 presents the conclusions. 

2 Related work 
Recent years, we have seen extensive study of designing a fitting CNNs model to fit the 
low-resources edge node. According to the computing power of edge nodes, edge hosts 
for model transplantation are classified into three different categories: The first is the 
mobile devices with reliable strong performance, such as mobile phones. There is also a 
kind of large-scale mobile electric vehicle (EVs) [Tang, Wang, Song et al. (2019)] which 
can be included in the first category. The second is the embedded devices with relatively 
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strong performance, such as Raspberry Pi. The last is the small development boards with 
weak performance, such as Arduino Mega or Arduino UNO R3. The model training 
optimization methods such as network pruning [Tseng, Bhattachara, Fernández-Marqués 
et al. (2018)], parameter sharing, and parameter quantization can be implemented on all 
three types device. Chowdhery et al. [Chowdhery, Warden, Shlens et al. (2019)] used 
network pruning technology. During the model training, the parameters below zero are 
replaced by zero. However, this caused a loss of accuracy.  Han et al. [Han, Mao and 
Dally (2015)] further compressed the model size by integrated three technologies: 
network pruning technology, parameter quantization technology and Hoffman code. They 
call this deep compression technology. Besides, the team designed a hardware accelerator 
called EIE. This hardware accelerator can directly run the compressed model to improve 
the running speed and reduce memory consumption. Han’s deep compression technology 
[Han, Kang, Mao et al. (2017)] has a good compression ratio for large network models. 
For example, it can compress AlexNet by as much as 35 times and has the least impact on 
accuracy at the same time. However, a deep compression method can cause a significant 
accuracy loss in small network structure, so this method is not feasible in model 
adaptation for low-resource edge nodes. 
The image recognition optimized model proposed by Liu et al. [Liu, Cao, Luo et al. 
(2017)] is utilized to divide the image recognition process into two layers: building the 
edge layer locally on the mobile device and building a remote service in the cloud. 
Courbariaux et al. [Courbariaux, Hubara, Soudry et al. (2016)] proposed a software 
accelerator: DeepX. DeepX can significantly reduce equipment resources usage, which is 
a severe bottleneck for large-scale mobile applications. Li et al. [Li, Wang and Kong 
(2018)] designed an acceleration framework named DeepRebirth by “slimming” the 
existing continuous parallel non-tensor layers and tensor layers. Yazici et al. [Yazici, 
Basurra and Gaber (2018)] presented the feasibility of running several ubiquitous 
machine learning algorithms on IoT edge devices. Kumar et al. [Kumar, Goyal and 
Varma (2017)] proposed Bonsai to cut the model size and prediction cost while 
preserving prediction accuracy. Yet, the model cannot be transplanted to edge nodes 
quickly and easily. 

3 MoTransFrame 
Due to the strong dependence of model training on the deep learning framework, it is 
impossible to transplant the model directly to the edge nodes, but manual transplantation 
is too costly. Thus, it is necessary to design a general transplantation framework to 
automate the model transplantation. According to the process and rules of model 
transplantation, we designed a good performance of CNNs model transplantation 
framework. We denote the already trained model as an weights matrix object, which is 
expressed as ω={weights, bias}, among them: weights={conv, FC} describe the network 
convolution weights; The conv represents different convolution layer weights; FC 
represents the weight of the network full connection layer; Bias represents weight bias in 
each layer of the network. Our overarching goal is to identify the CNNs model 
architecture while maintaining competitive accuracy. To achieve this goal, we adopt three 
main strategies when designing a model transfer framework: 
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Strategy 1. Without designing a unique network structure, the original one is lightly 
pruned, and the accuracy of the original model is retained to the greatest extent. Given an 
already trained model, we will extract the corresponding weight according to the 
structure of the network computing graph. The structure of the model can be obtained by 
the structure defined in the training process. 
Strategy 2. Input the trained model into the model interpreter framework we designed. 
Consider a convolution layer consisting of 5×5 filters. The total number of parameters in 
this layer is (number of input channels)×(number of filters)×(5×5). The framework 
reorganizes parameters to generate the matching embedded language code format 
according to the deep learning inference rules. It not only reduces model inference's 
dependence on the environment but also cuts out unnecessary parts of the original model. 
Strategy 3. After the model is transformed into the Arduino language version, the model 
files are burned into the edge node. One of the most significant advantages is the 
converted edge version of the model files can be directly compiled and run on the 
Arduino platform. The converted model can then be tested to record the accuracy of the 
test data set and record the runtime energy consumption of each instance. 

3.1 Model extraction 
Model parameters are proposed to be extracted according to the parameters needed for 
deep learning classification. Eq. (1) describes the calculation process of the usual CNN 
classification model reasoning. According to the formula, the inference calculation of the 
classifier model can be realized by matrix product of each layer. 

 

              (1) 

Eq. (1) depicts that the calculation patterns of convolution, activation and pooling at each 
layer are similar. We use this feature to propose a general parameter extraction method. 
We read the model in the way of data flow. Generally, the model file is in the form of a 
dictionary. The key of the dictionary is the variable name of the parameter, and the value 
of the key is the value corresponding to the variable name. According to this formula, we 
can clearly know which variables need to be extracted, and then use these variables as 
keys to retrieve the model file to obtain the parameter matrix. Our model extraction 
method is intended to collect CNN model with different type of parameters. Each trained 
model consists of fixed parameter blocks and variable parameter blocks, and each 
variable parameter block contains a mandatory parameter layer. We consider mandatory 
parameters is necessary for model reasoning. By extracting the original model parameters 
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accurately, we can minimize the loss of model accuracy. 

3.2 Conforming memory requirements 
Since the deep learning model is dependent on TensorFlow, PyTorch, Caffe, and third-
party imported libraries, it is impractical to port all related libraries into the Arduino 
memory. In this case, training a deep learning model that can run the inference logic in 
the edge node with only 8KB RAM directly is very crucial. We have to consider the 
usage of the edge node memory carefully. Our goal is to meet the storage requirements of 
Arduino when designing the training network structure, so the trained model can be 
directly converted by the transformation framework. Optimization methods for model 
size includes the following four steps: 
1.  Calculate the size of the deep learning network structure and the trained model; 
2.  Extract the parameters from the trained model according to the network structure and 

calculate the size of the parameters. 
3.  Obtain the maximum data size allowed by the target device flash memory, and 

calculate the space size needed for the storage of the converted cross-platform model; 
4.  If the size of the converted model meets the target device storage requirements, the 

model can be directly transplanted to the edge node for compilation and running. 
Otherwise, repeat the first step. In the last case, adjusting the size of the original model 
by changing the neural network structure to meet the limit of the edge node’s memory. 

3.3 Weights quantization and model adaption 
Based on the method of network pruning in model compression, different thresholds are 
set in the training process to determine whether a connection needs to prune. Different 
levels of pruning can obtain different sizes of deep neural network models, and it can 
further reduce the size of the model through parameter quantification [Zhang, Wang, Li 
et al. (2018)]. Implementation of quantization is achieved by converting common 
operations into equivalent octet versions. These operations involved convolution, 
activation function, pooling, and splicing. For example, mapping a 16-bit floating-point 
number to an 8-bit integer can reduce the model size by 4 times. We find that the 
parameter values of the same layer of the model distributed in smaller intervals, and the 
distribution of the parameters conform to the normal distribution law. We record the 
minimum and maximum values. In the 8-bit quantization (together with other options), 
we map all parameters of the same layer linearly (or use nonlinear mapping to compress 
the space further) to an appropriate interval. 
The interval [min, max] is evenly divided into 255 cells, and all input values correspond 
to the interval values. In this way, the size of the model is compressed into 25% 
compared to the original model size. All parameters can be restored when the weights are 
loaded into the Arduino memory. 
It has been proved that if the model uses 8-bit integer parameters in the reasoning process. 
The calculation speed of the inference will be improved greatly. The reason is that the 
gradient value has to be calculated in the training process, and the parameters are 
continuously updated according to the loss function. Each time the parameter changes are 
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microscopic. Therefore, the training process of the model requires high-precision 
floating-point values. In the process of model reasoning, we also need to use the integer 
value instead. We note that the output is still represented by a floating-point number. The 
intermediate calculation is always an 8-bit number. 
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(a) (b)  
Figure 3: Model architectures found with the best test accuracy on MNIST-10(a), and 
compared the original LeNet-5 structure(b), each node in the graph are annotated with 
connection, parameter and flash size, # represents the number of corresponding objects, 
and the values in square brackets show the quantities 

4 Results and discussions 
LeNet-5 is a classic CNN classification architecture, which consists of two convolutional 
and average pooling layers, followed by a flattening convolutional layer, then two full 
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connection layers, and finally, a SoftMax classifier. We find that the size of the middle 
matrix and the model generated by the LeNet-5 network structure exceed the Arduino’s 
memory limit. Therefore, we propose an improved neural network structure of LeNet-5, 
which changes the number of convolution kernels and the number of full connection 
layers. The comparison between the improved network structure and the typical LeNet-5 
structure is shown in Fig. 3. 

4.1 Accuracy evaluation 
MoTransFrame is compared with other compressed machine learning models, including 
Bonsai [Kumar, Goyal and Varma (2017)], neural network pruning [Chowdhery, Warden, 
Shlens et al. (2019)], decision jungles [Shotton, Sharp, Kohli et al. (2013)] and sparse w/o 
pruning [Fedorov, Adams, Mattina et al. (2019)], as shown in Fig. 4. None of the above 
algorithms had done a detailed analysis of the energy consumption of model reasoning.  

(a) (b)  

Figure 4: Four-stage pipeline for Model Transfer Framework 

To solve the problem of transplanting deep learning model to edge computing platform, 
on the one hand, it is necessary to reduce the loss of model precision, on the other hand, it 
is also the most important to reduce the energy cost of running the model in edge 
computing equipment. Among the above efficient compression models, the 
MoTransFrame can transplant model to the Arduino mega board with higher accuracy in 
the same number of parameters. 

4.2 Energy assumption evaluation 
Fig. 5 shows the structure of a general energy model for evaluating energy consumption 
[Moons, Goetschalckx, Van Berckelaer et al. (2017)] of typical CNNs reasoning. The 
global energy inferred each time is the sum of the energy consumed by communication 
with flash and SRAM and the energy of the inference calculation itself. 
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Figure 5: High-level overview of the system architecture 
The total energy consumed by each network reasoning is: 

inf DRAM HWE E E= +                (2) 

Using the model described in Zhang et al. [Zhang, Davoodi and Hu (2018)], the small 
local SRAM or register file buffer contains the currently used weights and activations. 
We compute the inference energy by the following equation: 

DRAMEMAC SRAME E E= + +                (3) 

( )MACE E M M= ×  

( ) ( )DRAM ImE E D P ageSize= × +                (4) 

( ) ( )SRAM 2E E S P E S A= × + ×  

In which EMAC represents the energy consumed by the MAC array, E(M) is the energy 
consumed by one MAC operation, and M is MAC operations in the CNN model. EDRAM 

represents the energy consumed by DRAM. E(D) is energy for fetching one word of a 
fixed quantization from DRAM, and P represents the total number of parameters (same as 
distinct edge weights) in the considered CNN. ImageSize is the number of words used to 
represent the image. The term ESRAM is the energy consumed by the SRAM realization of 
the activation and weight buffers. E(S) is energy for one SRAM access. P is the number 
of parameters, and A is the number of activations in the considered CNN. 
In our experiments, we used the numbers based on Horowitz [Horowitz (2014)] reported, 
summarized in Tab. 2 and Tab. 3. Reference data of these two tables are calculated based 
on 45 nm chips. We assumed 32-bit floating point MAC unit is used to perform both 
multiplication and addition. (So, each multiplication was followed by addition as is the 
case for matrix multiplication in each layer.) 
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Table 2: Energy consumption of 
multiplication and accumulations 

Table 3: Energy consumption of 
memory access

Operation MUL ADD 
8-bit Integer 0.2pJ 0.03pJ 

16-bit Integer 3.1pJ 0.1pJ 
16-bit Floating Point 1.1pJ 0.4pJ 
32-bit Floating Point 3.7pJ 0.9pJ 

Memory size 64-bit Cache 
8 K 10 pJ 
32 K 20 pJ 
1 M 100 pJ 

DRAM 1.3-2.6 nJ 

In Fig. 6, with the limitation of on-chip memory capacity, when the cost of the DRAM 
access becomes a major part of total energy consumption, MoTransFrame is the minimum 
energy solution for all precision targets. In high-efficiency machine learning algorithms, 
both MoTransFrame and Bonsai have the best energy efficiency, but MoTransFrame we 
proposed has the highest energy efficiency in the deep learning model inference. 

 
Figure 6: Comparison of energy consumption with different CNN architectures 

5 Conclusions 
Edge nodes are the most widely deployed computing platform, but it is almost impossible 
to implement large and complex CNN model with a small memory development board. 
The main reason is the irreconcilable contradiction between the complexity of the deep 
learning model and the scarcity of node resources. We describe the reasons why the low-
resource edge node is positioned as a deep learning deployment host. We have proven 
that, contrary to previous statements, it is entirely possible to design a CNN for an MCU 
with a minimum of 8 KB of RAM. Besides, the perspective of accuracy, MoTransFrame 
has higher accuracy than other algorithms under the same number of parameters. The 
energy consumption for reasoning is also lower than other algorithms. 
As a result, the research conducted demonstrates that it is completely feasible to run the 
most advanced deep learning algorithms on edge node devices for all purposes. We have 
proposed different platform transplant frameworks based on model inference rules. Not 
only can deep learning models be transplanted efficiently, but model accuracy can also be 
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preserved to the greatest extent. The capabilities of artificial intelligence are extending to 
the edge. Billions of things will connect with each other, and intelligent edge computing 
will bring inestimable value. We hope that MoTransFrame can inspire readers to think 
and explore more on edge computing and propose systematic and universal solutions. 
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