

Computers, Materials & Continua CMC, vol.65, no.3, pp.2321-2334, 2020

CMC. doi:10.32604/cmc.2020.010522 www.techscience.com/journal/cmc

MoTransFrame: Model Transfer Framework for CNNs on Low-
Resource Edge Computing Node

Panyu Liu1, Huilin Ren2, Xiaojun Shi3, Yangyang Li4, *, Zhiping Cai1, Fang Liu5 and

Huacheng Zeng6

Abstract: Deep learning technology has been widely used in computer vision, speech
recognition, natural language processing, and other related fields. The deep learning
algorithm has high precision and high reliability. However, the lack of resources in the edge
terminal equipment makes it difficult to run deep learning algorithms that require more
memory and computing power. In this paper, we propose MoTransFrame, a general model
processing framework for deep learning models. Instead of designing a model compression
algorithm with a high compression ratio, MoTransFrame can transplant popular convolutional
neural networks models to resources-starved edge devices promptly and accurately. By the
integration method, Deep learning models can be converted into portable projects for Arduino,
a typical edge device with limited resources. Our experiments show that MoTransFrame has
good adaptability in edge devices with limited memories. It is more flexible than other model
transplantation methods. It can keep a small loss of model accuracy when the number of
parameters is compressed by tens of times. At the same time, the computational resources
needed in the reasoning process are less than what the edge node could handle.

Keywords: Edge computing, convolutional neural network, model transformation, model
compression.

1 Introduction
As a hot spot in artificial intelligence, deep learning technology has been sought after by
academics and industries in recent years. Deep learning technology has been focusing on
computer vision, natural language processing, speech recognition, and bringing about
new related products [Cheng, Wang, Zhou et al. (2017)]. Since deep learning training and

1 National University of Defense Technology, Changsha, 410073, China.
2 Training and Administration Department, the Central Military Commission, Beijing, 100851, China.
3 Department of Science and Technology, China Electronics Technology Group Corporation, Beijing, 100846, China.
4 National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data, Beijing,

100041, China.
5 School of Design, Hunan University, Changsha, 410082, China.
6 Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA.
* Corresponding Author: Yangyang Li. Email: liyangyang@cetc.com.cn.
Received: 08 March 2020; Accepted: 17 July 2020.

2322 CMC, vol.65, no.3, pp.2321-2334, 2020

reasoning need a lot of computation power [Li, Ota and Dong (2018)], artificial
intelligence applications based on deep learning usually appears in the powerful cloud
computing data center [Liu, Tang, Li et al. (2019)].
The edge terminal equipment with limited resources is ubiquitous in various application
scenarios. Its popularity has attracted extensive attention from the academic and industry to
deploy deep learning models in resource-constrained [Chen, Yu, Liu et al. (2019)] terminal
devices to make intelligent applications more accessible to users. To improve models
reasoning efficiency, edge computing intelligence technology [Guo, Liu, Xiao et al. (2019)]
integrates the complementary advantages of local inference and server computing power
[Liu, Cai, Xu et al. (2015)]. It achieves the purpose of significantly reducing the delay and
energy consumption [Wu, Zhang, Cai et al. (2020)] in deep learning model reasoning.
Edge computing is of current importance. One manifestation is that many large
companies have invested billions of dollars in edge computing technology. In 2008, the
number of edge terminals which were officially announced, exceeded the total number of
living humans. It is estimated the number of edge devices will reach 50 billion by 2020.
However, combining edge computing and machine learning has brought new experiences,
new opportunities, and new challenges to smart homes [Cai, He, Sun et al. (2017)], smart
factories, and smart city industries. In addition, that combination can enable the
intelligent edge device to perform calculations and inferences locally. Thus, it helps
terminal saving time to transfer data to the cloud, protecting the data privacy, reducing
network traffic [Zhang, Lu, Li et al. (2019)].
Running deep learning on edge nodes can provide services and process tasks more
quickly. The edge here refers to consumer products that perform calculations locally.
Although popular deep learning models have achieved the best accuracy in many
classification and prediction applications [Zhang, Wang, Lu et al. (2019)], CNN’s
reasoning for edge nodes is still challenging due to severe limits of computing resource.
Deep Learning models are known for their large sizes and high computational costs [Li,
Zhou and Chen (2018)]. Arduino series development boards have very constrained
resources; Tab.1 compares Arduino with similar IoT processors. The broad proliferation
of MCUs relative to desktop GPUs and CPUs stems from the fact they are cheaper and
consume several orders of less powerful than desktop GPUs and CPUs.

Table 1: Processors for ML inference: Performance comparison of similar chips
Edge Platform Processor Type SRAM Flash Power Frequency Price

Raspberry Pi 2B ARM Cortex-A7 IoT 1 GB 1GB+ 1.20 W 900 MHz $38.00

STM32 F723 ARM Cortex-M7 IoT 256 KB 512 KB 170 mW 216 MHz $11.85

FRDM-K64F ARM Cortex-M4 IoT 256 KB 1 MB
58 mW

120 MHz $35.00

Micro:Bit ARM Cortex-M0 IoT 16 KB 256 KB 18 mW 16 MHz $13.21

Arduino MKR1000 ARM Cortex-M0 IoT 32 KB 256 KB 14 mW 48 MHz $37.40

Arduino Mega ATmega2560 IoT 8 KB 256 KB ~1 mW 16 MHz $28.00
Arduino Micro ATmega32u4 IoT 2.5 KB 32 KB ~1 mW 16 MHz $18.80
Arduino Uno ATmega328P IoT 2 KB 32 KB ~1 mW 16 MHz $11.86

MoTransFrame: Model Transfer Framework for CNNs on Low-Resource 2323

The key problem of edge intelligence is how to deploy large deep learning models in the
resource-constrained edge node, including deep learning model’s compression, models
transplantation [Rastegari, Ordonez, Redmon et al. (2016)], and collaborative scheduling
between edge servers and terminal devices.
The general deep learning model is composed of multiple types of networks layers. Since
the demand for computing resource and the amount of output data is different in various
network layers, a simplistic idea is to divide the entire deep learning model into two parts,
in which a large part is divided into edge servers for calculation, as shown in Fig. 1, and a
small portion of the calculations that require fewer resources runs on the local node [Teng,
Ota, Liu et al. (2020)]. It can reduce the inference delay of the deep learning model by
collaborating cloud and edge [Huang, Zhang, Zeng et al. (2020)]. However, choosing
different model partition points will lead to different calculation times.

Edge
server Deep learning

network training

Deep learning
reasoning

Edge
device

Figure 1: Portion of the calculation is kept locally in the terminal device
Choosing an inappropriate segmentation point may result in an edge node being unable to
perform calculations due to limited resources, such as the several tasks which need more
calculations are kept in the computation center and thus will increase network latency [Li,
Wang and Kong (2018)]. The objective of this research is to answer the following questions:
(a) How to transplant a deep learning model to the edge node?
(b) Is it feasible to run a deep learning model for a resource-scarce edge node?
(c) What measures can be taken to transplant the deep learning model to the edge node
easily and quickly?
(d) What is the next step needed to apply deep learning to edge computing?

2324 CMC, vol.65, no.3, pp.2321-2334, 2020

Network
Definition

Connectivity
Training

Weight Training

Model Streaming

Indispensable
Parameter

Identification

Parameter
Dictionary

Reasoning
Methodology

Parameter Filling

Target Platform
Language Model

Original Network Model Extract Cross-platform Transfer

Target Platform
Code Compilation

and Tuning

Burning and
Running

Model Testing

Model Burning and
Testing

Original
 Model

Lite
Model

Edge
Platform
Model

Figure 2: Four-stage pipeline for Model Transfer Framework

Our goal is to transplant small and medium-sized convolutional neural network models to
low-resources edge devices directly, thus, the inference can be performed on the edge
device locally. To meet this end, we propose a model transformation framework: a four-
stage pipeline as shown in Fig. 2. This framework can not only realize the rapid
transplantation of the model in the terminal nodes, but also significantly reduce the
memory usage during the model reasoning locally. Firstly, the network structure is
adapted or trimmed to a lightweight during model training. Several fine-tuning methods
of deep learning training can be performed at this stage to maximize the model accuracy.
Secondly, only the important part of different type of features are extracted after the
model is already trained and saved in the first stage, thus, only the necessary parameters
in the already trained model are saved. Some variables, such as environmental variables,
are not necessary parameters [Yu, Cai, Wang et al. (2019)] for model reasoning, we do
not need to keep them. The redundant part of the model variables can be removed as
much as possible. Thirdly, the inference rules of the deep learning classification
algorithm are analyzed. Fill in the extracted parameters according to reasoning rules and
use automatic coding to generate Arduino project files i.e., the transformed model.
Fourthly, the Arduino project can be compiled and run on the edge embedded platform
directly, such as, Arduino mega.
The rest of this paper is organized as follows: Section 2 discusses the related work of the
optimization of deep learning model. Section 3 introduces the process and methodology
of the model transfer framework proposed and the experimental work. Section 4 presents
the results and observations from the experiments. Section 5 presents the conclusions.

2 Related work
Recent years, we have seen extensive study of designing a fitting CNNs model to fit the
low-resources edge node. According to the computing power of edge nodes, edge hosts
for model transplantation are classified into three different categories: The first is the
mobile devices with reliable strong performance, such as mobile phones. There is also a
kind of large-scale mobile electric vehicle (EVs) [Tang, Wang, Song et al. (2019)] which
can be included in the first category. The second is the embedded devices with relatively

MoTransFrame: Model Transfer Framework for CNNs on Low-Resource 2325

strong performance, such as Raspberry Pi. The last is the small development boards with
weak performance, such as Arduino Mega or Arduino UNO R3. The model training
optimization methods such as network pruning [Tseng, Bhattachara, Fernández-Marqués
et al. (2018)], parameter sharing, and parameter quantization can be implemented on all
three types device. Chowdhery et al. [Chowdhery, Warden, Shlens et al. (2019)] used
network pruning technology. During the model training, the parameters below zero are
replaced by zero. However, this caused a loss of accuracy. Han et al. [Han, Mao and
Dally (2015)] further compressed the model size by integrated three technologies:
network pruning technology, parameter quantization technology and Hoffman code. They
call this deep compression technology. Besides, the team designed a hardware accelerator
called EIE. This hardware accelerator can directly run the compressed model to improve
the running speed and reduce memory consumption. Han’s deep compression technology
[Han, Kang, Mao et al. (2017)] has a good compression ratio for large network models.
For example, it can compress AlexNet by as much as 35 times and has the least impact on
accuracy at the same time. However, a deep compression method can cause a significant
accuracy loss in small network structure, so this method is not feasible in model
adaptation for low-resource edge nodes.
The image recognition optimized model proposed by Liu et al. [Liu, Cao, Luo et al.
(2017)] is utilized to divide the image recognition process into two layers: building the
edge layer locally on the mobile device and building a remote service in the cloud.
Courbariaux et al. [Courbariaux, Hubara, Soudry et al. (2016)] proposed a software
accelerator: DeepX. DeepX can significantly reduce equipment resources usage, which is
a severe bottleneck for large-scale mobile applications. Li et al. [Li, Wang and Kong
(2018)] designed an acceleration framework named DeepRebirth by “slimming” the
existing continuous parallel non-tensor layers and tensor layers. Yazici et al. [Yazici,
Basurra and Gaber (2018)] presented the feasibility of running several ubiquitous
machine learning algorithms on IoT edge devices. Kumar et al. [Kumar, Goyal and
Varma (2017)] proposed Bonsai to cut the model size and prediction cost while
preserving prediction accuracy. Yet, the model cannot be transplanted to edge nodes
quickly and easily.

3 MoTransFrame
Due to the strong dependence of model training on the deep learning framework, it is
impossible to transplant the model directly to the edge nodes, but manual transplantation
is too costly. Thus, it is necessary to design a general transplantation framework to
automate the model transplantation. According to the process and rules of model
transplantation, we designed a good performance of CNNs model transplantation
framework. We denote the already trained model as an weights matrix object, which is
expressed as ω={weights, bias}, among them: weights={conv, FC} describe the network
convolution weights; The conv represents different convolution layer weights; FC
represents the weight of the network full connection layer; Bias represents weight bias in
each layer of the network. Our overarching goal is to identify the CNNs model
architecture while maintaining competitive accuracy. To achieve this goal, we adopt three
main strategies when designing a model transfer framework:

2326 CMC, vol.65, no.3, pp.2321-2334, 2020

Strategy 1. Without designing a unique network structure, the original one is lightly
pruned, and the accuracy of the original model is retained to the greatest extent. Given an
already trained model, we will extract the corresponding weight according to the
structure of the network computing graph. The structure of the model can be obtained by
the structure defined in the training process.
Strategy 2. Input the trained model into the model interpreter framework we designed.
Consider a convolution layer consisting of 5×5 filters. The total number of parameters in
this layer is (number of input channels)×(number of filters)×(5×5). The framework
reorganizes parameters to generate the matching embedded language code format
according to the deep learning inference rules. It not only reduces model inference's
dependence on the environment but also cuts out unnecessary parts of the original model.
Strategy 3. After the model is transformed into the Arduino language version, the model
files are burned into the edge node. One of the most significant advantages is the
converted edge version of the model files can be directly compiled and run on the
Arduino platform. The converted model can then be tested to record the accuracy of the
test data set and record the runtime energy consumption of each instance.

3.1 Model extraction
Model parameters are proposed to be extracted according to the parameters needed for
deep learning classification. Eq. (1) describes the calculation process of the usual CNN
classification model reasoning. According to the formula, the inference calculation of the
classifier model can be realized by matrix product of each layer.

 (1)

Eq. (1) depicts that the calculation patterns of convolution, activation and pooling at each
layer are similar. We use this feature to propose a general parameter extraction method.
We read the model in the way of data flow. Generally, the model file is in the form of a
dictionary. The key of the dictionary is the variable name of the parameter, and the value
of the key is the value corresponding to the variable name. According to this formula, we
can clearly know which variables need to be extracted, and then use these variables as
keys to retrieve the model file to obtain the parameter matrix. Our model extraction
method is intended to collect CNN model with different type of parameters. Each trained
model consists of fixed parameter blocks and variable parameter blocks, and each
variable parameter block contains a mandatory parameter layer. We consider mandatory
parameters is necessary for model reasoning. By extracting the original model parameters

MoTransFrame: Model Transfer Framework for CNNs on Low-Resource 2327

accurately, we can minimize the loss of model accuracy.

3.2 Conforming memory requirements
Since the deep learning model is dependent on TensorFlow, PyTorch, Caffe, and third-
party imported libraries, it is impractical to port all related libraries into the Arduino
memory. In this case, training a deep learning model that can run the inference logic in
the edge node with only 8KB RAM directly is very crucial. We have to consider the
usage of the edge node memory carefully. Our goal is to meet the storage requirements of
Arduino when designing the training network structure, so the trained model can be
directly converted by the transformation framework. Optimization methods for model
size includes the following four steps:
1. Calculate the size of the deep learning network structure and the trained model;
2. Extract the parameters from the trained model according to the network structure and

calculate the size of the parameters.
3. Obtain the maximum data size allowed by the target device flash memory, and

calculate the space size needed for the storage of the converted cross-platform model;
4. If the size of the converted model meets the target device storage requirements, the

model can be directly transplanted to the edge node for compilation and running.
Otherwise, repeat the first step. In the last case, adjusting the size of the original model
by changing the neural network structure to meet the limit of the edge node’s memory.

3.3 Weights quantization and model adaption
Based on the method of network pruning in model compression, different thresholds are
set in the training process to determine whether a connection needs to prune. Different
levels of pruning can obtain different sizes of deep neural network models, and it can
further reduce the size of the model through parameter quantification [Zhang, Wang, Li
et al. (2018)]. Implementation of quantization is achieved by converting common
operations into equivalent octet versions. These operations involved convolution,
activation function, pooling, and splicing. For example, mapping a 16-bit floating-point
number to an 8-bit integer can reduce the model size by 4 times. We find that the
parameter values of the same layer of the model distributed in smaller intervals, and the
distribution of the parameters conform to the normal distribution law. We record the
minimum and maximum values. In the 8-bit quantization (together with other options),
we map all parameters of the same layer linearly (or use nonlinear mapping to compress
the space further) to an appropriate interval.
The interval [min, max] is evenly divided into 255 cells, and all input values correspond
to the interval values. In this way, the size of the model is compressed into 25%
compared to the original model size. All parameters can be restored when the weights are
loaded into the Arduino memory.
It has been proved that if the model uses 8-bit integer parameters in the reasoning process.
The calculation speed of the inference will be improved greatly. The reason is that the
gradient value has to be calculated in the training process, and the parameters are
continuously updated according to the loss function. Each time the parameter changes are

2328 CMC, vol.65, no.3, pp.2321-2334, 2020

microscopic. Therefore, the training process of the model requires high-precision
floating-point values. In the process of model reasoning, we also need to use the integer
value instead. We note that the output is still represented by a floating-point number. The
intermediate calculation is always an 8-bit number.

Input

Conv2D 6@5x5
#Connection[122304]
#Fetch Parameter[156]

Flash Size[624]

Relu+MaxPool 2x2
#Connection[4320]
#Fetch Parameter[0]

Flash Size[0]

Conv2D 16@5x5
#Connection[91600]

#Fetch Parameter[1510]
Flash Size[1510]

Relu+MaxPool 2x2
#Connection[1250]
#Fetch Parameter[0]

Flash Size[0]

1@28x28

6@24x24

10@12x12

10@8x8

1@1x10

FC 160x50
#Connection[8050]

#Fetch Parameter[8050]
Flash Size[8050]

FC 50x10
#Connection[500]

#Fetch Parameter[500]
Flash Size[500]

Output

1@1x50

10@4x4

Input

Conv2D 6@5x5
#Connection[122304]
#Fetch Parameter[156]

Flash Size[624]

Relu+MaxPool 2x2
#Connection[5880]

#Fetch Parameter[1176]
Flash Size[4704]

Conv2D 16@5x5
#Connection[151600]

#Fetch Parameter[1516]
Flash Size[6064]

Relu+MaxPool 2x2
#Connection[2000]

#Fetch Parameter[400]
Flash Size[1600]

FC 400x120
#Connection[48120]

#Fetch Parameter[48120]
Flash Size[192480]

FC 120x84
#Connection[10164]

#Fetch Parameter[10164]
Flash Size[40656]

1@32x32

6@28x28

6@14x14

16@10x10

16@5x5

FC 84x10
#Connection[840]

#Fetch Parameter[840]
Flash Size[3360]

1@1x120

1@1x84

Output

1@1x10

(a) (b)
Figure 3: Model architectures found with the best test accuracy on MNIST-10(a), and
compared the original LeNet-5 structure(b), each node in the graph are annotated with
connection, parameter and flash size, # represents the number of corresponding objects,
and the values in square brackets show the quantities

4 Results and discussions
LeNet-5 is a classic CNN classification architecture, which consists of two convolutional
and average pooling layers, followed by a flattening convolutional layer, then two full

MoTransFrame: Model Transfer Framework for CNNs on Low-Resource 2329

connection layers, and finally, a SoftMax classifier. We find that the size of the middle
matrix and the model generated by the LeNet-5 network structure exceed the Arduino’s
memory limit. Therefore, we propose an improved neural network structure of LeNet-5,
which changes the number of convolution kernels and the number of full connection
layers. The comparison between the improved network structure and the typical LeNet-5
structure is shown in Fig. 3.

4.1 Accuracy evaluation
MoTransFrame is compared with other compressed machine learning models, including
Bonsai [Kumar, Goyal and Varma (2017)], neural network pruning [Chowdhery, Warden,
Shlens et al. (2019)], decision jungles [Shotton, Sharp, Kohli et al. (2013)] and sparse w/o
pruning [Fedorov, Adams, Mattina et al. (2019)], as shown in Fig. 4. None of the above
algorithms had done a detailed analysis of the energy consumption of model reasoning.

(a) (b)

Figure 4: Four-stage pipeline for Model Transfer Framework

To solve the problem of transplanting deep learning model to edge computing platform,
on the one hand, it is necessary to reduce the loss of model precision, on the other hand, it
is also the most important to reduce the energy cost of running the model in edge
computing equipment. Among the above efficient compression models, the
MoTransFrame can transplant model to the Arduino mega board with higher accuracy in
the same number of parameters.

4.2 Energy assumption evaluation
Fig. 5 shows the structure of a general energy model for evaluating energy consumption
[Moons, Goetschalckx, Van Berckelaer et al. (2017)] of typical CNNs reasoning. The
global energy inferred each time is the sum of the energy consumed by communication
with flash and SRAM and the energy of the inference calculation itself.

2330 CMC, vol.65, no.3, pp.2321-2334, 2020

Flash
Storage

Neural
MAC
Array

EMAC

W
eight

A
ct.

Weight

Activation In

Activation out

Main SRAM Buffer Local ComputeEMED EL

 On CHIP

Figure 5: High-level overview of the system architecture
The total energy consumed by each network reasoning is:

inf DRAM HWE E E= + (2)

Using the model described in Zhang et al. [Zhang, Davoodi and Hu (2018)], the small
local SRAM or register file buffer contains the currently used weights and activations.
We compute the inference energy by the following equation:

DRAMEMAC SRAME E E= + + (3)

()MACE E M M= ×

() ()DRAM ImE E D P ageSize= × + (4)

() ()SRAM 2E E S P E S A= × + ×

In which EMAC represents the energy consumed by the MAC array, E(M) is the energy
consumed by one MAC operation, and M is MAC operations in the CNN model. EDRAM

represents the energy consumed by DRAM. E(D) is energy for fetching one word of a
fixed quantization from DRAM, and P represents the total number of parameters (same as
distinct edge weights) in the considered CNN. ImageSize is the number of words used to
represent the image. The term ESRAM is the energy consumed by the SRAM realization of
the activation and weight buffers. E(S) is energy for one SRAM access. P is the number
of parameters, and A is the number of activations in the considered CNN.
In our experiments, we used the numbers based on Horowitz [Horowitz (2014)] reported,
summarized in Tab. 2 and Tab. 3. Reference data of these two tables are calculated based
on 45 nm chips. We assumed 32-bit floating point MAC unit is used to perform both
multiplication and addition. (So, each multiplication was followed by addition as is the
case for matrix multiplication in each layer.)

MoTransFrame: Model Transfer Framework for CNNs on Low-Resource 2331

Table 2: Energy consumption of
multiplication and accumulations

Table 3: Energy consumption of
memory access

Operation MUL ADD
8-bit Integer 0.2pJ 0.03pJ

16-bit Integer 3.1pJ 0.1pJ
16-bit Floating Point 1.1pJ 0.4pJ
32-bit Floating Point 3.7pJ 0.9pJ

Memory size 64-bit Cache
8 K 10 pJ
32 K 20 pJ
1 M 100 pJ

DRAM 1.3-2.6 nJ

In Fig. 6, with the limitation of on-chip memory capacity, when the cost of the DRAM
access becomes a major part of total energy consumption, MoTransFrame is the minimum
energy solution for all precision targets. In high-efficiency machine learning algorithms,
both MoTransFrame and Bonsai have the best energy efficiency, but MoTransFrame we
proposed has the highest energy efficiency in the deep learning model inference.

Figure 6: Comparison of energy consumption with different CNN architectures

5 Conclusions
Edge nodes are the most widely deployed computing platform, but it is almost impossible
to implement large and complex CNN model with a small memory development board.
The main reason is the irreconcilable contradiction between the complexity of the deep
learning model and the scarcity of node resources. We describe the reasons why the low-
resource edge node is positioned as a deep learning deployment host. We have proven
that, contrary to previous statements, it is entirely possible to design a CNN for an MCU
with a minimum of 8 KB of RAM. Besides, the perspective of accuracy, MoTransFrame
has higher accuracy than other algorithms under the same number of parameters. The
energy consumption for reasoning is also lower than other algorithms.
As a result, the research conducted demonstrates that it is completely feasible to run the
most advanced deep learning algorithms on edge node devices for all purposes. We have
proposed different platform transplant frameworks based on model inference rules. Not
only can deep learning models be transplanted efficiently, but model accuracy can also be

2332 CMC, vol.65, no.3, pp.2321-2334, 2020

preserved to the greatest extent. The capabilities of artificial intelligence are extending to
the edge. Billions of things will connect with each other, and intelligent edge computing
will bring inestimable value. We hope that MoTransFrame can inspire readers to think
and explore more on edge computing and propose systematic and universal solutions.

Funding Statement: This work is supported by The National Key Research and
Development Program of China (2018YFB1800202, 2016YFB1000302, SQ2019ZD090149,
2018YFB0204301), the CETC Joint Advanced Research Foundation (6141B08080101),
The Major Special Science and Technology Project of Hainan Province (ZDKJ2019008),
The New Generation of Artificial Intelligence Special Action Project (AI20191125008).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Cai, Z. W.; He, X. D.; Sun, J.; Vasconcelos, N. (2017): Deep learning with low
precision by half-wave Gaussian quantization. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5918-5926.
Chen, H. W.; Yu, J. P.; Liu, F.; Cai, Z. P.; Xia, J. et al. (2019): Archipelago: a medical
distributed storage system for interconnected health. IEEE Internet Computing.
Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. (2017): A survey of model compression and
acceleration for deep neural networks. arXiv:1710.09282.
Chowdhery, A.; Warden, P.; Shlens, J.; Howard, A.; Rhodes, R. (2019): Visual wake
words dataset. arXiv:1906. 05721.
Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. (2016): Binarized
neural networks: training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv:1602.02830.
Fedorov, I.; Adams, R. P.; Mattina, M.; Whatmough, P. (2019): Sparse: Sparse
architecture search for CNN’s on resource-constrained microcontrollers. Advances in
Neural Information Processing Systems, pp. 4978-4990.
Guo, Y. T.; Liu, F.; Xiao, N.; Chen, Z. G. (2019): Task-based resource allocation bid in
edge computing micro datacenter. Computers, Materials & Continua, vol. 61, no. 2, pp.
777-792.
Han, S.; Kang, J. L.; Mao, H. Z.; Hu, Y. M.; Li, X. et al. (2017): ESE: Efficient
speech recognition engine with sparse LSTM on FPGA. Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 75-84.
Han, S.; Mao, H. Z.; Dally, W. J. (2015): Deep compression: compressing deep neural
networks with pruning, trained quantization and Huffman coding. arXiv:1510. 00149.
Han, S.; Pool, J.; Tran, J.; Dally, W. J. (2015): Learning both weights and connections
for efficient neural network. Advances in Neural Information Processing Systems, pp.
1135-1143.
Horowitz, M. (2014). 1.1 computing’s energy problem (and what we can do about it).

MoTransFrame: Model Transfer Framework for CNNs on Low-Resource 2333

IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 10-14.
Huang, M. F.; Zhang, K.; Zeng, Z. W.; Wang, T.; Liu, Y. X. (2020): An AUV-
assisted Data Gathering Scheme based on Clustering and Matrix Completion for Smart
Ocean. IEEE Internet of Things Journal.
Kumar, A.; Goyal, S.; Varma, M. (2017): Resource-efficient machine learning in 2 KB
RAM for the internet of things. Proceedings of the 34th International Conference on
Machine Learning, vol. 70, pp. 1935-1944.
Li, D. W.; Wang, X. L.; Kong, D. (2018): Deeprebirth: accelerating deep neural network
execution on mobile devices. Thirty-Second AAAI Conference on Artificial Intelligence.
Li, E.; Zhou, Z.; Chen, X. (2018): Edge intelligence: on-demand deep learning model
co-inference with device-edge synergy. Proceedings of the Workshop on Mobile Edge
Communications, pp. 31-36.
Li, H.; Ota, K.; Dong, M. X. (2018): Learning IoT in edge: Deep learning for the
Internet of Things with edge computing. IEEE Network, vol. 32, no. 1, pp. 96-101.
Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V. et al. (2017): A new deep learning-
based food recognition system for dietary assessment on an edge computing service
infrastructure. IEEE Transactions on Services Computing, vol. 11, no. 2, pp. 249-261.
Liu, F.; Tang, G. M.; Li, Y. H. Z.; Cai, Z. P.; Zhang, X. Z. et al. (2019): A Survey on edge
computing systems and tools. Proceedings of the IEEE, vol. 107, no. 8, pp. 1537-1562.
Liu, S. H.; Cai, Z. P.; Xu, H.; Xu. M. (2015): Towards security-aware virtual network
embedding. Computer Networks, vol. 91, pp. 151-163.
Moons, B.; Goetschalckx, K.; Van Berckelaer, N.; Verhelst, M. (2017): Minimum
energy quantized neural networks. 51st Asilomar Conference on Signals, Systems, and
Computers, pp. 1921-1925.
Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. (2016): Xnor-net: imagenet
classification using binary convolutional neural networks. European Conference on
Computer Vision, pp. 525-542.
Shotton, J.; Sharp, T.; Kohli, P.; Nowozin, S.; Winn, J. et al. (2013): Decision jungles:
compact and rich models for classification. Advances in Neural Information Processing
Systems, pp. 234-242.
Tang, Q.; Wang, K. Z.; Song, Y.; Li, F.; Park, J. H. (2019): Waiting time minimized
charging and discharging strategy based on mobile edge computing supported by
software defined network. IEEE Internet of Things Journal.
Teng, H. J.; Ota, K.; Liu, A. F.; Wang, T.; Zhang, S. B. (2020): Vehicles joint UAVs
to acquire and analyze data for topology discovery in large-scale IoT systems. Peer-to-
Peer Networking and Applications, 1-24.
Tseng, V. W.; Bhattachara, S.; Fernández-Marqués, J.; Alizadeh, M.; Tong, C. et al.
(2018): Deterministic binary filters for convolutional neural networks. International Joint
Conferences on Artificial Intelligence Organization.
Wu, H. J.; Zhang, J.; Cai, Z. P.; Liu, F.; Li, Y. Y et al. (2020): Towards energy-aware
caching for intelligent connected vehicles. IEEE Internet of Things Journal, vol. 7, no. 2,
pp. 1-10.

2334 CMC, vol.65, no.3, pp.2321-2334, 2020

Yazici, M. T.; Basurra, S.; Gaber, M. M. (2018): Edge machine learning: enabling
smart internet of things applications. Big data and Cognitive Computing, vol. 2, no. 3.
Yu, G.; Cai, Z. P.; Wang, S. Q.; Chen, H. W.; Liu, F. et al. (2019): Unsupervised
online anomaly detection with parameter adaptation for KPI abrupt changes. IEEE
Transactions on Network and Service Management.
Zhang, B.; Davoodi, A.; Hu, Y. H. (2018): Exploring energy and accuracy tradeoff in
structure simplification of trained deep neural networks. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 8, no. 4, pp. 836-848.
Zhang, J, M.; Wang, W.; Lu, C. Q.; Wang, J.; Sangaiah, A. K. (2019): Lightweight
deep network for traffic sign classification. Annals of Telecommunications, pp. 1-11.
Zhang, J. M.; Lu, C. Q.; Li, X. D.; Kim, H. J.; Wang, J. (2019): A full convolutional
network based on DenseNet for remote sensing scene classification. Mathematical
Biosciences and Engineering, vol. 16, no. 5, pp. 3345-3367.
Zhang, J.; Wang, X. L.; Li, D. W.; Wang, Y. L. (2018): Dynamically hierarchy
revolution: Dirnet for compressing recurrent neural network on mobile devices.
arXiv:1806.01248.

	MoTransFrame: Model Transfer Framework for CNNs on Low-Resource Edge Computing Node
	Panyu Liu0F , Huilin Ren2, Xiaojun Shi3, Yangyang Li4, *, Zhiping Cai1, Fang Liu5 and Huacheng Zeng6

	5 Conclusions
	References

