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Abstract: Aiming at the yaw problem caused by inertial navigation system errors 
accumulation during the navigation of an intelligent aircraft, a three-dimensional trajectory 
planning method based on the particle swarm optimization-A star (PSO-A*) algorithm is 
designed. Firstly, an environment model for aircraft error correction is established, and the 
trajectory is discretized to calculate the positioning error. Next, the positioning error is 
corrected at many preset trajectory points. The shortest trajectory and the fewest correction 
times are regarded as optimization goals to improve the heuristic function of A star (A*) 
algorithm. Finally, the index weights are continuously optimized by the particle swarm 
optimization algorithm. The optimal trajectory is found by the A* algorithm under the 
current evaluation index, so the ideal trajectory is planned. The experimental results show 
that the PSO-A* algorithm can quickly search for ideal trajectories in different environment 
models, indicating that the algorithm has certain feasibility and adaptability, and verifies 
the rationality of the proposed trajectory planning model. The PSO-A* algorithm has better 
convergence accuracy than the A* algorithm, and the search efficiency is significantly 
better than the grid search A star (GS-A*) algorithm. The PSO-A* algorithm proposed in 
this paper has certain engineering application value. The researchers will study the real-
time and systematic nature of the algorithm. 
 
Keywords: Trajectory planning, PSO-A*, error correction, intelligent aircraft. 

1 Introduction 
Rapid trajectory planning in complex battlefield environment is an important problem 
that need to be solved urgently in the field of intelligent aircraft control [Zheng (2019); 
Pan (2012); Pan (2018); Yue and Xia (2019)]. Not only should the commander consider 
the variability of the air environment and the time-varying dynamic threats, but also meet 
the performance constraints of the UAV itself [Zhang, Zhang, Wang et al. (2018)]. As 
such, trajectory planning is a multi-constrained optimization problem. Moreover, the 
correlation between different constraints leads to a large amount of data in the search 
space, which makes it difficult to implement trajectory planning [Chen, Wang, Liu et al. 
(2019); Chen, Wang, Xia et al. (2019); Zhang, Jin, Sun et al. (2018)]. In addition, the fuel 
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or power that the aircraft can carry when completing a flight mission is limited, so the 
entire flight must be limited by certain flight restrictions. The selection of trajectory must 
satisfy the premise of aircraft performance constraints, so that the aircraft can quickly and 
successfully reach the target position, ensuring the successful completion of the mission. 
The inertial navigation system obtains the current position information through the 
previously calculated position information and the measured acceleration and angular 
velocity. The accumulated positioning error is roughly proportional to the duration of the 
flight. Therefore, if the positioning error is too large during navigation, the aircraft will 
not be able to autonomously navigate along the preset trajectory route. In order to ensure 
the positioning accuracy of the inertial navigation system that works for a long time, it is 
necessary to correct the positioning error during the flight to ensure the intelligent aircraft 
to fly along a predetermined trajectory. Therefore, the authors establish an environment 
model in which the positioning error is corrected at a specific trajectory point and the 
trajectory planning under the constraint of navigation error can be achieved. 
Because trajectory planning is an NP-hard problem [Wei, Sun and Lv (2018); Zhang and 
Xue (2017); Xia, Hu and Luo (2017)], the performance of an applied algorithm directly 
affects the quality of the planned trajectory. Intelligent optimization algorithms such as 
genetic algorithm (GA), particle swarm optimization (PSO), and ant colony algorithm 
(ACO) have been widely applied in this field [Huang and Zhao (2018a); Fang and Xu 
(2017)]. Liu et al. [Liu, Wang, Liu et al. (2017)] added greed and mutation strategies to 
improve the gray wolf algorithm in order to overcome the shortcomings of development 
capabilities. Zhang et al. [Zhang, Quan, Wen et al. (2020)] mixed two or more 
optimization algorithms to solve the trajectory planning problem. The search mechanism 
of a single algorithm changed, and the convergence accuracy and path finding ability 
were effectively improved [Kamboj (2016)]. The above algorithms have certain 
advantages in realizing low-dimensional planning of trajectories on the premise of 
determining the number of trajectory points, but they are not suitable for specific 
scenarios where the number of trajectory points is uncertain. The more trajectory points, 
the greater the dimension. The calculation of the algorithm is extremely complicated, 
which affects its search performance, resulting in slow convergence speed, poor 
optimization ability, and bad quality of the planned trajectory. Therefore, the scope of 
engineering application is relatively limited.  
The A* algorithm Zhan et al. [Zhan, Wang, Chen et al. (2015); Zhang, Li, Zhang et al. 
(2016)], as a classic heuristic search algorithm [Huang, Zhao and Han (2018b)], can 
efficiently search for the optimal trajectory with the advantage of simplified calculation. 
According to the notion of a step-by-step search in the state space, each node is evaluated 
by the heuristic function [Wang, Ma and Xie (2010)]. The best node with a certain 
directivity is selected for expansion until the aircraft reaches the predetermined position. 
The A* algorithm has strong applicability without limitation of the number of trajectory 
points. Moreover, the existence of the heuristic function greatly reduces the search space 
and improves the search efficiency, although the performance of the A* algorithm greatly 
depends on the choice of the heuristic function. Whether the heuristic function is 
reasonable, directly affects its convergence speed and accuracy.  
In order to implement the three-dimensional trajectory planning of intelligent aircraft 
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under multiple constraints and uncertain conditions, the authors proposed a particle 
swarm optimization-A* (PSO-A*) algorithm. First of all, a reasonable cost function 
consisting of weighted evaluation indicators was designed to determine the feasibility of 
the trajectory point to be expanded. Next, the initial trajectory under different weights 
was planned by the A* algorithm. The trajectory cost, called the fitness value, was 
regarded as the basis for updating the position of the particle swarm. Finally，weight 
assignment was continuously updated by the PSO algorithm to search for cost functions 
suitable for complex environmental constraints and aircraft performance requirements. 
The trajectory corresponding to the optimized cost function was also continuously 
updated. In the later stage of the iteration, the ideal trajectory route was planned. 
The rest of the paper is organized as follows： 
In the second chapter, a model for correcting positioning errors at trajectory points is 
established. In the third chapter, trajectory point selection based on particle swarm 
optimization algorithm is described in detail. In the fourth chapter, the trajectory planning 
of two sets of trajectory point information is simulated. Finally, conclusions are drawn in 
chapter five. 

2 Trajectory planning model based on node error correction 
2.1 Environmental model and constraints 
We assume that the aircraft is flying in the airspace of 100 100 10km km km× ×  as shown in 
Fig. 1. The starting position is point A and the end position is point B. 
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Figure 1: Airspace environment diagram 

2.1.1 Navigation error setting 
Considering that the flight trajectory of the aircraft is affected by the positioning and 
navigation accuracy, it is defined that the positioning error of the aircraft in three-
dimensional space is represented by a horizontal error and a vertical error [De Filippis, 
Guglieri and Quagliotti (2012)]. Both are proportional to the flight distance and are defined 
as in Eq. (1). 
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L r
H r

δ
δ

∆ = ⋅
∆ = ⋅

                                                                                                                                (1)
 

In Eq. (1), L∆ and H∆  are the accumulated errors in the horizontal and vertical directions. 
δ  is the unit error, and r  is the flight distance. Assuming that the error of the aircraft's 
starting point is 0, the author stipulates that the vertical error and the horizontal error should 
be less than 𝜃𝜃 units when reaching the end point. In order to simplify the problem, the 
author assumed that when the vertical error and the horizontal error are both less than 𝜃𝜃 
units, the aircraft can still follow the planned trajectory. 

2.1.2 Error correction point setting  
In order to reach the end position successfully, the aircraft needs to constantly correct the 
positioning errors during the flight. There are certain fixed positions (called correction 
points) where the positioning errors can be corrected in the airspace. When the aircraft 
passes through a correction point, the corresponding errors can be eliminated according to 
this correction point type. As shown in Fig. 1, the red points are the horizontal correction 
points, represented by kl ; the blue points are the vertical correction point, represented by 

kh , and k  represents the correction point number. For example, when the aircraft passes 
through a horizontal correction point, the horizontal error is eliminated, while vertical error 
cannot be corrected. If the vertical and horizontal errors can be corrected in time, the 
aircraft will not deviate from the flight trajectory and can finally reach the end point after 
passing through several correction points. 

2.1.3 Constraints to avoid deviation from trajectory 
When the accumulated positioning errors exceed the limit, the aircraft will deviate greatly 
from the predetermined trajectory. Even if the correction point is passed through, the 
aircraft cannot be successfully guided back to the predetermined trajectory. As a result, the 
aircraft cannot reach the end point successfully. In this paper, it is stipulated that ik  
represents the number of a vertical correction point, and 1,2, ,i m=   is the order of 
performing vertical correction; jk  represents the number of a horizontal correction point, 
and 1,2, ,j n=   is the order of performing horizontal correction. ( ),H∆ • • , 

( ),L∆ • • indicate the vertical and horizontal errors accumulated after passing through 
adjacent correction points. The specific constraints are as follows: 
Conditions for successful correction of vertical positioning error: 

( ) ( )1
1 2, , ,

i i i jk k k kH h h L h lα α
−

∆ ≤ ∆ ≤                                                                            (2) 

In Eq. (2), 
jkl  represents the nearest horizontal correction point before correction point 

ikh . 

Conditions for successful correction of horizontal positioning error: 

( ) ( )1
1 2, , ,

j i j jk k k kH l h L l lβ β
−

∆ ≤ ∆ ≤
     

                                                                               (3) 

In Eq. (3), 
ikh  represents the nearest vertical correction point before correction point 

jkl . 
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2.1.4 Other constraints 
To simplify the planning model, it is assumed that the aircraft speed is always uniform. 
Moreover, when the aircraft makes a maneuvering turn, it is assumed that only the turning 
time is recorded without any accumulated positioning error. 

2.2 Objective function planning 
The flight range is limited by energy consumption and flight time allocation. In this paper, 
the shortest trajectory and the least number of correction points are regarded as the 
optimization principles. Finding an optimal trajectory enables the aircraft to quickly reach 
a designated location to perform combat missions. 

( )iQ k  represents the coordinate vector of the correction point ik  which the aircraft 
passes through, ik  represents the number of the correction point to perform the 
correction, and i  represents the sequence of performing the correction, 1,2,......,i r= . 
The coordinates of the starting point A and the end point B are indicated by ( )Q A and 

( )Q B  , respectively. A counting function ( )n k  is defined as Eq. (4). 

( )
      
    

1,
0   ,  

Correction point k passed by the aircraft
Correction point k not passed by the aircraft

n k 
= 


                                                 (4) 

In Eq. (5), the objective function is established with the shortest trajectory and the least 
correction points as trajectory planning indicators. 
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                                                       (5) 

3 Trajectory planning algorithm 
3.1 A* algorithm 
The A* algorithm is a heuristic algorithm, which is widely used in the field of trajectory 
planning. The cost of a correction point in the trajectory is estimated by the heuristic 
function, so that the flight direction intelligently tends to the specified position, which is 
the core of the A* algorithm. The A* algorithm takes up less storage space with low 
complexity and less calculation. The heuristic function is defined as Eq. (6). 

( ) ( ) ( )f n g n h n= +                                                                                                                    (6) 
In Eq. (6), n  is the expanded node; ( )g n  is the actual cost from the initial node to the 
node n  in the state space; ( )h n  is the estimated cost from node n  to the end node. The 
specific search rules are as follows: The trajectory gradually extends outward from the 
initial node. Before each extension, the set of nodes to be extended consists of all nodes 
that meet the constraints. Whether the current node is feasible can be evaluated by 
comparing the cost of each node to be extended. The node with the smallest cost function 
value ( )f n  is regarded as the next new node, and the set of nodes to be extended in the 
next round is updated until the target node meets the constraints. The following is the 
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algorithm flow [Huang, Fei, Liu et al. (2017)]: 
Step 1 Initialize. Create an Open list and a Close list. The starting point information is 
placed in the Open list, and the Close list is cleared. 
Step 2 Extension of the trajectory. Select the node with the smallest ( )f n  among all the 
nodes that meet the constraints as the extension node,and delete it from the Open list and 
load it into the Close list. 
Step 3 Constraint judgment. If the current expansion node does not meet the termination 
condition, repeat Step 2; otherwise, perform Step 4. 
Step4 Trajectory backtracking. Traverse the parent node in order from the last node, and 
store all the nodes in the result array, which is the final trajectory information of the result. 

3.2 3D trajectory planning algorithm based on PSO-A * 
Essentially, the choice of cost function determines the performance of the algorithm, so 
the importance of the A* algorithm lies in designing a reasonable heuristic function. 
Since the trajectory planning in this paper is based on the shortest trajectory and the least 
correction points, the cost function is defined as follows: 

1 2
1

( ) ( ) ( )
n

i
f n P i R nω ω

=

= ⋅ ∆ + ⋅∑                                                                                                  (7) 

In Eq. (7), ( )R n  represents the Euclidean distance from the current node to the end node, 
the penalty function ( )P i∆  represents the vertical offset of the i -th node in the direction 
of the 1i − -th node to the end node, meaning the degree of deviation from the specified 
trajectory.. The penalty function can speed up the search for the best correction point and 
avoid falling into partial optimal and deadlock. 1ω  and 2ω  are weight coefficients, and 

1 2 1ω ω+ = . The two indicators of the cost function have the consistent effect, one of 
which makes the aircraft try to avoid invalid flight and reduce the route, the other of 
which makes the aircraft quickly approach the end point and pass through fewer 
correction points. Because 1ω  and 2ω  have different contributions to the search efficiency 
of the algorithm, and may not be on the same order of magnitude, the setting of the 
weight coefficient is necessary, which determines the merits of the cost function and 
affects the search ability of the algorithm. 
As a classic swarm intelligence algorithm, PSO has unique advantages in parameter 
optimization. In order to obtain a better overall trajectory, it is necessary to optimize the 
weight coefficients to enhance the rationality of the cost function. In this paper, a three-
dimensional trajectory planning method combining A * algorithm and particle swarm 
optimization algorithm (PSO-A *) is proposed. In the PSO algorithm, the weight 
coefficient update depends on the level of fitness value. The updated weight coefficients 
and cost function form a one-to-one mapping. The corresponding current optimal 
trajectory is called a non-inferior solution. When the search is completed, the global 
optimal solution containing the information of the optimal trajectory is determined. The 
specific algorithm flow is shown in Fig. 2. 
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Figure 2: PSO-A* algorithm flow chart 

4 Results 
Environment parameter setting: The planning space is the area shown in Fig. 1.  
Data set 1: A total of 612 correction points, including 305 vertical correction points and 
306 horizontal correction points. The coordinate of the starting point A is (0,50,5) km, the 
coordinate of the ending point B is (100,59.65,5.02) km,  

1 2 1 225, 15, 20, 25, 30, 0.001α α β β θ δ= = = = = = . 
Data set 2: A total of 325 correction points, including 158 vertical correction points and 
167 horizontal correction points. The coordinate of starting point A is (0,50,5) km, and 
the coordinate of ending point B is (100,74.86,5.50) km,  

1 2 1 220, 10, 15, 20, 20, 0.001α α β β θ δ= = = = = = .  

4.1 Obtaining the optimal trajectory 
The simulation experiment was conducted on the MATLAB R2016b platform with Intel 
Core i5-4210H CPU@2.90 GHz, 4 GB memory, and 64-bit operating system. The PSO-
A* algorithm is applied to the established model for trajectory planning. The number of 
particles 40, the learning factor is 1 22 , 2c c= = , the inertia weight is 0.8ω = , and update 
times are 100. The optimal trajectory of dataset 1 is obtained when the weight 
distribution are 1 20.43 , 0.57ω ω= = . A total of 8 correction points are passed through, 
including 4 vertical correction points and 4 horizontal correction points. The flight range 
is 105160.54 m, as shown in Fig. 3. The optimal trajectory of dataset 2 is obtained when 
the weight distribution are 1 20.31 , 0.69ω ω= = ,. A total of 12 correction points are passed 
through, including 6 vertical correction points and 6 horizontal correction points. The 
flight range is 110004.89 m, as shown in Fig. 4. 
Figs. 3(b), 3(c), 3(d), 4(b), 4(c) and 4(d) are three views of trajectory 1 and trajectory 2 in 
the X, Y, and Z directions, respectively, which intuitively show the offset of the intelligent 
aircraft during the flight. At the same time, Tabs. 1 and 2 record the correction point 
number and the positioning errors before correction in dataset 1 and dataset 2, respectively. 
In order to facilitate statistics, the horizontal correction point is indicated by 0, and the 
vertical correction point is indicated by 1. It can be seen from Figs. 3(b), 3(c), 3(d), 4(b), 
4(c) and 4(d) that the horizontal offset is much larger than vertical offset, indicating that the 
algorithm searches for extended correction points with the horizontal offset as the main cost. 
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The flight range is closely related to the distribution of correction points. The positioning 
errors before correction in Tabs. 1 and 2 meet all constraints, further verifying the 
feasibility of all correction points and the effectiveness of the algorithm. 
The adjacent extended points are different types of correction points, which means that 
the horizontal errors and vertical errors are alternately corrected during the flight. To 
minimize the cost of the trajectory, when approaching next correction point during flight, 
the positioning error before correction must not only satisfy the constraints, but also 
approach the upper limit of the allowable positioning error as much as possible under the 
guidance of the algorithm heuristic function.  
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(a) 3D schematic diagram of trajectory          (b) Front view in x direction 
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(c) Side view in y direction                         (d) Top view in z direction 

Figure 3: Results for dataset 1 
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(a) 3D schematic diagram of trajectory            (b) Front view in x direction 
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(c) Side view in y direction                          (d) Top view in z direction 

Figure 4: Results for dataset 2 

Table 1: Correction points information in dataset 1 
Correction point 

number 
Vertical positioning error 

before correction 
Horizontal positioning error 

before correction 
Correction point 

type 
0 0 0 A 

503 13.38792 13.38792 1 
69 8.8073432 22.1952621 0 

237 21.306825 12.4994831 1 
155 11.2008147 23.7003005 0 
540 17.9140674 6.7132501 1 
250 11.4293251 18.1425752 0 
340 24.1984492 12.7691241 1 
277 12.002376 24.7715001 0 
612 28.3532805 16.3509045 B 
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Table 2: Correction points information in dataset 2 
Correction point 

number 
Vertical positioning error before 

correction 
Horizontal positioning error before 

correction 
Correction point 

type 
0 0 0 A 

163 13.2879 13.2879 0 
114 18.6221 5.3342 1 

8 13.922 19.2561 0 
309 19.4463 5.5243 1 
305 5.9687 11.493 0 
123 15.1731 9.2044 1 
231 9.4367 18.6411 0 
160 18.1539 8.7172 1 
92 5.7762 14.4933 0 
93 15.2609 9.4847 1 
61 9.8342 19.3189 0 

292 16.3881 6.5539 1 
326 6.9605 13.5144 B 

4.2 Performance comparison of different algorithms 
4.2.1 Standard A* algorithm 
The parameter setting is consistent with Section 4.1. The author uses the standard A* 
algorithm for trajectory planning. 1 21 , 1ω ω= = , and the optimal flight range of dataset 1 
is 51.0635 10 m×  with 8 correction points, including 4 horizontal and 4 vertical correction 
points. The optimal flight range of dataset 2 is 51.1139 10 m×  with 12 correction points, 
including 6 horizontal and 6 vertical correction points. Tab. 3 and Tab. 4 list all the 
information of the correction points. Compared with the results in Section 4.1, Part of the 
correction points obtained by the PSO-A* algorithm is replaced. Although the number of 
correction points is equal to the former, the cost of the trajectory is relatively large, which 
indicates that the A* algorithm lacks partial search capability and has obvious 
randomness in extension of correction points. 

Table 3: Correction points information in dataset 1 solved by the A* algorithm 

Correction point 
number 

Vertical positioning error before 
correction 

Horizontal positioning error before 
correction 

Correction point 
type 

0 0 0 A 
521 9.62651 9.62651 0 
64 21.75541 12.1289 1 
80 11.4211 23.55 0 

170 23.3982 11.9771 1 
278 10.457 22.4341 0 
369 21.8931 11.4361 1 
214 13.3136 24.7497 0 
397 22.33068 9.01708 1 
612 16.9727 25.9898 B 
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Table 4: Correction points information in dataset 2 solved by the A* algorithm 

Correction point 
number 

Vertical positioning error before 
correction 

Horizontal positioning error before 
correction 

Correction point 
type 

0 0 0 A 
163 13.2879 13.2879 0 
114 18.6221 5.3342 1 

8 13.922 19.2562 0 
309 19.4463 5.5243 1 
121 11.252 16.7763 0 
123 16.6036 5.3516 1 
49 11.7902 17.1418 0 

160 18.304 6.5138 1 
92 5.7762 12.29 0 
93 15.2609 9.4847 1 
61 9.8342 19.3189 0 

292 16.3881 6.5539 1 
326 6.9605 13.5144 B 

4.2.2 GS-A* algorithm 
Grid search (GS) algorithm is a search algorithm similar to traversal and has strong stability. 
However, the amount of calculation of the GS algorithm is proportional to the square of the 
grid resolution. The higher the resolution, the more complicated the calculation and the 
longer the convergence time. In the simulation, it is assumed that the grid spacing is 1 and 
the grid size is 100 100× . The authors performed trajectory planning on dataset 1 by grid 
search and A*(GS-A*) algorithm. Fig. 5 shows the optimal flight range under different 
weight distribution. The optimal trajectory is consistent with the result obtained by the PSO-
A* algorithm, but the corresponding optimal ratio of weight coefficient is approximately 1. 
Obviously, the mapping from the cost function to the optimal trajectory is many-to-one, 
which indicates that the PSO-A* algorithm has certain fault tolerance when finding weight 
combinations, and the optimal weight distribution is not unique. 
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Figure 5: Weight distribution 
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4.2.3 Comparison of results obtained by several algorithms 
The environmental parameters are changed, such as the number and the layout of 
correction points. In order to compare the optimization capabilities of different 
algorithms, trajectory planning is performed separately by A* algorithm, GS-A* 
algorithm and PSO-A* algorithm. The average values after 10 tests under each 
environmental condition are counted. The results are shown in Tab. 5. 

Table 5: Trajectory evaluation index of different algorithms 

Region Algorithms Flight range /km Number of correction points Time consumption /s 

Dataset 1 

A* 108.33 9.63 2.25 

GS-A* 105.16 8 40.81 

PSO-A* 105.41 8.14 11.33 

Dataset 2 
A* 

GS-A* 
PSO-A* 

113.75 12.91 3.17 

110.00 12 58.28 

110.67 12.21 14.19 

 
Comparing the several indicators in Tab. 5, the A* algorithm has the highest search 
efficiency and the shortest search time. Because once the heuristic function is determined, 
only a single search is needed to obtain a trajectory. However, the results have a certain 
randomness. The quality of the solution may be poor, resulting in a larger cost of 
trajectory.Because the GS-A* algorithm has the advantages of traversal search and strong 
overall search capability. The consistency of the optimal trajectory obtained through 
multiple experiments indicates that the GS-A* algorithm has good stability, but it will 
bring the disadvantages of more calculations and longer search time. PSO-A* algorithm 
can plan better trajectory results with fewer iterations, greatly reducing the trajectory 
search time and overcoming the defect that the convergence accuracy of the A* algorithm 
is limited by the heuristic function. The conclusions obtained above indicate that the 
PSO-A* algorithm can be well applied to the model in this paper and effectively realize 
3D trajectory planning for intelligent aircraft. On the premise of ensuring that the aircraft 
successfully approaches the end point to complete the specified mission, the author's 
method can quickly search for a more ideal trajectory, and the performance is also greatly 
improved compared with the original algorithm. 

5 Conclusions 
By evaluating the optimal weight coefficient distribution of different indicators and 
constructing the most reasonable cost function, the optimal planning trajectory is 
obtained. The experimental results show that the PSO-A* algorithm can overcome the 
defects of the A* algorithm such as lack of optimization ability and low convergence 
accuracy under the same scenario. Although the convergence accuracy and stability of 
the PSO-A* algorithm are slightly inferior to the GS-A* algorithm, the calculation takes 
less time, and the convergence speed is significantly superior than the latter. In actual 
flight missions, it is completely acceptable to sacrifice part of the trajectory cost to 
shorten the search time. 
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