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Abstract: Graph convolutional networks (GCNs) have been developed as a general and 
powerful tool to handle various tasks related to graph data. However, current methods 
mainly consider homogeneous networks and ignore the rich semantics and multiple types 
of objects that are common in heterogeneous information networks (HINs). In this paper, 
we present a Heterogeneous Hyperedge Convolutional Network (HHCN), a novel graph 
convolutional network architecture that operates on HINs. Specifically, we extract the 
rich semantics by different metastructures and adopt hyperedge to model the interactions 
among metastructure-based neighbors. Due to the powerful information extraction 
capabilities of metastructure and hyperedge, HHCN has the flexibility to model the 
complex relationships in HINs by setting different combinations of metastructures and 
hyperedges. Moreover, a metastructure attention layer is also designed to allow each node 
to select the metastructures based on their importance and provide potential 
interpretability for graph analysis. As a result, HHCN can encode node features, 
metastructure-based semantics and hyperedge information simultaneously by aggregating 
features from metastructure-based neighbors in a hierarchical manner. We evaluate 
HHCN by applying it to the semi-supervised node classification task. Experimental 
results show that HHCN outperforms state-of-the-art graph embedding models and 
recently proposed graph convolutional network models. 
 
Keywords: Graph convolutional networks, heterogeneous information networks, 
metastructure. 

1 Introduction 
Convolutional neural networks (CNNs) have been widely used in Euclidean data (e.g., 
images [Luo, Qin, Xiang et al. (2020); Peng, Long, Lin et al. (2019)], text [Liu, Yang, Lv 
et al. (2019); Zeng, Dai, Wang et al. (2019)] and video [Zhang, Jin, Sun et al. (2018); 
Xiang, Shen, Qin et al. (2019)]). As an extension, graph convolutional networks (GCNs) 
have attracted much attention for the purpose of designing CNNs on graphs in recent 
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years. Because graphs can be irregular, the goal of graph convolution is to model a target 
node by a layer-wise feature propagation based on its neighbors. Due to the ability to 
capture both graph structure and node features, GCNs have shown superiority in many 
machine learning tasks, such as semi-supervised node classification [Chiang, Liu, Si et al 
(2019)], graph classification [Ma, Wang, Aggarwal et al. (2019)] and link prediction 
[Nathani, Chauhan, Sharma et al. (2019)]. 

 
Figure 1: An example of HIN. (a) Three types of nodes: Author, Paper and Subject. (b) A 
HIN modeled by these three types of nodes. (c) The schema of the HIN. (d) Three 
metastructures with different semantics. (e) The neighbors of node P1 based on the first 
metastructure. (f) Two hyperedges composed of the metastructure-based neighbors of P1 

Previous GCNs mostly focused on homogeneous information graphs. However, in real-
world systems, graphs often contain multiple types of objects and links, which are called 
heterogeneous information networks (HINs). Compared with homogeneous graphs, the 
relationships between objects in a HIN are much more complex and have richer 
semantics. So, it is inappropriate to simply extend previous homogeneous GCNs to HINs. 
Fig. 1 shows a concrete HIN example containing three types of nodes (Author, Paper and 
Subject) where the same type nodes are not connected with each other directly (e.g., a 
paper link to another one through an author or a subject). To capture rich semantics, a 
network schema of the HIN should be built first. For example, in Fig. 1(c), the network 
schema is defined over the entity types: Author, Paper and Subject. Then, we can extract 
semantics by the connections between nodes. A widely used method, metapath [Sun, Han, 
Yan et al. (2011)], is defined as a sequence of entity types and can obtain semantics 
effectively. As a common situation, some special semantics are beyond the ability of 
meta-path. For example, in Fig. 1(d), the semantic of the last illustration is that two 
papers have the same author and belong to a common subject that cannot be described by 
the sequence of entity types. Therefore, we propose to use metastructure [Huang, Zheng, 
Cheng et al. (2016)] to obtain more flexible semantics. The first and second illustrations 
in Fig. 1(d) are two metastructures that can also be obtained by metapaths P-A-P and P-S-
P, while the last illustration in Fig. 1(d) can be described by metastructure but not 
metapath. It is worth noting that the metastructure is similar to metagraph [Zhang, Yin, 
Zhu et al. (2018)] conceptually, which has extended metapath to model more complex 
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semantics. Metagraph can obtain richer structural contexts during the processes of 
random walks performed on HINs, while metastructures focus more on specific 
connections among different node types. 
Given a metastructure, the metastructure-based neighbors can be obtained which are 
defined as the set of nodes that connect to a target node via the metastructure. For 
example, the neighbors of P1 based on the first metastructure in Fig. 1(d) are {P1, P2, P3, 
P4, P5}. Nevertheless, there is more information between a pair of nodes beyond the 
semantic contained in a metastructure. For example, considering the neighbors captured 
above, {P1, P2, P3, P4} are connected by node A1, while {P1, P5} are connected by 
node A2. Because there are multiple object types, this information is important when 
modeling a HIN. Therefore, it is necessary to model the high-order relations between 
metastructure-based neighbors. We propose to adopt hyperedge to preserve these high-
order relations. For example, the relation of {P1, P2, P3, P4} can be described by a 
hyperedge that is defined as the neighbors of node A1, and the relation of {P1, P5} can 
be described as the neighbors of node A2. It is noted that different hyperedges need to be 
constructed in different application scenarios. 
In a HIN, a target node is influenced by multiple metastructures. Since different 
metastructures have diverse semantics, how to assign the importance weights of 
metastructures influences the performance of graph analysis tasks directly. As a result, it 
is also necessary to assign proper importance to different metastructures. Based on the 
above considerations, we propose a Heterogeneous Hyperedge Convolutional Network 
(HHCN) model. We take node features as input and adopt the following two strategies. 
On the one hand, after the metastructure-based neighbors are captured, we further 
consider the information of hyperedges that reflect their inner relations and adopt an 
adaptive renormalization trick during the propagation of node features. On the other hand, 
to learn the importance of different metastructures on the target node, we introduce the 
attention mechanism into our model. By assigning proper weights to metastructures, the 
attention mechanism cannot only improve the quality but also propose the interpretability 
of our model. 
The contributions of this paper can be summarized as follows. 
 We propose a novel Heterogeneous Hyperedge Convolutional Network (HHCN) 

model that uses metastructures to capture semantics and uses hyperedges to capture 
the high-order relations of the metastructure-based neighbors. 

 We introduce an adaptive renormalization trick in the process of hyperedge 
convolution and adopt an attention mechanism to differentiate the importance of 
different metastructures on target nodes. 

 We conduct experiments on real-world datasets to demonstrate the effectiveness of 
our proposed HHCN framework. 

2 Related work 
In this section, we will review the related studies in two aspects: heterogeneous graph 
embedding and graph convolutional networks. 
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2.1 Heterogeneous graph embedding 
Some previous works focus only on learning node vectors of homogeneous information 
graphs. For instance, DeepWalk [Perozzi, Al-Rfou and Skiena (2014)] and node2vec 
[Grover and Leskovec (2016)] conduct random walks and parameterized random walks 
on a graph respectively to sample linear sequences consisting of nodes, then Skip-gram 
[Mikolov, Sutskever, Chen et al. (2013)] is used to learn node representations by treating 
node sequences as word sentences. LINE [Tang, Qu, Wang et al. (2015)] designs 
objective functions to learn the representations of nodes by modeling the first- and 
second-order proximities. 
To combine the characteristics of heterogeneous graph and graph embedding, two 
algorithms have been proposed recently for embedding learning in a HIN. To model the 
different type edges of a HIN, HNE [Chang, Liu, Si et al. (2015)] and PTE [Tang, Qu and 
Mei (2015)] divide a HIN into multiple bipartite graphs and learn node embeddings by 
capturing neighborhood relationships between nodes. Considering that the typed edges 
may not fully align with each other in a HIN, Aspem [Shi, Gui, Zhu et al. (2018)] 
proposes the concept of aspect and decomposes a HIN into multiple aspects, then the 
embeddings are derived from these aspects. HEER [Zhang, Lu, Zhou et al. (2016)] 
embeds HINs via edge representations and combines different aspects into a joint 
learning process. In Sun et al. [Sun, Han, Yan et al. (2011)], metapath is proposed to 
acquire semantics in a HIN, based on which many heterogeneous graph embedding 
methods are also proposed. Metapath2vec [Dong, Chawla and Swami (2017)] captures 
graph contexts by performing random walks based on metapaths, and a heterogeneous 
Skip-gram model is used to learn node embeddings. Because one metapath can describe 
only one type of relationship, metagraph2vec [Zhang, Yin, Zhu et al. (2018)] tries to 
build metagraphs that contain multiple paths between nodes. Then, metagraph2vec can 
capture richer structural contexts and semantics between distant nodes. Given a set of 
relationships specified in forms of metapaths in a HIN, HIN2vec [Fu, Lee and Lei (2017)] 
converts the learning of embeddings of nodes and metapaths to a relationship prediction 
task, through which the rich semantics of relationships and the details of the network 
structure can be captured. 
There are also studies that use hyperedges to represent the relations among objects. 
HEBE [Gui, Liu, Tao et al. (2016)] models the proximities among participating objects in 
a hyperedge and can preserve more contextual information in embedding learning. To 
preserve local as well as global hyperedge structural information, DHNE [Tu, Cui, Wang 
et al. (2018)] proposes a new deep model to realize a non-linear tuple-wise similarity 
function. However, they regard the hyperedges in a HIN as events that are 
indecomposable and much semantics is ignored. HGNN [Feng, You, Zhang et al. (2019)] 
uses hyperedge to deal with more complex connections than pairwise relationships and 
generalizes the convolution operation to the hyperedge learning process with hyperedge 
Laplacian. Nevertheless, it does not consider the rich semantics between different nodes 
and is only used in homogeneous graphs. 
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2.2 Graph convolutional network 
Since deep learning has achieved great success on Euclidean data, there is an increasing 
interest in utilizing neural networks to process the data represented in graph domains. In 
Scarselli et al. [Scarselli, Gori, Tsoi et al. (2008)], the concept of graph neural network 
(GNN) was first proposed that extended neural networks to graphs. With different 
mechanisms being applied to GNN, the methods are divided into spectral-based and 
spatial-based approaches. 
The convolution operation of spectral approaches is formulated in the spectral domain of 
the graph. Henaff et al. [Henaff, Bruna and LeCun (2015)] utilizes the graph Laplacian 
eigenbasis to analogize the Fourier transform through which convolution can be 
performed on general graphs. To simplify the calculation process, a Chebyshev 
expansion of the graph Laplacian [Defferrard, Bresson and Vandergheynst (2016)] is 
used to approximate the spectral filters in the spectral domain. Kipf et al. [Kipf and 
Welling (2016)] approximate the Chebyshev polynomials by the localized first-order 
neighbors, and a graph convolutional network is proposed. 
The spatial-based graph convolution updates the features of the central node by 
aggregating the features of its neighbors directly. GraphSAGE [Hamilton, Ying and 
Leskovec (2017)] assumes that different aggregation functions over a fixed-size node 
neighbor can be used in inductive graphs. In Veličković et al. [Veličković, Cucurull, 
Casanova et al. (2017)], the attention mechanism is applied, and the influence of different 
nodes on the target node can be described. To extend graph attention networks to HINs, 
HAN [Wang, Ji, Shi et al. (2019)] used node- and semantic-level attention to aggregate 
neighbor information based on metapaths. In contrast, our method utilizes metastructures 
to obtain semantics and further models richer relations between metastructure-based 
neighbors by hyperedges. 

3 Preliminaries 
Definition 1 Heterogeneous Information Networks (HINs). A HIN is defined as a 
graph ( , , , , )G V E U ϕ φ= , in which V  and E  are the sets of nodes and edges, and U  is a 
set of object types and link types. Each node v V∈  and each edge e E∈  are associated 
with their mapping functions ( ) : Vv V Uϕ →  and ( ) : Ee E Uφ →  respectively. If 

2V EU U+ > , the graph G  is a heterogeneous information network. Fig. 1(b) gives an 
example of HIN which contains three types of objects (Author, Paper, and Subject). 
Definition 2 Network Schema. A network schema ( , )G V EU U U=  is a directed graph defined 
over object types which can be seen as a template for the heterogeneous information network
G . For example, Fig. 1(c) is the network schema of the HIN in Fig. 1(b). 
Definition 3 Hyperedge. A hyperedge ε  is a set of objects, representing the semantic 
information of relationships among multiple objects. In Fig. 1(f), {P1, P2, P3, P4} is an 
example of hyperedge, and the semantic presents that they all are neighbors of node A1. 
Definition 4 Incident Matrix. An incident matrix VH ε×  is a matrix that shows the 
relationships between objects V  and a hyperedge set ∆  in which each row represents an 
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object and each column represents a hyperedge. If object v V∈  belongs to hyperedges 
ε ∈∆ , ( , ) 1h v ε = ; otherwise ( , ) 0h v ε = . 

4 Model 
In this section, we describe our proposed Heterogeneous Hyperedge Convolutional 
Network (HHCN) model. After generating the metastructure-based neighbors, our model 
consists of three steps. The first step builds the incident matrix according to hyperedges 
and exploits hyperedge convolution to preserve the hyperedge information. The second 
step tries to combine the different node embeddings learned by hyperedge convolution 
based on different metastructures and utilizes the attention mechanism to learn the 
importance weights of each metastructure automatically. The final step involves the 
application of a multilayer perceptron (MLP) to predict the output and the design of the 
objective function. 

4.1 Hyperedge convolutional network 
For a graph with node set V  and its corresponding adjacency matrix A , the normalized 
graph Laplacian matrix [Spielman (2007)] of the graph that is real symmetric positive 
semi-definite is defined as in Eq. (1). 

1 1
2 2

nL I D AD
− −

= −                  (1) 

where D  is a diagonal degree matrix ii ij
j

D A= ∑ , and n  is the number of nodes. 

Then, the convolution on a graph [Shuman, Narang, Frossard et al. (2013)] is defined as 
the multiplication of a signal x  with a filter gθ  , which is shown in Eq. (2): 

Tg x Ug U xθ θ∗ =                   (2) 

where U  is the eigenvector matrix of the normalized graph Laplacian TL U U= Λ , TU x  
is the graph Fourier transform of the input x , Λ  is the diagonal matrix of eigenvalues of 
L  and gθ  is a function of the eigenvalues of L . To avoid computationally expensive 
operations, the spectral filter ( )gθ Λ  was approximated by thk  order Chebyshev 
polynomials [Defferrard, Bresson and Vandergheynst (2016)] and the spectral 
convolution on the graph can be approximated as Eq. (3): 

' '

0 0max max

2 2( ) ( )
K K

T
k k n k k n

k k
g x U T I U T L I xθ θ θ

λ λ= =

∗ ≈ Λ − = −∑ ∑              (3) 

where ( )kT ⋅  denote the Chebyshev polynomial, and 'θ  is the Chebyshev coefficients. 
In GCN [Kipf and Welling (2016)], the model was further simplified by setting 1K = , 

max 2λ ≈ , ' '
0 1=θ θ θ= − . Then, Eq. (3) can be simplified as Eq. (4): 

1 1
2 2

ng x I D AD xθ θ
− − 

∗ ≈ + 
 

                (4) 
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From the above analysis, it can be concluded that the key to graph convolution is to find the 
normalized graph Laplacian matrix whose eigenvectors can be used to form Fourier basis. 
Considering the situation, we want to utilize hyperedge information in the process of graph 
convolution, and the normalized graph Laplacian matrix should be based on incident 
matrix H  instead of adjacency matrix A . Inspired by Feng et al. [Feng, You, Zhang et al. 
(2019)], the normalized hyperedge graph Laplacian matrix is defined as Eq. (5): 

1 1
12 2T

o n v e vL I D HWD H D
− −−= −                 (5) 

where H  is the incident matrix, W  is a diagonal weight matrix comprising the weights 
of hyperedges, which is initialized as an identity matrix, n  is the number of nodes and 

eD  is the hyperedge degree diagonal matrix. ( ) ( ),e iii
v V

D h v ε
∈

= ∑  for a hyperedge ie ε= , vD  

is the node degree diagonal matrix and ( ) ( ) ( ),v jjj
e

D w e h v e
ε∈

= ⋅∑  for a node jv V= . 

By virtue of the property of being real symmetric positive semidefinite of oL  [Feng, You, 
Zhang et al. (2019)], we can perform Fourier transform in an orthonormal space, which 
is formed by the eigenvectors of oL . As a result, a convolution formula can be obtained 
by taking similar steps to GCN, which is shown in Eq. (6): 

1 1
12 2( )T

n v e vg x I D HWD H D xθ θ
− −−∗ = +               (6) 

In GCN, a renormalization trick is also assumed to alleviate the problem of numerical 
instabilities, which is shown in Eq. (7): 

              (7) 

where nA A I= +  and ii ij
j

D A= ∑  . 

In Eq. (7), the adjacency matrix is added to an identity matrix, which can be regarded as 
increasing the interactions of the nodes themselves. However, because the interactions of 
the nodes themselves have been involved in hyperedges, the strategy may not be suitable. 
for hyperedge convolution. Here, we adopt an adaptive renormalization trick by setting a 
learnable weight parameter α , and the hyperedge convolution is defined as Eq. (8): 

                (8) 

where nH H Iα= + ⋅ , and vD  and eD  are the corresponding diagonal hyperedge matrix 
and diagonal node degree matrix. Then, the parameter α  can be learned automatically. 
Eventually, the hyperedge convolution layer can be expressed as Eq. (9): 

              (9) 

where ( )σ ⋅  is the sigmoid activation function, and ( )lθ  is the parameter matrix of the thl  
layer. ( )lZ  is the activation matrix in the thl  layer, and ( )0Z  is the input feature matrix. 



2284                                                                       CMC, vol.65, no.3, pp.2277-2294, 2020 

For the convolution operation in Eq. (8), the difference between HHCN and GCN is the node 
connection matrix, which is THH   in HHCN and adjacency matrix A  in GCN apart from the 
normalized term. In practice, the hyperedge incident matrix H  is sparse, and the node 
connection matrix  of HHCN can be computed efficiently. Then, hA  can also be 

sparse matrix where a nonzero item means that a pair of nodes have at least a common 
hyperedge. Considering the input N Dx R ×∈  with N  nodes and D  dimensional feature vector 
for every node features and a matrix of filter parameters D FRθ ×∈  with F  filters, the 
convolution operation of HHCN has complexity ( )hE DF  in comparison to GCN with 

( )E DF , where hE  and E  are the number of nonzero items in hA  and A respectively. 

4.2 Combining multiple metastructures 
If we select a set of T  network metastructures { }1,..., TM M , then the comprehensive node 
embedding should be based on all these metastructure-based embeddings. Because different 
metastructures reflect distinct semantic information, the specific importance of each 
metastructure is expected. Here, a metastructure attention layer is leveraged to assign 
different weights to different metastructures and fuse them together automatically. At first, 
a trainable attention context vector τ  is used to denote the preference. A higher attention 
coefficient will be assigned to a metastructure if it is similar to the context vector. 
There are two strategies for learning the attention coefficient of different metastructures 
here. One strategy is to treat each node in the HIN as an independent individual and 
assign different weights to the metastructures associated with the node. The other strategy 
is to regard the nodes extracted from a metastructure as a whole and learn an overall 
attention coefficient for each metastructure. To facilitate the display of the impacts of the 
attention mechanism in the following experiments, we select the second strategy for our 
model. The metastructure-based embedding first undergoes a linear transformation with 
non-linear activation. Then the attention coefficient of a node is based on the similarity 
between context vector τ  and the transformed embedding. For a metastructure iM , its 
attention coefficient iMw  can be achieved by averaging the attention coefficients of the 
nodes extracted from it, which is shown in Eq. (10): 

1 tanh( )i

i
i

MT
M j

j Mi

w W z b
M

τ
∈

= ⋅ ⋅ +∑             (10) 

where W  is the weight, b  is the bias parameter of the linear transformation and iM  is 
the number of nodes extracted from iM . 
In addition, the softmax function is used to normalize the importance of metastructure 

iM , and the weight iMβ  is obtained as Eq. (11): 

1

exp( )
max( )

exp( )

ii

i

i

MM
M T

M
k

w
soft w

w
β

=

= =

∑
            (11) 
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Lastly, the comprehensive node embedding can be obtained by weighted combining of all 
the metastructure-based embeddings, which is shown in Eq. (12): 

1

k

k

T
M

M
k

Z Zβ
=

= ⋅∑             (12) 

4.3 Loss function 
Given a HIN G  with n  nodes, a labeling function ( ) :v V Lγ →  can be used to map a node to 
one of the labels in {1,..., }L . 

When all or part of the nodes are labeled, a one-layer MLP is applied on the node 
embeddings and predict the labels. The objective is to minimize the cross-entropy loss 
between the ground truth and the predictions, which is shown in Eq. (13): 

1
ln( )

L

vl vl
v M l

J Y P
∈ =

= − ⋅∑∑              (13) 

where M  is the set of labeled nodes, vlY  is a binary value indicating the true label of 
node v  (i.e., =1vlY  if the true label of node v  is l , zero otherwise) and vlP  is a binary 
value indicating the predicted label of node v . After computing the loss, the parameters 
are updated by back-propagating the gradient. 

5 Experiments 
In this section, we compare our proposed model with state-of-the-art graph embedding 
models and recently developed graph convolutional network models. 

5.1 Datasets 
We evaluate our models on two datasets, which are also used in Wang et al. [Wang, Ji, 
Shi et al. (2019)]. 
•  IMDB 3. This is a heterogeneous information network with movies 4430(M), 5627 
actors (A), 2137 directors (D), 11,841relations (P-A) and 4430 relations (P-S). The 
features of a movie consist of the elements of a bag-of-words represented by plots, and 
the dimension is 1232. The label is the corresponding genre, which is divided into three 
classes, and the labeling ratio is 66% in our experiments. We select the metastructure set 
as M-A-M, M-D-M and M<A, D>M, in which the first two metastructures can also be 
seen as metapath and used in the metapath-based models. 
•  ACM 4. This is a heterogeneous information network with 2835 papers (P), 3087 
authors (A), 45 subjects (S), 8504 relations (P-A) and 2835 relations (P-S) from three 
areas: Database, Wireless Communication and Data Mining. The feature of a paper 
consists of the elements of a bag-of-words represented by keywords, and the dimension is 
1830. The label is the corresponding conference that was held, and all the papers are 

 
3 https://www.imdb.com/ 
4 http://dl.acm.org/ 
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labeled in our experiments. For a fair comparison, we select the metastructure set as P-A-
P, P-S-P and P<A, S>P, in which the first two metastructures can also be seen as 
metapaths and used in the metapath-based models. 

5.2 Baselines 
Eight models are adopted to evaluate HHCN: DeepWalk [Perozzi, Al-Rfou and Skiena 
(2014)], LINE [Tang, Qu, Wang, et al. (2015)], metapath2vec [Dong, Chawla and Swami 
(2017)], HIN2vec [Fu, Lee and Lei (2017)], GCN [Kipf and Welling (2016)], HGNN 
[Feng, You, Zhang et al. (2019)], GAT [Veličković, Cucurull, Casanova et al. (2017)] 
and HAN [Wang, Ji, Shi et al. (2019)]. The first four models are methods based on 
representation learning, and the other four are methods based on graph convolutional 
networks. We also propose three variants of our model. 
•  HHCN-f. This variant does not perform the fusing operation. For the experiments, we 
selected the metastructure that achieves the best performance. 
•  HHCN-a. This variant does not utilize the attention mechanism and regards all the 
metastructures as equally important. 
•  HHCN-s. This variant uses the {M-A-M, M-D-M} and {P-A-P, P-S-P} as the 
metastructure set, through which fair comparisons with metapath-based models can be 
performed. 

5.3 Setup 
A percentage of the labeled nodes per class are selected for training. The selection ratio 
ranged from 10% to 90% and the remaining labeled nodes were used for testing. A two-
layer HGNN was applied in our model, and accuracy was used as the evaluation metric. 
The hyperedge set of each metastructure was defined as the neighbors of the middle node 
combination in the metastructure. For nodes that had no neighbors based on M<A, D>M 
in IMDB and P<A, S>P in ACM, we used neighbors based on M-D-M and P-A-P to fill 
them. We initialized parameters randomly and optimized the model with Adam [Kingma 
and Ba (2014)]. We set learning rate=0.001, regularization coefficient=0.0005 and 
dropout rate=0.5. For the compared methods, we used the code provided by authors. For 
unsupervised methods, we first learned embedding for each node, then used the training 
set to train a logistic regression classifier and output the results through the testing set. 
For the random walk-based method, we set the number of walks per node=40, the walk 
length=100, window size=5 and the size of negative sampling=5. In the HGNN, the 
hyperedge was set as the set of node neighbors that was used in the original paper. In 
LINE, the learning rate of the starting value=0.025, the number of negative samples=5 
and the total number of samples=100 million. In DeepWalk and LINE, the heterogeneous 
graphs were regarded as homogeneous graphs. For all the methods, we set the vector 
dimension=64, the dimension of context vector =100, the vector dimension of all the 
methods=64 and the dimension of attention vector =100. 
 
 

τ
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5.4 Experimental results 
For both datasets, the results are reported in Tab. 1, in which the highest value of each 
row has been bolded. For metapath2vec, GCN, HGNN and GAT, we select the metapath 
with the best classification performance and report the classification results. From Tab. 1, 
we can see that: 

Table 1: Results of node classification on two datasets 

(1) Graph neural network-based methods that combine the structure and feature 
information usually perform better than graph embedding methods. In particular, our 
model HHCN achieved the best performance of all the compared algorithms. 
 (2) GCN, HGNN, GAT and HHCN-f are graph convolutional network models that consider 
a single metastructure. The performance of HGNN is similar to that of GCN, because 
HGNN is used in homogeneous networks, and no additional and more complex information 
is merged into the generated hypergraph structure. GAT, which learns weights for neighbors, 
showed a slight improvement over GCN, while HHCN-f displayed the best performance. 
This demonstrates that more meaningful relation information can be captured by the 
hyperedges considered in our method for a HIN and better results can be achieved. 
(3) Compared with HAN, which uses the attention mechanism on both of the nodes and 
semantics, our model HHCN-s, which uses the same metapaths, achieves better 
performance most of the time. This also suggests that it is necessary to preserve the 
information of hyperedges in HINs. 
(4) Our model also shows better performance than the variants HHCN-a and HHCN-s, 
which indicates there are benefits to the attention mechanism and metastructure. 
Compared with HHCN-a, it is reasonable for our model to consider the different 

Datase
ts Train Deep

Walk LINE Hin2v
ec 

metap
ath2ve

c 
GCN HGN

N GAT HAN HHC
N-r 

HHC
N-h 

HHC
N-s 

HHC
N 

ACM 

10% 0.7285 0.6545 0.7252 0.7513 0.8840 0.8844 0.8859 0.8931 0.9041 0.9012 0.9036 0.9045 

20% 0.7653 0.6569 0.7459 0.7516 0.8968 0.8950 0.8908 0.9048 0.9120 0.9086 0.9129 0.9141 

30% 0.7735 0.6603 0.7463 0.7518 0.8971 0.8982 0.8972 0.9092 0.9143 0.9197 0.9213 0.9219 

40% 0.7742 0.6676 0.7473 0.7536 0.8997 0.8978 0.9019 0.9096 0.9163 0.9318 0.9312 0.9325 

50% 0.7755 0.6688 0.7496 0.7543 0.9003 0.8990 0.9028 0.9103 0.9187 0.9329 0.9325 0.9340 

60% 0.7772 0.6711 0.7560 0.7554 0.9008 0.9001 0.9032 0.9113 0.9193 0.9343 0.9348 0.9361 

70% 0.7784 0.6763 0.7591 0.7560 0.9037 0.9007 0.9057 0.9222 0.9232 0.9353 0.9362 0.9370 

80% 0.7786 0.6774 0.7594 0.7589 0.9139 0.9117 0.9125 0.9327 0.9354 0.9425 0.9430 0.9436 

90% 0.7789 0.6783 0.7696 0.7696 0.9404 0.9437 0.9358 0.9552 0.9466 0.9485 0.9535 0.9544 

IMDB 

10% 0.3313 0.3511 0.3521 0.3639 0.3841 0.3900 0.3870 0.3989 0.3880 0.4194 0.4220 0.4231 

20% 0.3404 0.3510 0.3626 0.3667 0.4486 0.4466 0.4473 0.4533 0.4503 0.4596 0.4686 0.4694 

30% 0.3526 0.3521 0.3670 0.3669 0.4523 0.4592 0.4546 0.4653 0.4625 0.4817 0.4828 0.4852 

40% 0.354 0.3538 0.3839 0.3751 0.4627 0.4698 0.4684 0.4760 0.4775 0.4992 0.5035 0.5048 

50% 0.3694 0.3626 0.3983 0.3776 0.4685 0.4669 0.4746 0.4898 0.4832 0.5132 0.5154 0.5170 

60% 0.3733 0.3713 0.3987 0.3786 0.4819 0.4806 0.4879 0.5168 0.5083 0.5208 0.5260 0.5286 

70% 0.3756 0.3733 0.4005 0.3861 0.5160 0.5166 0.5196 0.5231 0.5259 0.5419 0.5444 0.5452 

80% 0.3807 0.3843 0.4130 0.3960 0.5333 0.5360 0.5346 0.5520 0.5476 0.5583 0.5626 0.5644 

90% 0.3858 0.3936 0.4234 0.4026 0.5504 0.5566 0.5565 0.5704 0.5595 0.5861 0.5957 0.5966 
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influences of metastructures. Compared with HHCN-s, reasonable metastructure can 
provide more meaningful semantic information. 

5.5 Attention analysis 
Because different weights for different metastructures can be obtained through the 
attention mechanism, the analysis on attention was conducted here. We selected 50% of 
the labeled nodes as the training set, and the remaining 50% as the testing set. 
Tab. 2 lists the attention coefficients of the different metastructures and the performance 
when taking into consideration a single metastructure. As we can see, metastructure with 
higher accuracy has a larger attention coefficient, which shows they are correlated 
positively in both datasets. Specifically, metastructure P-A-P is assigned a larger weight 
than metastructure P-S-P, and P<A, S>P has the largest weight in ACM. This is 
explained by the fact that papers with the same authors tend to have the same labels more 
often than papers with a common subject, and papers with both aspects show a larger 
trend to have the same labels. In IMDB, metastructure M-D-M has the larger weight, 
meaning that having a common director determines the genre of a movie more than 
having a common actor, and metastructure M<A, D>M has the largest weight for its 
tighter restriction, which is also reasonable. To summarize, the learned attention 
coefficients can properly identify the quality metastructures. 

Table 2: Quality of single motifs and the corresponding attention coefficients 
Dataset ACM IMDB 
Meta 

structure P-A-P P-S-P P<A, S>P M-A-M M-D-M M<A, D>M 

Accuracy 0.9089 0.7568 0.9187 0.4429 0.4796 0.4832 
Attention 

coefficient 0.3432 0.1677 0.4891 0.2959 0.3325 0.3716 

5.6 Adaptive renormalization trick 
The renormalization trick used in our model is nH H Iα= + ⋅ . Here, we compare different 
renormalization tricks, which are shown in Tab. 3. HHCN-1 uses the same trick as GCN 
by adding an identity matrix, while HHCN-0 considers the first-order term only. 

Table 3: Different renormalization tricks 

HHCN 

1 1
12 2( )T

v e vD HD H D xθ
− −−
    

  

nH H Iα= + ⋅   

HHCN-1 

1 1
12 2( )T

v e vD HD H D xθ
− −−
    

 

nH H I= +  

HHCN-0 
1 1

12 2( )T
v e vD HWD H D xθ
− −−   
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Figure 2: Qualities of different renormalization tricks on ACM and IMDB 

The comparison results are demonstrated in Fig. 2. We can see that 
 HHCN-1 and HHCN-0 both consider the hyperedge information, but HHCN-1 

performs worse than HHCN-0. These results show that using the trick employed in 
GCN for direct hyperedge convolution is inappropriate. 

 HHCN achieves the best performances, which demonstrates the necessity to assign 
the proper proportion of incident matrix and identity matrix in the design of the 
propagation model. For example, when the training ratio is set to 50%, the learned 
coefficient α  is 0.1346 on ACM and 0.0727 on IMDB. As a result, the 
corresponding effects are improved significantly. 

5.7 Parameter and efficiency analysis 
The number of hyperedge convolution layers and the dimension of node embedding can 
affect the results of node classification. We select 50% labeled nodes are selected as the 
training set and the remaining half as the testing set. When analyzing the number of 
hyperedge convolution layers, we set the node embedding dimension . When 
analyzing the dimension of node embedding, we set the number of hyperedge 
convolution layers as . 

5.7.1 Hyperedge convolution layer 
Fig. 3 shows that HHCN achieves the best performance when there are two hyperedge 
convolution layers on both graphs. However, when more layers are added, the 
performance drops sharply. This phenomenon can be explained by the fact that the layers 
control the receptive field of a target node, and more information can be obtained when 
layers are initially increased, but too many layers lead to oversmoothing. 
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Figure 3: Results of HHCN with respect to hyperedge convolution layer 

5.7.2 Node embedding dimension 
As shown in Fig. 4, the performance improves with the embedding dimension increasing 
at first, which demonstrates that a large dimension can capture more information. 
Nevertheless, when the dimension increases from 64 to 128, the performance on dataset 
ACM begins to decline and the performance on dataset IMDB increases slightly, which 
indicates that the introduction of redundant information to node embedding is inevitable 
when the dimension is too large and may lead to overfitting as well. 

  

Figure 4: Results of HHCN with respect to dimension of node embedding 

5.7.3 Computational efficiency 
We compare the model training time per epoch of HHCN versus other graph neural 
network-based methods on an Intel(R) Core (TM) i5-4200H CPU @2.80 GHz system 
with 4 cores and 12 GB memory. For fair comparison, we choose GCN_h and GAT_h as 
the compared methods and set the metastructures in ACM and IMDB as {P-A-P, P-S-P} 
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and {M-A-M, M-D-M}. Different from HHCN, GCN_h and GAT_h use GCN and GAT 
to aggregate the features of meta structure-based neighbors respectively. As shown in Fig. 
5, it is can be found that HHCN is quite efficient in practice and takes much less time per 
epoch than GAT_h that needs to perform a large amount of time-consuming attention 
mechanism operations on both datasets. What’s more, HHCN is reasonably close to 
GCN_h owing to the sparseness of the hyperedge incident matrix. 

 

Figure 5: Comparison of time per epoch 

6 Conclusion and future work 
In this paper, we introduce a novel Heterogeneous Hyperedge Convolutional Network 
(HHCN) for HIN. Our HHCN model uses metastructures to extract semantics and 
construct an incident matrix based on hyperedges. An attention mechanism is also 
introduced to our model so that the importance of different metastructures may be taken 
into consideration. Taking the node feature matrix as input, the proposed HHCN model 
can encode node features, metastructure-based semantics and hyperedge information 
simultaneously. In this setting, our model achieves better performance than several 
recently proposed models. For our future work, we first plan to extend HHCN from a 
spectral-based approach to a spatial-based one, which is more efficient in many scenarios. 
Thereafter, more complex hyperedges will be considered in order to model a HIN better. 
Finally, we plan to examine the effect of HHCN on larger and more complex attributed 
heterogeneous graphs and adopt neighborhood sampling strategies to further enable our 
method to scale to very large graphs. 
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