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Abstract: For the challenge of parameter calibration in the process of SWMM (storm 
water management model) model application, we use particle Swarm Optimization (PSO) 
and Sequence Quadratic Programming (SQP) in combination to calibrate the parameters 
and get the optimal parameter combination in this research. Then, we compare and 
analyze the simulation result with the other two respectively using initial parameters and 
parameters obtained by PSO algorithm calibration alone. The result shows that the 
calibration result of PSO-SQP combined algorithm has the highest accuracy and shows 
highly consistent with the actual situation, which provides a scientific and effective new 
idea for parameter calibration of SWMM model, moreover, has practical guidance for 
flood control and disaster mitigation. 
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1 Introduction 
China is located in the southeast Asia, influenced by active summer monsoon, and 
complex terrain effect in addition, heavy rains and other convective weathers often occur 
[Shi and Tang (1979)]. If the precipitation arriving in the earth’s surface cannot flow into 
pipe network and other drainage facilities, it will cause the overflow of rivers and pipes, 
and lead to the rainstorm waterlogging. Once waterlogging is too serious or drainage 
duration is too long, people’s daily trips, safety of life and properties will be threated. 
In order to simulate the surface runoff caused by rainstorm and pipe running status 
efficiently, developed countries in Europe and the United States began very early to do 
research on urban waterlogging model, and have achieved fruitful results. The typical one 
is the storm water management model (SWMM) developed by the United States 
Environmental Protection Agency during 1971-2008, which is mainly used to implement 
the simulation of urban rainfall runoff process and the numerical simulation of drainage 
system [Su, Cho, Yoon et al. (2007)]. Mouse model developed by Denmark water 
resource environment research institute provides a favorable calculate method for 
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rainstorm loss in complex terrain situation. Correlation studies in China started relatively 
late, and has put forward the city rainwater runoff model (CSYJM), rainwater pipeline 
calculation model etc., but because of the interface，operation and accuracy of the result 
and other factors, the application is very limited [Wang, Chao, Zhang et al. (2011)]. In 
recent years, lots of scholars use the SWMM model to do research on the Chinese urban 
regional waterlogging and achieve favorable results. SWMM model was used to simulate 
the storm water drainage system in city Changsha Xia Ning port area [Ren (2004)] and 
the result showed that the model can reflect the actual situation of the study area. SWMM 
was applied to simulate and calculate the urban designed flood of study area and achieved 
favorable simulation effect [Huang (2010)]. Scholars research above show that SWMM 
has a good adaptability and high accuracy in china, however in the progress of model 
application, still, many problems such as difficulty in the calibration of parameter should 
be faced with. Whether the parameters are accurate or not has great influence on the 
accuracy of the urban waterlogging simulation results. The main parameter calibration 
methods are interactive and automatic methods. Genetic algorithm was used to calibrate 
the sensitive parameters and got highly accurate simulate result [Wan (2002)]. Liu took 
the runoff coefficient as calibration target and calibrated the parameters [Liu (2012)]. Wu 
used modified morris screening method to calibrate the parameters [Wu, Xiong, Ren et 
al. (2015)]. Zhao referred to the parameters’ range, artificially adjusted the parameters, 
took the relative error of the flow as evaluation criterion to calibrate the model’s prams 
[Zhao, Pang, Xu et al. (2014)]. Now the major calibration methods are human-interactive 
method and single optimization algorithm, which may be not efficiency and accuracy 
enough. In this paper, we use Particle Swarm Optimization and Sequence Quadratic 
Programming in combination to make full use of these two kinds of intelligent 
optimization algorithm for parameter calibration, realizing the automatic rate for the 
solution of the optimal parameters. By considering microcapsules as dissimilar inclusions 
in the material, Zhou and Zhuang ploy the discrete element method (DEM) to study the 
effects of loading rates on the fracturing behavior of cementitious specimens containing 
the inclusion and the crack [Zhou and Zhuang (2018)].  

2 Parameters of SWMM model 
There are two kinds of parameters of SWMM model [Temprano, Arango, Cagiao et al. 
(2006)]. One can be achieved by measured data, the other cannot be obtained directly due 
to difficulty of measuring and data missing, which can only be estimated according to the 
range of them by referring to the SWMM help document [Jin, Wu and Jiang (2011)]. In 
this paper, the SWMM model uses the Horton infiltration model and nonlinear reservoir 
model to simulate the runoff progress of catchment, hydrological parameters of runoff 
simulation are area of catchment (Area), average slop of surface (Slop), percentage of 
impervious area (%), Manning coefficient of permeable area (N-Perv), Manning 
coefficient of impervious area (N-Imperv), surface ponding of permeable area (S-Perv), 
surface ponding of impervious area (S-Imperv), characteristic width of catchment(Width), 
initial infiltration rate (MaxRate), stable infiltration rate (MinRate), attenuation 
coefficient (decay), time required from wet to dry (DryTime) etc., hydraulic parameters 
required are elevation of pipe (Elevate), pipe diameter (Pipe Diameter), pipe material 
(Material),bottom elevation (Elevate), bottom depth (Depth), conduit roughness, etc., in 



 
 
 
Parameter Calibration of SWMM Model Based on Optimization Algorithm             2191 
 
which Area, Slop, percentage of impervious area etc. can be obtained by means of 
digitalizing remote sensing image or extracting from DEM and etc., while the others 
cannot be obtained by measuring, the calibration is required [Mahyun, Ismail, Maznah et 
al. (2009)]. Parameters that require calibration and their ranges are shown in Tab. 1 
below. 

Table 1: Calibration parameters and their ranges 
Calibration Parameters                       Ranges 
N-Perv                                               
N-Imperv                                          
S-Perv/mm                                     
S-Imperv/mm                                    
MaxRate/(mm*h-1)                            
MinRate/(mm* h-1)                            
Decay/h-1                                            
DryTime/d                                          

0~1 
0~1 
0~1 
0~1 
0~100 
0~100 
0~10 
0~10 

3 Data and methods 
Equations and mathematical expressions must be inserted into the main text. Two 
different types of styles can be used for equations and mathematical expressions. They 
are: in-line style, and display style. 

3.1 Research data 
In this paper, we use the sample data provided by the EPA SWMM (Environment 
Protection Agency), which contains the measured flow and water level of pipe network 
and nodes, sketch map of study area is shown as Fig. 1: 

 
Figure 1: Study area sketch map 
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Sketch map of precipitation (hourly accumulated) and flow of piple8130 in sample data is 
shown in Fig. 2 as flows. 

 
Figure 2: Time series of precipitation and flow of pipe 

In this study, we calibrate the flow of the pipe 8130 in a rainfall progress, attempting to 
verify the feasibility of the scheme, which will provide a new way of thinking for the 
parameters calibration of the model. 

3.2 Research methods 
Artificial and machine are two major parameters calibration methods. Compared with 
artificial calibration which is only suit for few prams and needs to calibrate for several 
times, machine calibration gets more attention and much more widely application thanks 
to its fast speed high accuracy and other advantages. The SWMM model is a highly non-
linear and complex model, which has various affecting factors and combination number 
between each other is huge. Calibrating by intelligent optimization algorithm is efficient 
and the results have higher fitting degree with the measured value. 
However, due to the limitation of the algorithm itself, using a single optimization 
algorithm for parameter rate timing, is easy to fall into local optimal solution, appearing 
weak local search ability. Combining stochastic (PSO) and deterministic (SQP) 
algorithms to calibrate provides a scientific-new idea for parameters calibration, which 
promises the ability of local research and at the same time, won’t fall into local optimal 
solution. Particle Swarm Optimization (PSO) algorithm and Sequence Quadratic 
Programming (SQP) Algorithm are widely studied and applied in china and foreign 
countries owing to their unique advantages. We combine PSO and SQP to calibrate in 
this paper. First, we use PSO by invoking SWMM model through C# code, taking the 
measured pipe values as optimization value, then in order to acquire the best combination 
of parameters, we use the SQP algorithm to strengthen the local search ability. Repeating 
the progress until up to the number of iterations, the final optimal combination is the 
global optimal solution of the parameters. 
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3.2.1 PSO algorithm 
PSO is a random, group based evolutionary algorithm ，putting forward by imitating the 
behavior of birds group [Eberhart and Kennedy (1995)], which initializes a group of 
particles, each of them represents a candidate solution. PSO complies a simple rule: 
imitating the adjacent excellent particle and global best particle. Therefore, the location 
of particles influenced by neighboring best particle Pbest and the global best particle 
Gbest. The location of particle Xi updating formula is as follows: 
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In which  represents speed, updating formula is as follows: 
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In which  is inertia weight, 、  is acceleration coefficient, , U(0,1),  is the 
best position of particle i,  is the best position of global particle. Particle update their 
location and speed according to formula (1), (2) until finding the best solution.  

3.2.2 SQP algorithm 
SQP acquires the best solution by transforming the original problem into a series of 
quadratic programming sub problems and solving them [Fletcher (1987)]. It was put 
forward to solve nonlinear programming problems by Dr. Wilson in 1963 [Wilson 
(1963)]. The formula of QP sub problem is as follows: 
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In which k is current iteration number; H is the Hessian matrix, which can be 
approximated by the quasi Newton method, f,g are continuously differentiable functions, 
N dimension vector , named as▽f (xk) is the gradient of target function f (xk) in xk, N 
dimension vector , named as▽g (xk) is the gradient of constraint function g (xk) in xk, s 
is the feasible region of the problem, and the solution of the QP sub problem is the linear 
search direction of the next iteration. 

3.2.3 Algorithm implementation process 
In this paper, we establish a combined algorithm based on stochastic (PSO) and 
deterministic (SQP) algorithms. The PSO is regarded as global convergence of global 
search while the SQP is regarded as the local research to strengthen the local research. 
The implementation flow chart of algorithm is shown in Fig. 3 as follows: 
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Figure 3: Implementation flow chart of algorithm 

Implementation steps of algorithm: 
(1) Initialize parameters: the number of parameters、the boundary constraints of parameters, 
number of particles, initial value of parameters, update speed of parameters’ value; 
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(2) Call the SWMM model to calculate the difference between measured flow and 
simulated flow, which is so-called value of particle’s fitness, if the current particle’s 
fitness is better than the history’s, update the combination of parameters, otherwise, 
remain unchanged; 
(3) Update particles’ location and speed according to formula (1), (2). If the global best 
fitness is better than the historical global best fitness, update the particle’s global best 
fitness and the combination of parameters, otherwise, remain unchanged; 
(4) Take the combination of parameters of global best particle as the initial point to run 
the SQP algorithm and update the local best fitness; 
(5) If the end condition (two common kinds: number of iterations and accuracy of result) 
is satisfied, save the optimization result, otherwise turn Step (2).  

4 Experiment of parameters calibration 
In the experiment, first, we use the SWMM model’s initial value of parameters to 
simulate then use the calibration result of PSO to simulate. Last but not the least, we 
combine the deterministic algorithm (SQP) and the stochastic algorithm (PSO) to 
calibrate the parameters and carry out the simulation experiment with the result above. 
Experiment above all regard the minimum sum of the square of the difference between 
the simulated value and the measured value as the optimized goal. 

4.1 Initial parameter simulation 
In the sample data the value of each parameters have been initialized, Values of the eight 
parameters in this study are shown as follows: 0.01 (N-Imperv), 0.01 (N-Perv), 0.05 mm 
(S-Imperv), 0.05 mm (S-Perv), 2.8 mm/h (MaxRate), 0.3 mm/h (MinRate), 3.8 h-1 
(Decay) and 6 d (DryTime). We use the values above to simulate the flow of piple8130, 
the result shows that the deviation between the simulated values and the measured values 
is large, and the agreement is low. The comparison between the simulated result and the 
measured values is shown in Fig. 4: 

 
Figure 4: The comparison between the simulated values and the measured values 
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4.2 Simulation with the parameters calibrated by PSO 
We use the single PSO algorithm to calibrate the eight parameters of the model, formula 
of the optimized goal is as follows: 

2

1
( )

n

i i
i

P Q
=

−∑                                                                                                                     (5) 

In which p is the simulated value, Q is the measured value, i is the time series. 
By calibrating through PSO calibration, we acquire the best combination of parameters: 
0.065 (N-Imperv), 0.032 (N-Perv), 0.501 mm (S-Imperv), 0.214 mm (S-Perv), 51.193 
mm/h (MaxRate), 17.801 (MinRate), 2.351 h-1 (Decay) and 1.417 d (DryTime). Putting 
the above parameters into the model to simulate, we can get the simulated flow value of 
piple8130. Compared with the initial parameters experiment, the deviation between 
simulated and measured ones is much better, and fitting degree is much higher, but flow 
deviation of section moment is still great. The comparison chart of simulated values and 
measured values of times is shown in Fig. 5: 

 
Figure 5: The comparison between the simulated values by PSO calibrated prams and 
the measured values  

4.3 Simulation with the parameters calibrated by PSO-SQP 
In order to enhance the local search capability of the algorithm, we add the SQP 
algorithm on the basis of the PSO algorithm to calibrate the model’s parameters. The 
formula of the optimized goal is consistent with the formula (5). 
The optimal combination values of parameters obtained are as follows: 0.036 (N-Imperv), 
0.057 (N-Perv), 0.556 mm (S-Imperv), 0.494 mm (S-Perv), 40.193 mm/h (MaxRate), 
22.801 (MinRate), 5.351h-1 (Decay) and 0.827d (DryTime). 
Using the combination above to simulate, the comparison between the simulated values 
and measured values of piple8130 is shown in Fig. 6: 
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Figure 6: The comparison between the simulated values by PSO-SQP calibrated params 
and the measured values 

It can be obviously seen that although a little deviation still exists between the simulated 
and measured ones, the overall fitting degree is very high, which shows an excellent 
parameters calibrating effect. 

4.4 Result and analysis 
We can see the simulated effects of the three experiments above directly through Figs. 
3.1 to 3.3, the value of discrete points and peak is matching the trend gradually. In order 
to increase the credibility of the experimental result, we carry on experimental contrast 
regarding iterations valuing 100, 150 and 200 respectively as the terminal condition. the 
comparison of the simulation result is shown in Tab. 2:  

Table 2: the comparison of simulated effects 

Iterations           Simulated parameters             2

1
( )

n

i i
i

P Q
=

−∑           time (s)       

   100                    PSO 
   100                    PSO-SQP 
   150                    PSO 
   150                    PSO-SQP 
   200                    PSO 
   200                    PSO-SQP 

4.156 
0.883 
3.908 
0.796 
3.892 
0.788 

15 
22 
21 
28 
26 
31 

Formula (5) calculates the sum of the difference between simulated values and measured 
ones in a time sequence, which describes the deviation degree between simulated values 
and measured ones. The value is higher, the deviation degree is larger, and vice versa. 
From the three groups experimental, we can find that using the initial parameters, the 
value is highest, the deviation degree is largest, using the parameters calibrated by PSO, 
the value is lower, the fitting degree improves a little and when using the parameters 
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calibrated by PSO-SQP algorithm, the value is the lowest and the fitting degree is the 
highest, however, time required is more, which shows the excellent effects of the 
calibration by the method of combining deterministic algorithm (SQP) and stochastic 
algorithm (PSO), but the efficiency is getting lower. 

5 Summary and discussion 
The calibration of parameters is an important progress of model application, whether the 
parameters are suitable or not is a significant role for the simulation result of model. In 
this paper, we carried out three experiments with default parameters, parameters 
calibrated by PSO and parameters calibrated by PSO-SQP, and compared the results with 
the actual values. Through analyzing, the conclusions are as follows: (1) parameter 
calibration is necessary, using parameters without calibration to simulate will get large 
deviation, there will not be any realistic meaning. (2) using single stochastic algorithm 
(SQP) for parameter calibration can achieve good results, but local search capability of 
the algorithm is weak, and hard to achieve high accuracy. (3) using a combination of the 
stochastic algorithm (PSO) and the deterministic algorithm (SQP) can finish parameter 
calibration very well, which has strong local searching ability and won’t fall into local 
optimal solution. This method is very suitable for SWMM model which has numerous 
parameter combinations, and is highly nonlinear as well. parameters combination 
acquired from calibration applying to storm runoff simulation will be highly accurate. 
Which has a certain realistic meaning for the flood control and disaster reduction.  
The combined PSO-SQP algorithm we used to calibrate the parameters of SWMM model 
in this paper achieved good performance, still there are shortcomings: combined 
algorithm will lead to low efficiency. Aiming at these problems, it is necessary to make 
further research. In the future there will be more and more scholars working on relevant 
aspects of the research, making efforts for the SWMM model parameters optimization, 
the rainstorm waterlogging accuracy of simulation, and providing more effective 
guidance for heavy rainfall and flood disaster prevention and mitigation. 
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