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Abstract: In this article, we offer a new adapted model with three parameters, called 
Zubair Lomax distribution. The new model can be very useful in analyzing and modeling 
real data and provides better fits than some others new models. Primary properties of the 
Zubair Lomax model are determined by moments, probability weighted moments, Renyi 
entropy, quantile function and stochastic ordering, among others. Maximum likelihood 
method is used to estimate the population parameters, owing to simple random sample 
and ranked set sampling schemes. The behavior of the maximum likelihood estimates for 
the model parameters is studied using Monte Carlo simulation. Criteria measures 
including biases, mean square errors and relative efficiencies are used to compare 
estimates. Regarding the simulation study, we observe that the estimates based on ranked 
set sampling are more efficient compared to the estimates based on simple random 
sample. The importance and flexibility of Zubair Lomax are validated empirically in 
modeling two types of lifetime data. 

 
Keywords: Lomax distribution, Zubair-g family, moments, maximum likelihood estimation, 
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1 Introduction 
Ranked set sampling (RSS) is a statistical procedure for data collection that generally 
leads to more structural alternative approach to simple random sample (SRS). The RSS is 
suitable in positions where the optical ordering of a set of units is done comfortably, 
while the exact measurement of the units is difficult or cost. The efficiency of RSS 
related to SRS in different statistical methods has been investigated by several 
researchers [Noughabi (2017)]. 
The RSS procedure is summarized as follows: 
• Draw m random samples, each of size m, from the target population. 
• Without taking any measurements, rank units within each raw depend on a criterion 
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determined by the researcher.  
• Choose a sample for actual judgment by involving the smallest ranked unit in the 

first set, the second smallest ranked unit in the second set, the operation is continues 
in this manner until the largest ranked unit is selected from the last set. 

• To obtain a sample of size mk  units from the RSS data, the cycle may be repeated 
k times. 

Studies have been examined by various researches via RSS scheme. For instance; 
parameter estimation for the modified Weibull distribution was discussed by Al-
Hadhrami [Al-Hadhrami (2010)]. Estimation of the Weibull parameters was studied by 
Helu et al. [Helu, Abu-Salih and Alkami (2010); Hassan (2012)] provided the goodness 
of fit tests for the exponentiated Pareto distribution via extreme RSS scheme. Hassan 
[Hassan (2013)] discussed the Bayesian and maximum likelihood (ML) estimators of 
generalized exponential. Hassan et al. [Hassan, Abd-Elfattah and Nagy (2013)] considered 
modified goodness of fit tests of Weibull distribution based on extreme RSS. Yousef et al. 
[Yousef and Al-Subh (2014)] discussed parameter estimation of Gumbel distribution. 
Hassan et al. [Hassan, Assar and Yahya (2014); Hassan, Assar and Yahiya (2015)] 
handled with stress strength reliability estimation when both populations are two 
independent Burr type XII distribution via some modifications of RSS. Bayesian 
parameter estimator of exponential distribution has been provided by Sadek et al. [Sadek, 
Sultan and Balakrishnan (2015)]. Khamnei et al. [Khamnei and Abusaleh (2017)] 
discussed estimators of generalized logistic distribution. 
Lomax distribution is of a great importance and has applications in many areas, like 
actuarial science, economics, biological sciences and engineering. This distribution is 
regarded as a useful alternative to survival problems and life-testing in engineering 
[Hassan and Al-Ghamdi (2009); Hassan, Assar and Shelbaia (2016)]. The cumulative 
distribution function (cdf) of a Lomax distribution with shape parameter α and scale 
parameter β  is given by: 

( ; , ) 1 1 , , , 0.xG x x
α

β α β α
β

−
 

= − + > 
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                                                                     (1) 

The probability density function (pdf) of Lomax distribution is as follows: 
1
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                                                                          (2) 

Generalized and extended forms of a Lomax distribution were provided by many authors; 
examples include Marshall Olkin extended Lomax by Ghitany et al. [Ghitany, Al-Awadhi 
and Alkhalfan (2007)]; Kumaraswamy Lomax (KwL), beta-Lomax (BL), McDonald-
Lomax by Lemonte et al. [Lemonte and Cordeiro (2013)], exponentiated Lomax (EL) by 
Abdul-Moniem et al. [Abdul-Moniem and Abdel-Hameed (2012)]; gamma-Lomax (GL) 
by Cordeiro et al. [Cordeiro, Ortega and Popović (2014)]; Weibull-Lomax (WL) by Tahir 
et al. [Tahir, Cordeiro, Mansoor et al. (2015)]; transmuted WL (TWL) by Afify et al. 
[Afify, Nofal, Yousof et al. (2015c)]; Gumbel-Lomax by Tahir et al. [Tahir, Hussain, 
Corderio et al. (2016)]; Power Lomax (PL) by Rady et al. [Rady, Hassanein and 
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Elhaddad (2016)]; EL geometric by Hassan et al. [Hassan and Abd-Allah (2017)]; PL 
Poisson by Hassan et al. [Hassan and Nassr (2018)]; exponentiated WL by Hassan et al. 
[Hassan and Abd-Allah (2018)]; inverse PL distribution by Hassan et al. [Hassan and 
Abd-Allah (2019); inverted EL by Hassan et al. [Hassan and Mohamed (2019a)]; Weibull 
inverse Lomax by Hassan et al. [Hassan and Mohamed (2019 b)]; truncated PL by 
Hassan et al. [Hassan, Sabry and Elsehetry (2020)] among others.  
The generated distributions have attracted several statisticians to develop new models. 
Recently, Tahir et al. [Tahir and Cordeiro (2016)] proposed complementary 
exponentiated-G Poisson (CEGP) family of distributions. Our interest here with Zubair-G 
family proposed by Ahmed [Ahmed (2020)] which is considered as special sub-class 
from CEGP. The cdf and pdf of ZL-G family are given by 

2( ) 1( ; , ) ,
1

G xeF x
e

λ

λλ ζ −
=

−
                                                                                                    (3) 

and, 

( )
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where ( );G x ξ be the cdf of the baseline model.  

We aim to come with a new improvement of a Lomax distribution related to Zubair-G 
family. We are encouraged to study Zubair Lomax (ZL) distribution (i) to enhance the 
merit and flexibility of a Lomax distribution; (ii) to modify the Lomax distribution by 
inserting only one shape parameter, instead of two or more parameters; and (iii) to yield 
better fits than some another models with the same or higher number of parameters. We 
study main properties of ZL model, estimate the population parameter via SRS and RSS 
schemes. Further, an application to real data is utilized. This paper is outlined as follows. 
In Section 2, the pdf, cdf, reliability, and hazard rate function (hrf) for ZL distribution are 
defined. Properties of ZL including moments, probability weighted moments, quantile 
function, Rényi entropy, incomplete moments and stochastic ordering are derived in 
Section 3. The maximum likelihood estimators of the model parameters as well as 
simulation study are derived in case of SRS and RSS as provided in Section 4. The ZL 
model is shown to give better fit for real data sets as explained in Section 5. Eventually, 
some concluding remarks are given in Section 6. 

2 Zubair lomax distribution 
This section provides a new three-parameter Zubair Lomax distribution. We give the 
form of the pdf, cdf, survival function (sf) and hrf of ZL model. 
Definition: A random variable X is said to have a three-parameter ZL distribution if its 
cdf is of the form 
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where; ( , , )φ α θ β=  is a set of parameters. The pdf of the ZL distribution is given by 

( ) ( ) ( )
2

1 1 1 12 ( 1)( ; ) 1 1 1 e ; , , , 0.
xe x xf x x

α
λ α α λ βαλφ α λ ββ ββ

−
− − − − − +−

= + − + >         (6) 

Also, the sf, say ( ; ),F x ϕ  and hrf, say ( ; ),h x ϕ of X are given, respectively, as follows:
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and 
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A random variable X with pdf Eq. (6) will be denoted by X~ZL ( ).ϕ  Plots of pdf and hrf 
of X are explained for specific choices of ϕ  are given in Fig. 1. 

            

Figure 1: The pdf and hrf plots of ZL model 

3 Fundamental properties 
In this section, we obtain some important statistical properties of the ZL distribution such 
as; quantile function, moments and related statistics, incomplete moments, the probability 
weighted moments and Rényi entropy. 

3.1 Quantile function 

The ZL quantile function, say 1( ) ( )Q u F u−= , is simply to be worked out by inverting Eq. 
(5) as follows: 

( )( )
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                                                               (9) 
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where, xp=Q(u). The ZL model can be generated from Eq. (9), where u has the uniform 
distribution (0,1)U .  

3.2 Moments and related statistics 
Many of the motivating aspect of any model can be examined via their moments. The sth 
moment about origin of X has a ZL distribution is obtained as follows: 
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By using exponential and binomial expansions in (10), we get 
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After simplification, the sth moment of ZL distribution is given by: 
2 1
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where, B(.,.) is the beta function. The sth central moment of ZL distribution is given from 
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The skewness and kurtosis can be obtained from Eq. (13). 

3.3 Incomplete moments 
The sth lower incomplete moment, say ( ),s zϖ  of ZL model, is given by 

2
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As mentioned above, we employ the exponential and binomial expansions, and then the sth 
incomplete moment is as follows  
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(z) ( 1, , ( )),
i
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where, B(.,.,z) denotes incomplete beta function. Bonferroni and Lorenz curves are 
considerable applications of ϖ1(t), which are benefit in many fields of research. Also, one 
has the mean residual life (MRL) and mean waiting time (MWT) as another applications. 
Hence the MRL of ZL model is given by 



 
 
 
2174                                                                        CMC, vol.65, no.3, pp.2169-2187, 2020 

( ) [ ]

( )

1
1

2 1

,
1 0 0

2 1

,
0 0

( ) ( ) ( ) ( )

(2, 1)
;

(2, 1,( ))

i

i j
i j

i

i j
i j

M t F t E T t t

N j
F t t

tN j t

ϖ

β α α
φ

β α α β

−

∞ +

− = =
∞ +

= =

= − −
 

Β + − − 
  = −   

Β + − +
 

∑∑

∑∑
                                     (16) 

where ( );F t φ  follows from Eq. (7). Also, the MWT of ZL model is given by 
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where, F(t; φ) follows from Eq. (5). 

3.4 The probability weighted moments 
Probability weighted moments (PWM) is employed to obtain estimators of parameters and 
quantiles of distributions. The PWM of a random variable X, for positive integers, r and h is 
defined as follows: 
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−∞
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Based on (18), the PWM of ZL distribution is given by  
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Utilizing the exponential and binomial expansions in previous equation, then the PWM of 
ZL model is given by: 
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where, 
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3.5 Rényi entropy 
The entropy of a random variable has been utilized in different fields. It is a measure of 
variation of uncertainty. The Rényi entropy of a random variable X is defined by:  
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To obtain the Rényi entropy of ZL, firstly, we obtain the pdf ( )f x ϑ  as follows:   
( 1)

. 0

2( 1) 2( ( )) 1 .
! 1

jj i i

i j

i xf x
ji e

ϑ α αϑ ϑ
ϑ

λ ϑ

ϑ α ϑ λ
ββ

− + −∞ +

=

+   −  = +    −    
∑                                (22) 

Therefore, the Rényi entropy of ZL distribution is given by 
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3.6 Stochastic ordering 
Let X and Y are independent random variables with cdfs FX and FY respectively, then 
according to Shaked et al. [Shaked and Shanthikumar (2007)], X is said to be smaller than 
Y if the following ordering holds; 
Stochastic order ( )srX Y≤ if ( ) ( ) X YF x F x≥  for all x . 

Likelihood ratio order ( )lrX Y≤  if  ( ) ( )X Yf x f x  is decreasing in x . 

Hazard rate order ( )hrX Y≤  if ( ) ( ) X Yh x h x≥ for all x . 

Mean residual life order ( )mrlX Y≤  if ( ) ( ) X Ym x m x≥ for all x . 

We have the following chain of implications among the various partial orderings mentioned 
above: 

lr hr mrl
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X Y X Y X Y
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Theorem: Let 1 1 1( , , )X ZL α λ β  and 1 1 1( , , ).Y ZL α λ β If 1 2 1 2,α α λ λ> >  
and 1 2β β β= = , then lrX Y≤ , hrX Y≤ , mrlX Y≤ , and srX Y≤ . 
Proof 

It is sufficient to show ( )
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therefore, 
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Thus, ( ) ( )X Yf x f x  is decreasing in x and hence .lrX Y≤  Similarly, we can conclude 
for hrX Y≤ , mrlX Y≤ , and srX Y≤ . 

4 Parameter estimation 
Here, ML estimator of ZL parameters is derived based on SRS and RSS. Further, 
simulation illustration is done to compare the estimator performances for both schemes. 

4.1 ML estimators via SRS  
Estimators for the ZL parameters depending on the ML method are derived. Let 

1 2, ,..., nX X X  be a SRS from ZL distribution with observed values 1 2, ,..., nx x x . The log 
likelihood function of ZL model, denoted by ln  , is obtained as follows 
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The partial derivatives of the log-likelihood function with 

respect to the unknown parameters are given by 
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Solving non-linear equations: ln 0, ln 0 α β∂ ∂ = ∂ ∂ =  and ln 0,λ∂ ∂ =  numerically, 
then we get the ML estimators of the population parameters.  

4.2 ML Estimators via RSS  
Suppose that ( ) ,  1 ,   1i ic i m c kX = … = …  is a RSS from ZL distribution, with sample size 

   n m k= , m  is the set size and k is the number of cycles. For simplicity, let ( )ic i icY X=  

then for fixed c, icY  are independent with pdf equal to pdf of thi order statistics. The 
likelihood function of the sample 1 2, ,...,c c mcy y y . 
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The partial derivatives of 1ln , with respect to ,α λ  and β are as follows 
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The ML estimators of the population parameters are the solution of Eqs. (32)-(34). It is 
difficult to obtain a closed form solution for these equations, so numerical procedure is 
required to solve them. 

4.3 Simulation procedure 
This subsection gives the numerical study to obtain the ML estimates of the population 
parameters for the ZL distribution based on RSS and SRS. A comparison study between 
estimates is performed relative to mean square errors (MSEs), biases and relative efficiency. 
The simulation studies are as follows: 
Step 1: A random sample of size n=100, 200 and 300 with set size m n= , number of cycles 

k=n, where 2n m k= ×  is generated from ZL distribution then ranking one 
observation from each cycle. 

Step 2: The parameters values are selected as (α=0.5, λ=1.2, β=0.5), (α=0.5, λ=1.5, β=0.5), 
(α=0.5, λ=2, β=0.5) ,(α=0.3, λ=1.5, β=1) ,(α=1.5, λ=0.7, β=0.05) and (α=2, λ=1.5, 
β=0.03). 

Step 3: For the chosen set of parameters and n, the ML estimate (MLE) are computed 
under SRS and RSS.  

Step 4: Repeat the pervious steps from 1 to 3 N times representing different samples, where 
N=1000. Then, the biases, MSEs and relative efficiency (RE) = MSE(RSS) / 
MSE(SRS) of the estimates are computed. 

Step 5: Numerical outcomes are given in Tabs. 1 to 6. 

From Tab. 1 to Tab. 6, the following observations can be detected as follows: 
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• Based on SRS, biases and MSEs for the estimates are greater than the corresponding 
in RSS.  

• For both sampling schemes, it is clear that the biases and MSEs decrease as set sizes 
increase in most of situations. 

• The efficiency of estimates increases as the sample sizes increase for most of situations.  
• The MSE of estimates based on RSS are smaller than the MSE of the corresponding 

based on SRS. 

Table 1: ML estimates, Biases, MSE, RE of ZL distribution under SRS and RSS for 
(α=0.5, λ=1.2, β=0.5) 

n Parameter 
SRS RSS 

RE 
MLE Bias MSE MLE Bias MSE 

100 

α  0.5019 0.0019 0.0068 0.4860 -0.0140 0.0041 0.6034 

λ  1.5112 0.3112 2.9362 1.4842 0.2842 2.7172 0.9254 

β  0.5421 0.0421 0.2121 0.4563 -0.0437 0.0444 0.2091 

200 

α  0.5062 0.0062 0.0020 0.5023 0.0023 0.0002 0.0844 

λ  1.6302 0.4302 1.6615 1.2982 0.0982 0.4179 0.2515 

β  0.4810 -0.0190 0.0610 0.5011 0.0011 0.0140 0.2291 

300 

α  0.4992 -0.0008 0.0014 0.5007 0.0007 0.0002 0.1207 

λ  1.5517 0.3517 1.3828 1.2398 0.0397 0.1166 0.0843 

β  0.4742 -0.0258 0.0543 0.4942 -0.0058 0.0056 0.1027 

Table 2: ML estimates, Biases, MSE, RE of ZL distribution under SRS and RSS for 
(α=0.5, λ=1.5, β=0.5) 

n Parameter 
SRS RSS 

RE 
MLE Bias MSE MLE Bias MSE 

100 

α  0.5244 0.0244 0.0035 0.4994 -0.0006 0.0004 0.1250 

λ  2.2285 0.7285 1.9216 1.8401 0.3401 1.2607 0.6561 

β  0.4486 -0.0514 0.0760 0.4683 -0.0317 0.0408 0.5372 

200 

α  0.5004 0.0004 0.0020 0.5004 0.0004 0.0003 0.1278 

λ  1.9368 0.4368 1.5665 1.7860 0.2860 1.0256 0.6547 

β  0.5051 0.0051 0.0722 0.4745 -0.0255 0.0312 0.4322 

300 

α  0.5076 0.0076 0.0015 0.5036 0.0036 0.0001 0.0724 

λ  2.1150 0.6150 1.3516 1.5806 0.0806 0.1159 0.0858 

β  0.4431 -0.0569 0.0517 0.4925 -0.0075 0.0064 0.1236 
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Table 3: ML estimates, Biases, MSE, RE of ZL distribution under SRS and RSS for 
(α=0.5, λ=2, β=0.5) 

n Parameter 
SRS RSS 

RE 
MLE Bias MSE MLE Bias MSE 

100 

α  0.4752 -0.0248 0.0064 0.4989 -0.0011 0.0001 0.0222 

λ  1.6461 -0.3539 2.3019 2.5619 0.5619 2.0993 0.9120 

β  0.6638 0.1638 0.1775 0.4519 -0.0481 0.0563 0.3170 

200 

α  0.4817 -0.0183 0.0047 0.4999 -0.0001 0.0001 0.0249 

λ  2.0574 0.0574 2.1103 2.6692 0.6692 1.5391 0.7293 

β  0.5359 0.0359 0.1021 0.3969 -0.1031 0.0405 0.3963 

300 

α  0.4965 -0.0035 0.0013 0.4962 -0.0038 0.0001 0.0863 

λ  2.2580 0.2580 1.4138 1.8661 -0.1339 0.1793 0.1268 

β  0.5134 0.0134 0.0834 0.5423 0.0423 0.0126 0.1513 

Table 4: ML estimates, Biases, MSE, RE of ZL distribution under SRS and RSS for 
(α=0.3, λ=1.5, β=1) 

n Parameter 
SRS RSS 

RE 
MLE Bias MSE MLE Bias MSE 

100 

α  0.2918 -0.0082 0.0035 0.3021 0.0021 0.0003 0.0724 

λ  2.1406 0.6406 4.8567 2.1182 0.6182 1.5444 0.3180 

β  0.8648 -0.1352 0.5824 0.7352 -0.2648 0.2230 0.3829 

200 

α  0.2879 -0.0121 0.0021 0.3035 0.0035 0.0001 0.0413 

λ  2.1928 0.6928 3.8697 1.8563 0.3563 0.6226 0.1609 

β  0.7690 -0.2310 0.4988 0.8441 -0.1559 0.0860 0.1723 

300 

α  0.2964 -0.0036 0.0006 0.2991 -0.0009 0.0000 0.0182 

λ  1.8836 0.3836 1.3340 1.4765 -0.0235 0.0196 0.0147 

β  0.8340 -0.1660 0.1825 1.0040 0.0040 0.0117 0.0640 

Table 5: ML estimates, Biases, MSE, RE of ZL distribution under SRS and RSS for 
(α=1.5, λ=0.7, β=0.05) 

n Parameter 
SRS RSS 

RE 
MLE Bias MSE MLE Bias MSE 

100 

α  1.6202 0.1202 0.1414 1.5270 0.0270 0.0200 0.1418 

λ  0.1222 -0.5778 1.0341 0.4799 -0.2201 0.8113 0.7845 

β  0.0726 0.0226 0.0018 0.0582 0.0082 0.0004 0.2103 

200 

α  1.4297 -0.0703 0.0356 1.5040 0.0040 0.0030 0.0855 

λ  0.7047 0.0047 0.9098 0.6337 -0.0663 0.1502 0.1651 

β  0.0478 -0.0022 0.0001 0.0519 0.0019 0.0001 0.6916 
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300 

α  1.3739 -0.1261 0.0315 1.4950 -0.0050 0.0013 0.0397 

λ  0.8398 0.1398 0.3405 0.8312 0.1312 0.3246 0.9535 

β  0.0447 -0.0053 0.0002 0.0486 -0.0014 0.0001 0.5702 

Table 6: ML estimates, Biases, MSE, RE of ZL distribution under SRS and RSS for (α=2, 
λ=1.5, β=0.03) 

n Parameter 
SRS RSS 

RE 
MLE Bias MSE MLE Bias MSE 

100 

α  2.4555 0.4554 0.6944 2.0083 0.0083 0.0519 0.0747 

λ  0.9345 -0.5655 1.2366 1.3596 -0.1404 1.4150 1.1443 

β  0.0532 0.0232 0.0016 0.0361 0.0061 0.0005 0.3176 

200 

α  2.2038 0.2038 0.2042 2.1129 0.1129 0.0423 0.2070 

λ  1.3208 -0.1792 1.2331 0.9068 -0.5932 1.0902 0.8841 

β  0.0399 0.0099 0.0006 0.0414 0.0114 0.0004 0.6684 

300 

α  2.0993 0.0993 0.0528 1.9608 -0.0392 0.0121 0.2286 

λ  1.2467 -0.2533 0.9212 1.5963 0.0963 0.1996 0.2167 

β  0.0377 0.0077 0.0002 0.0289 -0.0011 0.0000 0.1665 

5 Applications to real data 
The validity of ZL distribution depending on two data sets is provided. We provide a 
formative judgment of the goodness of-fit of the models and make comparison with other 
models. The suggested measures are Akaike information criterion (AIC), Consistent AIC 
(CAIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling (A*) and 
Cramér- von Mises (W*). However, the better model fit the data takes the smaller values 
of these statistics.  

5.1 Aircraft windshield data 
The first data represent the failure times for a particular windshield device which was 
studied by Murthy et al. [Murthy, Xie and Jiang (2004)]. The fits of the ZL model for these 
data are compared distribution with; GL, BL, KwL, TWL, beta Weibull (BW) by Lee et al. 
[Lee, Famoye and Olumolade (2007)], Kumaraswamy Weibull (KwW) by Cordeiro et al. 
[Cordeiro, Ortega and Nadarajah (2010)], exponentiated transmuted generalized Rayleigh 
(ETGR) by Afify et al. [Afify, Nofal and Ebraheim (2015a)], McDonald Weibull (McW) 
by Cordeiro et al. [Cordeiro, Hashimoto and Ortega (2014)], and transmuted Marshall-
Olkin Fréchet (TMOFr) by Afify et al. [Afify, Hamedani, Ghosh et al. (2015b)]. The MLE 
of these distributions and the corresponding standard error (SE) for windshield data are 
given in Tab. 7. The statistics AIC, CAIC, HQIC, A* and W* are listed in Tab. 8. The 
estimated pdf, cdf, sf and PP plots for Aircraft Windshield data of the fitted models are 
represented in Fig. 2.  
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Table 7: MLE and SE for Aircraft Windshield data 
Distribution Estimates 

ZL (α, β, λ) 
826.196 
(3505) 

785.944 
(3343) 

4.471 
(0.886) 

  

KwL (a, b, α, β) 
2.615 

(1.343) 
100.276 

(404.095) 
5.277 

(37.988) 
78.677 

(799.338) 
 

BL (a, b, α, β) 
3.6036 

(0.6187) 
33.6387 

(63.7145) 
4.8307 

(9.2382) 
118.8374 

(428.9269) 
 

ETGR (α, β, λ, δ) 
0.034 

(0.048) 
0.379 

(0.025) 
−0.354 
(0.815) 

26.430 
(40.252) 

 

KwW (a, b, α, β) 
34.660 

(17.527) 
81.846 

(52.014) 
14.433 

(27.095) 
0.204 

(0.042) 
 

McW (a, b, α, β, c) 
17.686 
(6.222) 

33.639 
(19.994) 

1.940 
(1.011) 

0.306 
(0.045) 

16.721 
(9.622) 

BW (a, b, α, β) 
34.180 

(14.838) 
11.496 
(6.730) 

1.360 
(1.002) 

0.298 
(0.060) 

 

TMOFr (α, β, σ, λ) 
200.747 
(87.275) 

1.952 
(0.125) 

0.102 
(0.017) 

-0.869 
(0.101) 

 

Table 8: The AIC, CAIC, HQIC, A* and W* statistics for Aircraft Windshield data 
Distribution AIC CAIC BIC HQIC A* W* 

ZL 268.515 269.022 268.288 271.447 0.708 0.072 
KwL  270.296 270.802 274.204 280.019 0.868 0.097 
BL 285.435 285.935 295.206 289.365 1.408 0.168 
ETGR  269.975 270.481 273.883 279.700 0.786 0.085 
KwW  281.434 281.941 285.343 291.158 1.506 0.185 
McW  283.899 284.669 288.785 296.053 1.591 0.199 
BW  305.028 305.534 308.937 314.751 3.220 0.465 
TMOFr  309.472 309.978 313.380 319.195 2.404 0.320 

From Tab. 8, we conclude that the ZL takes the smallest values of statistics measures, so 
ZL distribution produces better fit than the other models. 
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Figure 2: Plots of estimated pdf, cdf, sf and pp plots for Aircraft Windshield data 

Cancer Patient Data 
Lee et al. [Lee and Wang (2003)] discussed the mission times (in months) of 128 bladder 
cancer patients data. The fits of the ZL model for these data are compared distribution with; 
beta Fréchet (BFr) by Nadarajah et al. [Nadarajah and Gupta (2004)], transmuted modified 
Weibull (TMW) distribution by Khan et al. [Khan and King (2013)], transmuted additive 
Weibull (TAW) distribution by Elbatal et al. [Elbatal and Aryal (2013)], beta exponentiated 
Burr XII (BEBXII) by Mead [Mead (2014)], generalized inverse gamma by Mead [Mead 
(2015)], and ETGR. The MLE and SE are recorded in Tab. 9. On the other hand, Tab. 10 
includes statistics measures of the fitted models. From Tab. 10, we conclude that the ZL 
takes the smallest values of statistics measures, so ZL distribution performs better fit than 
the other models. More information can be found in Fig. 3.  

Table 9: Estimates and SEs for cancer data 
Distribution Estimates 

ZL (α, β, λ) 2.677 
(1.005) 

7.235 
(7.009) 

1.32 
(1.855) 

  

BEBXII (a, b, c, β, k)  22.186 
(21.956) 

20.277 
(17.296) 

0.224 
(0.144) 

1.780 
(1.076) 

1.306 
(1.079) 

GIG (a, b, c, β, k) 2.327 
(0.369) 

0.0002 
(0.0002) 

17.931 
(7.385) 

0.543 
(0.042) 

0.001 
(0.0003) 

BFr (a, b, α, β) 12.526 
(24.469) 

33.342 
(36.348) 

27.753 
(71.507) 

0.169 
(0.104) 

 

ETGR (α, β, λ, δ)  7.376 
(5.389) 

0.047 
(0.004) 

0.118 
(0.260) 

0.049 
(0.036) 

 

TMW (a, α, β, λ) 0.0002 
(0.011) 

0.1208 
(0.024) 

0.8955 
(0.626) 

0.407 
(0.407) 

 

TAW (a, b, α, β, λ) 0.00003 
(0.0061) 

1.0065 
(0.035) 

0.1139 
(0.032) 

0.9722 
(0.125) 

−0.1630 
(0.280) 
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Table 10: The AIC, CAIC, HQIC, A* and W* statistics for cancer data 
Distribution AIC CAIC HQIC A* W* 

ZL 827.465 827.659 830.942 0.340 0.048 
BEBXII 841.268 841.760 855.528 0.900 0.134 
GIG 839.824 840.316 854.085 2.618 0.410 
BFr 842.965 843.290 854.373 1.121 0.168 
ETGR 866.350 866.675 877.758 2.361 0.398 
TMW 836.450 836.775 847.858 0.125 0.760 
TAW 838.478 838.970 852.739 0.113 0.703 

 

 

 

 

 
 

Figure 3: Plots of estimated pdf, cdf, sf and PP plots for cancer data 

6 Concluding remarks 
A new three-parameter lifetime model, called Zubair Lomax is proposed. Considerable 
properties of the Zubair Lomax like; moments, probability weighted moments, Rényi 
entropy, quantile function, stochastic ordering, mean residual life and mean waiting time 
are derived. Maximum likelihood estimators of parameters are achieved under simple 
random sample and ranked set sampling. Eventually, two real data sets are employed to 
confirm the flexibility of the proposed distribution in modeling real data applications. 
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Results of comparison showed that the Zubair Lomax distribution preforms better than 
some other distributions based on some criteria measures.  
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