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Abstract: Batteries are often packed together to meet voltage and capability needs. 
However, due to variations in raw materials, different ages of equipment, and manual 
operation, there is inconsistency between batteries, which leads to reduced available 
capacity, variability of resistance, and premature failure. Therefore, it is crucial to pack 
similar batteries together. The conventional approach to screening batteries is based on 
their capacity, voltage and internal resistance, which disregards how batteries perform 
during manufacturing. In the battery discharge process, real time discharge voltage 
curves (DVCs) are collected as a set of unlabeled time series, which reflect how the 
battery voltage changes. However, few studies have focused on DVC based battery 
screening. In this paper, we provide an effective approach for battery screening. First, we 
apply interpolation on DVCs and give a method to transform them into slope sequences. 
Then, we use density-based spatial clustering of applications with noise (DBSCAN) for 
denoising and treat the remaining data as input to the K-means algorithm for screening. 
Finally, we provide the experimental results and give our evaluation. It is proved that our 
method is effective. 
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1 Introduction 
In recent years, lithium-ion batteries have been widely used in various applications, such as 
electric vehicles, industrial energy storage equipment, and automobile starting devices. In 
the majority of circumstances, batteries are packed together to satisfy voltage and capability 
needs [Mathew, Kong, Mcgrory et al. (2017); Al-Zareer, Dincer and Rosen (2017); Liu, 
Tan and Wang (2018)]. However, due to variations in raw materials, manual operation, and 
differing ages of the equipment, there is inconsistency among a pack of batteries, which 
usually manifests as inconsistent voltages and internal resistances [Zhang, Cheng, Ju et al. 
(2017)]. When a pack is in operation, unbalanced voltages and internal resistances will lead 
to partial heating, which can accelerate battery aging and aggravate the imbalance. Over 
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time, the battery life will be greatly reduced [Liu, Liu, Lin et al. (2018)]. 

1.1 Battery consistency and screening 
Battery consistency refers to consistency in the characteristics of cell performance, 
including voltage, current, internal resistance (which can be measured by instruments), 
and dynamic changes during charging and discharging [Zhang, Jiang, Jiang et al. (2017)]. 
Consistency cannot be measured directly; therefore, batteries are screened according to 
the similarity of their voltages, internal resistances and capabilities [Li and Pan (2005)]. 
At the same time, batteries are chosen from the same batch, which means they contain 
similar materials [Liu, Liu, Lin et al. (2018)]. However, this approach neglects the way 
batteries perform during charging and discharging [Wang, Zhang, Ge et al. (2016)]. 

1.2 Discharge voltage curve and time series 
The discharge voltage curve (DVC) is a series of data collected by sensors during the 
discharging process in battery manufacturing. Observed values are sent to databases 
every few seconds to record real-time voltage. We use 𝑉𝑉 to represent observations and 𝑇𝑇 
for reference time points to describe DVC records, and we have 
(𝑉𝑉,𝑇𝑇) = {(𝑣𝑣1, 𝑡𝑡1), (𝑣𝑣2, 𝑡𝑡2), … , (𝑣𝑣𝑛𝑛, 𝑡𝑡𝑛𝑛)}                           (1) 
where an observation 𝑣𝑣𝑖𝑖 is always paired with its reference time point 𝑡𝑡𝑖𝑖. This kind of 
data is called a time series, and it consists of a sequence of observation values and 
corresponding reference time points. In general, we place more emphasis on the DVC 
than on the charge voltage curve (CVC). This is because charging and discharging are 
reversible chemical reactions, and when batteries work as power supplies, they are 
always discharging during operation. While batteries are screened, there is no supervision, 
so battery screening is a time-series clustering problem. Raw data are shown in Fig. 1. 

 Figure 1: The DVC data are a set of time series with observation values and 
corresponding reference time points. The discharging process lasts 60 minutes 

1.3 Time-series clustering 
Clustering belongs to the category of unsupervised machine learning, and it aims to 
divide unlabeled data into several clusters. Specifically, if data are represented as a set of 
series consisting of values and time points, we call this task time-series clustering [Liao 
(2005)]. Among conventional clustering methods, there are shape-based, density-based, 
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and distance-based approaches. It should be noted that there is no clear boundary between 
these three types of approaches. 
Distance-based Method: When using distance-based methods, we calculate the 
similarity of two samples by the distance between them. There are many ways to 
determine similarity, such as the Euclidean distance and Manhattan distance. Among 
them, the Euclidean distance is the most widely used [Aghabozorgi, Shirkhorshidi and 
Wah (2015)]. For example, given a sample 𝑥𝑥 and existing clusters 𝐴𝐴 and 𝐵𝐵 with centers 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝐵𝐵, K-means calculates the distances 𝑑𝑑(𝑥𝑥,𝐴𝐴) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑥𝑥,𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝐴𝐴) and 
𝑑𝑑(𝑥𝑥,𝐵𝐵) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑥𝑥,𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝐵𝐵) . If 𝑑𝑑(𝑥𝑥,𝐴𝐴)  < 𝑑𝑑(𝑥𝑥,𝐵𝐵) , 𝑥𝑥  is classified into cluster 𝐴𝐴 ; 
otherwise, it is classified into 𝐵𝐵 [Gan and Ng (2017)]. 
Density-based Method: Unlike distance-based methods, density-based methods 
calculate the density 𝑑𝑑𝐶𝐶𝐶𝐶𝑖𝑖 of each sample. Given a threshold 𝜀𝜀, if 𝑑𝑑𝐶𝐶𝐶𝐶𝑖𝑖 < 𝜀𝜀, 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑖𝑖 is 
treated as a noise sample. Density-based spatial clustering of applications with noise 
(DBSCAN), for instance, generates a cluster by judging the density of a neighborhood 
and the distance from other samples or clusters. 
Shape-based Method: Among shape-based methods, the dynamic time warping (DTW) 
method is well known. DTW is a measure to calculate the distance between time series. 
The basic problem that DTW attempts to solve is how to align two sequences to generate 
the most representative distance measure of their overall difference. If there is any 
discrepancy in the alignment of time series, the DTW algorithm uses a dynamic 
programming technique to solve this problem. The first step is to compare each point in 
one sequence with every point in the second, generating a matrix. The second step is to 
work through this matrix, starting at the bottom-left corner and ending at the top-right. 

2 Problem formulation 
2.1 Unaligned data 
In a lithium-ion battery charging and discharging unit, there are tens of thousands of 
sensors for data collection. Equipment is divided into tens to hundreds of work areas that 
charge and discharge simultaneously. Theoretically, sensors collect voltage observations 
every 𝑡𝑡 seconds. Although values are stored in a database (a real-time database, generally) 
at the same time intervals, in actual situations of networks and computer scheduling, 
reference time points cannot be aligned. 

2.2 Data noise 
In this paper, we aim to divide batteries that are consistent with each other into several 
groups. However, when collecting data, noise is inevitable. Some voltage curves show 
fluctuation, which is caused by the instability of the electrolyte in batteries, and this 
makes it difficult to distinguish these curves with the fluctuations from the rest of the data. 
Some noise is generated by the sensors. For instance, when errors occur, inaccurate 
values are collected and stored in the database. 

2.3 K-means limitations 
Given the time series 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑚𝑚}, which is aligned by a reference time sequence 
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with the same time interval, and clusters 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑘𝑘}, where 𝑐𝑐𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑗𝑗 is the center 
of cluster 𝐶𝐶𝑗𝑗 and 𝑥𝑥𝑗𝑗 ∈ 𝐶𝐶𝑗𝑗. for ∀𝑥𝑥𝑖𝑖 ∉ 𝐶𝐶𝑗𝑗 [Krishna and Murty (1999)]. we have the following 
relationship: 
𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡�𝑥𝑥𝑖𝑖, 𝑐𝑐𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑗𝑗� > 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑥𝑥𝑗𝑗, 𝑐𝑐𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟𝑗𝑗)              (2) 
Here, 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑠𝑠, 𝑏𝑏) denotes the distance between a and b. For example, if the function 
𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑠𝑠, 𝑏𝑏) is defined as Euclidean distance, we have 

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝑠𝑠, 𝑏𝑏) = �∑(𝑠𝑠𝑖𝑖 − 𝑏𝑏𝑖𝑖)
2                (3) 

where 𝑠𝑠𝑖𝑖 ∈ 𝑠𝑠 and 𝑏𝑏𝑖𝑖 ∈ 𝑏𝑏.  
An example: In the following experiment, we individually use K-means on raw data, and 
the results are shown in Fig. 2. 

Figure 2: K-means clustering results without denoising are shown in subgraphs (a), (b) to 
(i), which show the details of each cluster 

Fig. 2 shows the results of K-means. For battery DVC data, which include the part of the 
time series with high volatility (as shown in the subplot), it is impossible to calculate the 
distance accurately, which leads to deviation in clustering.  
Why DTW should not be used. The DTW distance seems to be a reasonable method, 
but it performs poorly in practice. It is very time consuming, making it unsuitable for 
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industrial applications. However, this is not the main reason why it should not be used. 
Generally, DTW works well on time series, but DVC data are more discrete than 
continuous. Notably, during the discharging process, the observation value of the voltage 
at each time point is important. However, DTW always aims to find a minimum distance 
between two curves, which leads to the problem that some points are ignored when 
calculating distance. 
As shown in Fig. 3, we have 2 discharging sequences named DVC 1 and DVC 2, and 
there are 2 DTW intermediate steps named DTW steps a and b. When calculating the 
distance between DVC 1 and 2, DTW always finds a minimum distance, such as in steps 
a and b, but screening compares each voltage observation at the same time point. 
Therefore, DTW does not meet our needs. 

 

Figure 3: DVC 1 and 2 are discharging voltage and time sequences. DTW steps a and b 
show how to calculate the distance between 2 sequences 

2.4 Main work 
In this paper, our goal is to divide batteries that are consistent into several groups. We use 
an unsupervised approach to obtain them from unlabeled data. However, the DVC time 
series are not aligned, which makes it difficult for the clustering method to work properly. 
The first step of our work is to align the data to the same reference time sequence. We use 
the interpolation method to obtain a new time series. Second, we transform the DVC to 
slope sequences as a representation of the raw data. Then, the DBSCAN method is used 
for denoising. Finally, we use K-means for clustering and provide an evaluation of the 
results. Our main work is shown in Fig. 4. 

3 Data processing 
We process the data in 2 steps. The first step is data aligning, which aims to align the data 
to the same reference time sequence. The second is data representation, the goal of which 
is to obtain new data slope sequences. 
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Figure 4: Our main work 

3.1 Alignment 
A set of battery DVC data consists of both observation values and reference time-point 
sequences. Because of the limitations of the network situation and the collection 
mechanism, data are not always aligned. as shown in Fig. 5. 

Figure 5: The 7 collected samples, for which data collection was performed 4 times. The 
sample collection times are not aligned, with each being different from one another 

For the raw DVC time series, given 𝑣𝑣𝑖𝑖 as observations and 𝑡𝑡𝑖𝑖 as reference time points, we 
have 

𝑣𝑣𝑖𝑖 = {𝑣𝑣𝑖𝑖
(1),𝑣𝑣𝑖𝑖

(2), … , 𝑣𝑣𝑖𝑖
(𝑛𝑛)}                (4) 

𝑡𝑡𝑖𝑖 = {𝑡𝑡𝑖𝑖
(1), 𝑡𝑡𝑖𝑖

(2), … , 𝑡𝑡𝑖𝑖
(𝑛𝑛)}                  (5) 

where (n) denotes the n-th collection and 𝑣𝑣𝑖𝑖 , 𝑡𝑡𝑖𝑖  are always paired together. Unaligned 
sequences are defined as follows: for 𝑑𝑑, 𝑗𝑗 ∈ 𝑀𝑀 , if 𝑑𝑑 ≠ 𝑗𝑗 , then 𝑠𝑠𝐶𝐶𝐶𝐶(𝑣𝑣𝑖𝑖) ≠ 𝑠𝑠𝐶𝐶𝐶𝐶(𝑣𝑣𝑗𝑗)  and 
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𝑠𝑠𝐶𝐶𝐶𝐶(𝑡𝑡𝑖𝑖) ≠ 𝑠𝑠𝐶𝐶𝐶𝐶(𝑡𝑡𝑗𝑗), where 𝑠𝑠𝐶𝐶𝐶𝐶(𝑣𝑣) is the size of a sequence 𝑣𝑣. However, when we use a set 
of time series, we need it to be aligned, so interpolation is applied to the data. 
Common methods include linear interpolation, Newton interpolation, and Lagrange 
interpolation. In selecting interpolation methods, the most important principle is to 
preserve the characteristics of the original data to ensure that the new data set will not 
deviate too much from the original. As shown in Fig. 1, the values of the DVC time series 
decrease smoothly and then rapidly drop to a certain range as time passes. Linear 
interpolation is simple, with few calculations, and most importantly, it barely changes the 
trend of the time series. Therefore, we choose it as the interpolation method for DVC data. 

Suppose we have an interval of adjacent voltage values (𝑣𝑣ℎ
(𝑖𝑖),𝑣𝑣ℎ

(𝑖𝑖+1)) with reference times 
(𝑡𝑡ℎ

(𝑖𝑖) , 𝑡𝑡ℎ
(𝑖𝑖+1)); then, 

𝑣𝑣ℎ
(𝑗𝑗) = 𝑡𝑡ℎ

(𝑗𝑗)−𝑡𝑡ℎ
(𝑗𝑗+1)

𝑡𝑡ℎ
(𝑖𝑖)−𝑡𝑡ℎ

(𝑖𝑖+1) 𝑣𝑣ℎ
(𝑖𝑖) − 𝑡𝑡ℎ

(𝑗𝑗)−𝑡𝑡ℎ
(𝑖𝑖)

𝑡𝑡ℎ
(𝑖𝑖)−𝑡𝑡ℎ

(𝑖𝑖+1) 𝑣𝑣ℎ
(𝑖𝑖+1)               (6) 

where 𝑗𝑗 ∈ (𝑑𝑑, 𝑑𝑑 + 1)  and 𝑣𝑣ℎ
(𝑗𝑗)  is the new value of sample 𝑣𝑣ℎ  at time point 𝑡𝑡ℎ

(𝑗𝑗)  after 
interpolation. The process is shown in Fig. 6. 

Figure 6: (a) shows how raw data appear without alignment. Samples do not have the 
same reference time sequence. (b) shows that when we align samples to the same time 
sequence, the time intervals in the series are not always equal. (c) shows the results after 
average interpolation 

3.2 Representation 
The DBSCAN algorithm is sensitive to parameters; therefore, using DBSCAN directly is 
not the best choice. In this paper, we transform time series into a set of slope sequences. 
Given an interpolated data set 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚}, each 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 is paired with the same 
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reference time 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑛𝑛}. We have the slope sequence 

𝑑𝑑𝑖𝑖 = �𝑥𝑥𝑖𝑖
(1), 𝑥𝑥𝑖𝑖

(2)−𝑥𝑥𝑖𝑖
(1)

𝑡𝑡2−𝑡𝑡1
, 𝑥𝑥𝑖𝑖

(3)−𝑥𝑥𝑖𝑖
(2)

𝑡𝑡3−𝑡𝑡2
, … , 𝑥𝑥𝑖𝑖

(𝑛𝑛)−𝑥𝑥𝑖𝑖
(𝑛𝑛−1)

𝑡𝑡𝑛𝑛−𝑡𝑡𝑛𝑛−1
�              (7) 

For the same time interval, and letting 𝑑𝑑𝑖𝑖
(𝑗𝑗) = 𝑥𝑥𝑖𝑖

(𝑗𝑗+1) − 𝑥𝑥𝑖𝑖
(𝑗𝑗), we have 

𝑑𝑑𝑖𝑖 = {𝑥𝑥𝑖𝑖
(1), 𝑑𝑑𝑖𝑖

(1), 𝑑𝑑𝑖𝑖
(2), … , 𝑑𝑑𝑖𝑖

(𝑛𝑛−1)}                (8) 

Figure 7: After interpolation and representation, the DVC data are transformed to slope 
sequences 

In this way, 𝑑𝑑𝑖𝑖 is a representation of 𝑥𝑥𝑖𝑖. Each 𝑑𝑑𝑖𝑖
(𝑗𝑗) ∈ 𝑑𝑑𝑖𝑖 shows how the DVC changes at 

time point 𝑡𝑡𝑖𝑖 . Ignoring the first item of each slope sequence, the whole sample 
representation is shown in Fig. 7. 

4 DBSCAN for denoising 
4.1 Why slope sequences are used 
The DBSCAN algorithm is based on density, and it performs well on data with noise. 
DBSCAN uses 2 important parameters: 𝜀𝜀  and 𝑠𝑠𝑑𝑑𝐶𝐶 − 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑑𝑑 . Given a set of slope 
sequences, 𝜀𝜀 is the maximum distance there can be between two samples for one to be 
considered to be in the neighborhood of the other. This is the most important DBSCAN 
parameter. Without transforming data into slope sequences, DBSCAN would not be able 
to denoise well. This is because DBSCAN is sensitive to parameters, and DVC values are 
large (2700 to 4000), so choosing suitable parameters hard. At the same time, 
normalization does not work well, as very low values make it more difficult to initialize a 
DBSCAN. The experimental results are shown in Fig. 8. 

Figure 8: Experimental results of DBSCAN with aligned data. 
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Noise is clearly shown in subgraph (c). In fact, if data were not transformed into slope 
sequences, samples with low values and high volatility would be divided into noise 
clusters [Schubert, Sander, Ester et al. (2017)]. Thus, it is difficult to find a suitable value 
threshold to divide only samples with abnormal volatility into noise clusters. This is 
because DBSCAN focuses on sample values but not on how DVCs change in the 
reference time sequences. 

4.2 Experiment on slope sequences 
Our aim is to divide the data into 𝐶𝐶𝑠𝑠𝐶𝐶𝑑𝑑𝑡𝑡𝐶𝐶𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 and 𝐶𝐶𝑠𝑠𝐶𝐶𝑑𝑑𝑡𝑡𝐶𝐶𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟. In this experiment (as 
shown in Fig. 9), we use DBSCAN on slope sequences, and the results are shown as (a), 
(b) and (c). Then, we transform the slope sequences back to aligned time series, and we 
can see how noise is detected in (d), (e) and (f).  

 
Figure 9: (a), (b) and (c) show how we perform denoising with DBSCAN on slope 
sequences. (d), (e) and (f) show the results with aligned DVC samples 

5 Battery screening and evaluation 
5.1 Screening by K-means clustering 
The DVC time series data are divided into a noise cluster and a normal cluster after 
DBSCAN. The normal cluster will be used as the input data for the K-means algorithm, 
which is one of the best-known clustering methods; it is simple, effective, and the most 
widely used. Given a data set 𝑋𝑋, K-means divides it into several clusters, as determined 
by the parameter 𝑘𝑘 defined by the user. The objective function is to minimize the loss 
function 𝐸𝐸, and 𝐸𝐸 is given as follows: 

𝐸𝐸 = ∑ ∑ ��𝑥𝑥𝑖𝑖
(𝑗𝑗) − 𝑐𝑐𝑗𝑗��

2
𝑛𝑛
𝑖𝑖=1  𝑘𝑘

𝑗𝑗=1                 (9) 

where 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋, 𝑐𝑐𝑗𝑗 is denoted as the cluster center, and ��𝑥𝑥𝑖𝑖
(𝑗𝑗) − 𝑐𝑐𝑗𝑗��

2
is the distance from 𝑥𝑥𝑖𝑖 

to the cluster center 𝑐𝑐𝑗𝑗 . In this experiment, we divide the normal cluster into 8 new 
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clusters to screen batteries that are consistent. 

Figure 10: (a) shows whole clusters and their distribution, and (b) to (i) give the details 
of each cluster 

Fig. 10 shows the results of K-means on slope sequences. Compared with Fig. 2, we can 
see that the results shown in figure 10 are better, with clearer borders. In subgraph (a), a 
total of 8 clusters are displayed, but there is partial overlap between them. Subgraphs (b) 
to (i) give the details of each cluster. Batteries belonging to one cluster have more 
consistency and better performance when they are packed together. Finally, we provide 
an essential-criteria principle to evaluate our experimental results. 

5.2 Evaluation 
In general, evaluation criteria are divided into internal categories and external categories. 
For K-means with Euclidean distance, we prefer to use the SSE (sum of squared error) to 
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evaluate our experiment. The 𝑆𝑆𝑆𝑆𝐸𝐸 is one of the most widely used criteria for clustering 
[Saxena, Prasad, Gupta et al. (2017)]. It is defined as 

𝑆𝑆𝑆𝑆𝐸𝐸 = ∑ ∑ �|𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘|�2∀𝑥𝑥𝑖𝑖∈𝐶𝐶𝑘𝑘
𝐾𝐾
𝑘𝑘=1              (10) 

where 𝐶𝐶𝑘𝑘 is one of the clusters and µ𝑘𝑘 is the vector mean of cluster 𝑘𝑘, as shown in Fig. 11. 
Here, the 𝑆𝑆𝑆𝑆𝐸𝐸 indicates the inconsistency of a battery group, and the more inconsistent 
the batteries are, the lower their SSE. 

 

Figure 11: SSE changes with the k value 

Here, the value K means how many clusters we classify batteries into. Batteries in the 
same cluster have a high degree of similarity, and that means they have similar DVCs. 
The voltage curves of the cells directly indicate the voltage variation law under working 
condition. Furthermore, they reflect the variation law of the battery capacity, internal 
resistance, and temperature. Therefore, cells with similar discharge voltage curves are 
considered largely to have similar electrochemical characteristics, and that means they 
are more consistence. 

6 Conclusion 
In this paper, we apply interpolation and representation to raw DVC time-series data to 
obtain aligned slope sequences. Then, DBSCAN is used for denoising and removing 
noise samples with irregular fluctuations. Finally, we use the K-means algorithm to 
divide the slope sequences into 8 clusters and provide an evaluation. Our experimental 
results show that performing K-means on aligned slope sequences with DBSCAN for 
denoising is an effective approach to battery screening. 
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