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Abstract: The optimization of network topologies to retain the generalization ability by 
deciding when to stop overtraining an artificial neural network (ANN) is an existing vital 
challenge in ANN prediction works. The larger the dataset the ANN is trained with, the 
better generalization the prediction can give. In this paper, a large dataset of atmospheric 
corrosion data of carbon steel compiled from several resources is used to train and test a 
multilayer backpropagation ANN model as well as two conventional corrosion prediction 
models (linear and Klinesmith models). Unlike previous related works, a grid search-
based hyperparameter tuning is performed to develop multiple hyperparameter 
combinations (network topologies) to train multiple ANNs with mini-batch stochastic 
gradient descent optimization algorithm to facilitate the training of a large dataset. After 
that, one selection strategy for the optimal hyperparameter combination is applied by an 
early stopping method to guarantee the generalization ability of the optimal network 
model. The correlation coefficients (R) of the ANN model can explain about 80% (more 
than 75%) of the variance of atmospheric corrosion of carbon steel, and the root mean 
square errors (RMSE) of three models show that the ANN model gives a better 
performance than the other two models with acceptable generalization. The influence of 
input parameters on the output is highlighted by using the fuzzy curve analysis method. 
The result reveals that TOW, Cl- and SO2 are the most important atmospheric chemical 
variables, which have a well-known nonlinear relationship with atmospheric corrosion.  
 
Keywords: Atmospheric corrosion prediction, early stopping, fuzzy curve, grid search, 
hyperparameter tuning, multilayer neural network.  

1 Introduction 
The atmospheric degradation of metal materials is essential for the durability of structures 
and causes high economic costs so that atmospheric corrosion becomes a serious global 
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concern. Deterioration of the worldwide infrastructure, mostly made of carbon steel, 
might cause severe damage and threats to public safety. The World Corrosion 
Organization (WCO) currently estimates the direct cost of corrosion worldwide at around 
$2.2 trillion annually. The cost of $660 billion worldwide would be saved by the existing 
corrosion control technologies [WCO (2020)]. To improve the reliability and endurance 
of infrastructure and industrial equipment, the prediction of corrosion behavior of 
material and its lifetime is increasingly urgent.  
Existing models with the foundation of power function were lack of the ability to 
describe the difficulty of atmospheric corrosion kinetics and might not generalize well on 
new environmental parameters due to minor parameters and simple structure. On the 
contrary, ANN has been developing as a milestone in machine learning for a decade, 
replacing traditional models for forecasting tasks and giving satisfactory results by its 
benefits of generalization, noise tolerance, and fault tolerance. The main benefit of ANN 
is that it can model problems in which there are no transparent relationships between 
inputs and outputs, and construct the solutions that cannot be easily formulated within a 
short time without specifying the form of interactions between variables. Abstracted by 
ANN’s outstanding performance, many researchers applied it to simulate the complicated 
processes and obtained good results in various materials performance analysis works 
concerning mechanical property [Forcellese, Gabrielli and Simoncini (2011); Ashtiani 
and Shahsavari (2016)], metallurgy [Yang, Zhu, Lai et al. (2012)], atmospheric corrosion 
[Pintos, Queipo, de Rincón et al. (2000); Zhang, Yu, Yang et al. (2011)], civil 
engineering [Sadowski (2013); Yıldızel and Öztürk (2016)], tribological property [Li, Lv, 
Si et al. (2017)], thermal property [Zhao and Li (2017)]. 
As the meteorological variables involved in the atmospheric corrosion process have 
nonlinear features and timely change, ANN has been paid attention as a solution to 
predict the atmospheric corrosion. Since the complex interactions between environmental 
factors bring difficulty for modeling the process of atmospheric corrosion, Lo et al. [Lo, 
Chiu and Lin (2017)] employed ANN to develop a regional forecasting model to predict 
atmospheric corrosion rates of copper within general industrial zones and coastal 
industrial zones in Taiwan. Vera and Ossandón [Vera and Ossandón (2014)] used 
numerous ANNs to predict the atmospheric corrosion rates of carbon steel, galvanized 
steel, copper, and aluminum, respectively. Li et al. [Li, Qiu, Xing et al. (2013)] took 
advantage of ANN to model the atmospheric corrosion behavior of aluminum alloys in 
10 typical atmospheric corrosion test sites. Zhang et al. [Zhang, Yu, Yang et al. (2011)] 
analyzed atmospheric corrosion behavior of bainite steel exposed offshore platforms by 
applying ANN. Willumeit et al. [Willumeit, Feyerabend and Huber (2013)] demonstrated 
that ANN was able to function well on predicting corrosion properties of Mg alloys. 
Turning to carbon steel, Kenny et al. [Kenny, Paredes, de Lacerda et al. (2009)] 
developed an ANN with linear and sigmoidal functions, aiming to predict low-carbon 
steel, copper, and aluminum corrosion rates according to meteorological parameters. 
Pintos et al. [Pintos, Queipo, de Rincón et al. (2000)] proved that an ANN-based 
methodology was better than a linear regression model and had a good agreement with 
known or observed data for modeling atmospheric corrosion. Cai et al. [Cai, Cottis and 
Lyon (1999)] built two different ANNs to model atmospheric corrosion of carbon steel 
and zinc, respectively. Reddy et al. [Reddy (2014); Jančíková, Zimný and Koštial (2013)] 
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applied ANN to predict the corrosion loss of structural carbon steel based on the input 
environmental parameters in the atmospheric environment.  
Although ANN performed well in various materials performance predictions, some 
works [Sun, Qi, Hou et al. (2007); Rajendraboopathy, Sasikumar, Usha et al. (2009)] 
have reported that to achieve the optimal generalization of the prediction results, the 
enrichment of adequate training data was a necessity. Unlike other machine learning 
methods whose optimal performance is limited to a certain extent of a huge dataset, the 
deep learning nature of ANN takes advantage of the ability to handle data augmentation. 
The larger the dataset the neural network is trained with, the better generalization the 
prediction can give.  

 
Figure 1: The flowchart showing the overall methodologies of constructing atmospheric 
corrosion prediction models: conventional models and ANN 
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Fig. 1 illustrates the overall methodologies used in this work. The procedure of atmospheric 
corrosion experiments (the long-term exposure tests of carbon steel) is feasible but 
extremely time-consuming and laborious. The atmospheric corrosion data of carbon steel is 
collected as much as possible in a limited time so that the related useful information is 
extracted from published papers to construct a dataset that is big enough for training our 
neural network model. To retain the generalization ability of ANN instead of memorizing 
the depth of training history is one of the existing vital challenges for the optimization of 
network topologies by a stopping criterion. Unlike previous related works adopted 
Levenberg-Marquardt backpropagation training algorithm, ANN is trained with a deep 
learning optimization algorithm, mini-batch stochastic gradient descent (SGD) optimization 
algorithm, which is more appropriate for large scale optimization. Although the dataset is 
not practically big enough to be expressed as a large scale, mini-batch SGD optimization 
algorithm is adopted for the intention of establishing a model to deal with future enrichment 
of dataset. To further reduce the burden of testing, a grid search-based hyperparameter 
tuning is performed so that different multiple hyperparameter combinations are trained to 
establish multiple ANN models. A contribution is then made into our work by adopting a 
stopping criteria-based selection strategy for the optimal hyperparameter combination to 
guarantee the generalization ability of the optimal ANN model for the estimation of 
atmospheric corrosion of carbon steel. One simple linear equation and one equation 
formulated in Klinesmith et al. [Klinesmith, McCuen and Albrecht (2007)] are also 
evaluated to find out their relevance against the ANN model. The purpose of this paper is to 
apply ANN to describe the phenomenon of atmospheric corrosion of carbon steel, make a 
comparison with conventional models and determine the influence of meteorological 
variables via fuzzy curves.  
The rest of the contents are arranged as follows. Section 2 starts with the dataset 
construction and modeling methodologies for constructing three different models and 
fuzzy curves are then proposed. Section 3 discusses the analysis of the outcomes of three 
models by comparing their evaluation metrics and the ranges of fuzzy curves to highlight 
the impact of each input parameter on the atmospheric corrosion. Section 4 ends with a 
conclusion and a future research trend. 

2. Materials and methods 
2.1 Dataset construction 
Extracting the relevant data used to train and test the ANN reported here comes from the 
literature of long-term exposure tests (in published papers, project reports, and researches) of 
atmospheric corrosion of carbon steel, along with a wide range of climatological variables 
and pollution parameters. Being collected from nine published works listed in Tab. 1 along 
with the countries from which the data came, the worldwide atmospheric corrosion data of 
carbon steel is compiled into a large dataset conformed to corrosivity standardized in 
(International organization for standardization) ISO 9223, ISO 9224, ISO 9225 and ISO 8044 
as much as possible for the construction of prediction model and some outliers are removed.  
As seen in the world map of Fig. 2, the atmospheric corrosion data of carbon steel in the 
colored portions covering 52 countries in 5 continents under various types of climates 
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(tropical, subtropical, warm, cold, etc.) is accumulated into a big dataset of around one 
thousand pieces of records used in this work. 

 

Figure 2: World map covering all countries from which data for this work were collected  

Table 1: Data sources collected for this work 

No. Country References 
1 33 countries [Cai, Cottis and Lyon (1999)] 
2 38 countries (in Europe, America, Asia 

and Oceania) 
[Chico, De la Fuente, Díaz et al. (2017)] 

3 14 countries (throughout Iberoamerican) [Pintos, Queipo, de Rincón et al. (2000)] 
4 Colombia [Castaño, Botero, Restrepo et al. (2010)] 
5 Spain (Canary Islands) [Morales, Martín-Krijer, Díaz et al. (2005)] 
6 Argentina, Brazil, Colombia, Ecuador, 

Spain, Mexico, Peru, Uruguay 
 [Panchenko and Marshakov (2017)] 

7 three Caribbean countries (in Cuba, 
Mexico and Venezuela) 

[Corvo, Haces, Betancourt et al. (1997)] 

8 China [Hou and Liang (1999)] 
9  Japan (Tsukuba, Choshi, Miyakojima) [NIMS (2018)] 

 
Tab. 2 lists the ranges of the corrosion and environmental variables used in this work. 
Before training, both input and output parameters are normalized between 0 and 1 to avoid 
the dominance of different dimensions [Zhang, Yu, Yang et al. (2011)]. The meteorological 
input variables (Temperature and Exposure year) are linearly scaled. The diversity ranges 
of two input pollution variables (SO2 concentration and Cl- concentration) and the output 
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variable (Corrosion rates) are highly wide so that they are logarithmically scaled to 
minimize the loss of accuracy. The normalization is done with the following equation. 

P = 𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚− 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚

              (1) 

where P is the normalized data, 𝑥𝑥𝑖𝑖is the ith input/output parameter, and 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 are 
the minimum and maximum values of ith parameter respectively. 
The whole dataset (943 data sets in total) is randomly divided into three sets: 754 data 
sets as the training dataset (80% in total), the other 94 data sets as the validation dataset 
(10% in total) and the rest 95 data sets as the test dataset (10% in total) under the same 
sample distribution.  

Table 2: The ranges of input and output parameters in the whole big dataset used in this study 

Input and 
Output 

Parameters 

Temperature 
(T, oC) 

Time of 
wetness 
(TOW) 

SO2 
concentration 
(SO2, µg/m3) 

Cl- concentration 
(Cl-, mg/m2/day) 

Exposure year 
(Year, years) 

Corrosion 
rate 

(µm/year) 
Range -3.1-29.3 0.003-1 0-175 0-260 0.5-12 1.7-1040 

2.2 Modeling methodologies 
2.2.1 Constructing conventional corrosion models 
A simple linear regression model is constructed to predict the atmospheric corrosion of 
carbon steel as a function of five independent variables: temperature (T), time of wetness 
(TOW), SO2 concentration (SO2), Cl- concentration (Cl-) and exposure year (Year). There 
is nothing special to be set, and all parameters are generated from the least square 
methods as the following equation. 
Corrosion rate = A + B × T + C × TOW + D × SO2 + E × Cl− + F × Year                 (2) 
where A=0.1691, B=0.0310, C=0.1937, D=0.0656, E=0.1676, and F=0.4484. 
The role of environmental parameters has a high impact on long-term atmospheric 
corrosion. Because existing long-term corrosion prediction models, such as power model 
[Townsend (2002)], were just mostly time-dependent models and they neglected the 
influence of environment on atmospheric corrosion process, they could not produce 
accurate predictions when being used in different conditions or locations. The researchers 
in Knotkova et al. [Knotkova, Boschek and Kreislova (1995)] established similar 
corrosion prediction models by considering the impact of one or three environmental 
variables as predictor variables, but not exposure year that the coefficients of the models 
might not give enough accuracy to access the influence of other essential predictor 
variables that were not taken into account in the corrosion process. The authors in 
Klinesmith et al. [Klinesmith, McCuen and Albrecht (2007)] developed eight reliable 
prediction models that chewed over the effects of each environment parameter as well as 
the exposure time in the corrosion process for four materials data from ISO CORRAG, a 
worldwide collaborative atmospheric exposure program, under a wide range of 
atmospheric conditions or locations. In this work, the Klinesmith model [Klinesmith, 
McCuen and Albrecht (2007)] is adopted to access the effects of changes in 
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environmental conditions in predicting the atmospheric corrosion of carbon steel as a 
function of environmental parameters and exposed period as well. The Klinesmith model 
for atmospheric corrosion prediction of carbon steel is established as Eq. (3), where some 
parts of its parameters (C, E, and G) are obtained from the mean values of the 
corresponding environmental variables and the rest (B, D, F, H, and J) are acquired by 
the least square methods. 

Corrosion rate =  A 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝐵𝐵(𝑇𝑇𝑇𝑇𝑇𝑇
𝐶𝐶

)𝐷𝐷 �1 + 𝑆𝑆𝑇𝑇2 
𝐸𝐸
�
𝐹𝐹
�1 + 𝐶𝐶𝐶𝐶− 

𝐺𝐺
�
𝐻𝐻
𝑦𝑦𝐽𝐽(𝑇𝑇+𝑇𝑇0)          (3) 

where A=14.5018, B=0.7528, C=0.4474, D=0.3641, E=22.0902, F=0.4210, G=23.9742, 
H=0.6684, J=0.0068 and T0=20 are empirical coefficients. 

2.2.2 Constructing artificial neural network model 
The role of neural network prediction is increasingly significant in materials science. 
An artificial neural network is one kind of network model established in a mathematical 
way that is based on the working principle of biological neurons connected in a 
biological neural network. The layers of ANN are systematically connected from left to 
right order, and every layer becomes the input layer for its successive layer. Details of 
the neural network method itself can be found in Graupe et al. [Graupe (2013); Demuth, 
Beale, Jess et al. (2014)]. 

 
Figure 3: The architecture of ANN for predicting the atmospheric corrosion rate of 
carbon steel 

ANN can be tolerant of any faults and noises in data. It can deal well with the nonlinear 
relationship between variables in function approximation problems, such as prediction of 
atmospheric corrosion of materials which has a complex interaction between input 
variables and meteorological variables [Cai, Cottis and Lyon (1999); Jančíková, Zimný 
and Koštial (2013)]. To compare with the results of two corrosion prediction models 
above, the neural network model established in this work is the multilayer 
backpropagation neural network (ANN). ANN is a neural network composed of at least 
three or more layers: one input layer, at least one or more hidden layers and one output 
layer. As illustrated in Fig. 3, ANN starts from the input layer, the input parameters 
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consecutively go through the hidden layers and output layer and are continuously 
transformed by activation functions contained in the neurons of each layer during the 
propagation process, which is known as feedforward propagation. The learning algorithm 
used for training ANN is a mini-batch SGD optimization algorithm. The generalization 
ability of ANN can be improved by the use of mini-batch sizes because it uses fewer 
samples to estimate the actual gradient so that the computational efficiency is improved 
[Zhang, Lipton, Li et al. (2020)].  
Three-layer ANN is constructed to predict the atmospheric corrosion rate and establish 
the relationship between five input meteorological parameters (T, TOW, SO2 
Concentration, Cl- Concentration, Year) and one output parameter (Corrosion rate) of 
carbon steel. Tab. 3 lists the network features applied in ANN. After multiplying the 
corresponding weights (W) and then pulsing with the bias (b) in Eq. (4), the weighted 
input values generated from the previous layer are brought into logistic sigmoid function 
expressed in Eq. (5) to produce the activation of the neuron in a hidden layer.  

Table 3: Network parameters adopted in the ANN model 

Network Parameters Value 
Number of layers 3 
Initial weights and biases Randomly between 0 and 1 
Number of neurons in the input layer  5 
Number of neurons in the output layer 1 
Learning algorithm Mini-batch stochastic gradient descent 
Activation function Logistic sigmoid 
Method for avoiding over-training Early stopping criteria 

z= 𝑊𝑊𝑊𝑊 + 𝑏𝑏 = ∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑚𝑚𝑖𝑖 + 𝑏𝑏𝑚𝑚 𝑚𝑚
𝑖𝑖=1                (4) 

𝑓𝑓(z) = 1
1+𝑒𝑒−𝑧𝑧

             (5) 

where 𝑊𝑊  represents all of the input variables in ANN, 𝑊𝑊  is the weight value of the input 
variable 𝑊𝑊, z is the weighted sum of input variables, b is the bias value, n is the number of 
neurons, m is the number of input, and f(z) is the logistic sigmoid activation function of 
the node. Weights and biases contained in neural networks are adjusted continuously by 
backpropagation during the training process. The error of each neuron between predicted 
and actual values is obtained from forwarding propagation, and the predicted target is 
minimized from the chain rule. The output layer receives the calculation results from the 
hidden layer and generates the output. The mathematical model of the result of the output 
layer in ANN can be expressed as follow: 

Y = 𝑓𝑓2(𝑊𝑊2 × [𝑓𝑓1([𝑊𝑊1 × 𝑊𝑊] + 𝑏𝑏) + 𝑏𝑏) = 𝑓𝑓2 (𝑊𝑊2 × S1 + b)          (6) 
where X and Y represent the input and output values, b is the bias value, W1 and W2 
denote the corresponding weight values between the input and hidden layers, and 
between the hidden and output layers, respectively. The functions f1 and f2 are the 
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logistic sigmoid functions applied to generate the output from the weighted data in the 
nodes of each layer. 
There are several rules of thumb for defining the number of hidden nodes in the hidden 
layer. Since it is difficult to pre-define the number of hidden neurons in the hidden layer 
and there is no unique formula to define it [Cao, Zhu, Zhang et al. (2010)], the trial-and-
error approach is implemented in this work. To restrain the scale of possible network 
topologies and the number of combinations between each hyperparameter (number of 
hidden neurons, the size of mini-batches and the value of learning rate), one experienced-
based and user-defined heuristic thought is adopted that the total number of parameters 
(the number of weights, the number of biases, the number of input parameter Ninput and 
the number of output parameter Noutput ) contained in the neural network should be less 
than or equal to the number of the training datasets, implying 7Nhidden+Ninput+Noutput 
+1≤754 and then Nhidden≤107 where Nhidden is the hyperparameter indicating the number of 
hidden neurons in the hidden layer, Ninput=5 and Noutput=1. 
Based on the stated heuristic thought, all hyperparameters (learning rates, mini-batch 
sizes, and the number of hidden neurons) of ANN are tuned with a particular step size by 
grid search strategy described in Tab. 4. Since grid search iterates over all possible 
combinations of hyperparameter values, mini-batch SGD optimization algorithm is used 
for training multiple ANN models with multiple network topologies by each 
hyperparameter pair (number of hidden neurons, learning rate, and mini-batch size), 
giving a total of 770 (10 different numbers of hidden neuron×11 mini-batch sizes×7 
learning rates=770) different hyperparameter combinations to construct the optimal 
neural network model with better generalization and establish the relationship between 
inputs and output. 

Table 4: Defining all possible hyperparameters by grid search 

Hyperparameters 
for ANN 

Number of neurons 
in the hidden layer 

Mini-batch size Learning rate 

Grid search From 10 to 107,  
step size 11 

(10, 21, 32, 42, 53, 
64, 74, 85, 96, 107) 

From 1 to 754,  
step size 75 

(1, 75, 150, 226, 301, 377, 
452, 527, 603, 678, 754) 

From 10-5 to 10,  
step factor 10 

(0.00001, 0.0001, 0.001, 
0.01, 0.1, 1, 10) 

The optimum number of hidden neurons does not yield overfitting problems that are 
caused by using the excessive number of hidden neurons and will degrade the 
performance of the neural network by slowing down the convergence rate or 
overestimating the complexity of the problem [Xu, Zhu, Xiao et al. (2014)]. It is vital to 
know how the ANN model can generalize well to unseen data outside the training data. 
Mean square error (MSE) is used as the loss function for evaluating the performance of 
the ANN model. MSE can be calculated as the following equation. 

MSE = 1
𝑁𝑁
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2𝑁𝑁
𝑘𝑘=1              (7) 
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where 𝑦𝑦𝑘𝑘  and 𝑦𝑦�𝑘𝑘 are the kth values of real (actual) and predicted rates of atmospheric 
corrosion, respectively, and N represents the number of data records. 
The optimization of the network topologies, such as stopping criteria that decides when to 
stop training a neural network with the lowest generalization error estimated by 
validation set error, is one of the existing vital challenges to retain the generalization 
ability of the network instead of memorizing the depth of training history. Different 
stopping criteria were proposed in Shao et al. [Shao, Taff and Walsh (2011); Prechelt 
(2012)]. Chaushev et al. [Chaushev, Raynard, Goad et al. (2019); Liu and Ciucci (2020)] 
adopted early stopping strategy inspired by Prechelt [Prechelt (2012)]. In this work, to 
improve the generalization of ANN and avoid overtraining, the early stopping strategy 
[Prechelt (2012)] is implemented as a stopping criterion in which the validation dataset 
and validation MSE are used to minimize the size of the dimension of each parameter and 
maximize the probability of finding a good solution to evaluate the performance of 
hyperparameters whether they are fine-tuned and as a selection strategy for the optimal 
hyperparameter combination to construct the optimal neural network model with better 
generalization. The generalization loss over the validation data set during training is 
calculated by the following equations. 

GL(t) = 100 × � 𝐸𝐸𝑣𝑣𝑚𝑚(𝑡𝑡)
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) − 1� >  α             (8) 

𝐸𝐸𝑜𝑜𝑜𝑜𝑡𝑡(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸𝑣𝑣𝑚𝑚(𝑡𝑡′)(𝑡𝑡′ ≤ 𝑡𝑡)             (9) 

where GL(t) is the generalization loss at epoch t (in percent), 𝐸𝐸𝑣𝑣𝑚𝑚(𝑡𝑡) is the mean square 
error on the validation set measured after epoch t, 𝐸𝐸𝑜𝑜𝑜𝑜𝑡𝑡(𝑡𝑡) is the lowest validation set 
error obtained in epochs up to t and α is the threshold value. 
ANN stops training after the first epoch as soon as GL exceeds 20% and one 
complementary rule for early stopping criteria to guarantee the termination is applied that 
the training stops after a maximum of 100000 epochs. The final weights and biases after 
training are used as the analytical tools for the prediction of unseen data.  

 
Figure 4: Box plot for the performance of different topologies in the five training runs 
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The analytical performance of the neural network is repeated for five training runs to 
remove the uncertainty from the randomly generated weights and biases, giving 3850 
topology performance records for the 770 hyperparameter combinations. Fig. 4 represents 
the performance of some different topologies in five training runs. The results for each 
hyperparameter combination averaged over all five runs are graphed as a parallel 
coordinate plot in Fig. 5 which depicts the relationship between the hyperparameters 
(number of hidden neurons, mini-batch size, and learning rate) and the mean square error 
values on the validation set. It can be seen that the minimum validation MSE (0.008472) 
occurs at the point representing the hyperparameter combination of 32-hidden neurons,1-
mini-batch size, and 0.01-learning rate along the blue colored line. Thus, the optimal 
topology of the ANN to predict the atmospheric corrosion of carbon steel can be defined 
as Tab. 5. 

 

Figure 5: Parallel coordinate plots showing the relationship between hyperparameter 
combinations (number of hidden neurons (Neuron), mini-batch size (MiniBatch), and 
learning rate (Eta)) and their corresponding MSE values on validation data  

Table 5: The optimized hyperparameters of the optimal ANN model 

 
 
 
 
 

 

Hyperparameter Value 
Number of hidden neurons (Hidden Neurons) 32 

Mini-batch size (Mini-batch) 1 
Learning rate (Eta) 0.01 

Epoch (Epoch) 83000 
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2.2.3 Fuzzy curve analysis 
Ranking the importance of meteorological factors on the corrosion rate of metal, 
specifically carbon steel in this work, provides valuable guidance for the adoption of 
appropriate procedures to protect the construction made of metal. Sensitivity analysis, 
change of MSE (mean square error), and fuzzy curves are commonly used to obtain the 
order of importance of input parameters of ANNs. 
The employments of sensitivity analysis and change of MSE (COM) require previous 
training of ANN. However, the usage of fuzzy curves proposed by Lin and Cunningham 
[Lin and Cunningham (1994)] is computationally simple, has linear time complexity 
concerning to the number of input parameters, and needs only the input and output 
parameters. In this work, fuzzy curves are constructed with data normalized in Section 
2.1 to rank the influence of each input on the output. 
Assuming a neural network with multiple inputs 𝒙𝒙𝒊𝒊 (i = 1,2,3, … , n, i < n) and single 
output y, and taking 𝑥𝑥𝑖𝑖𝑘𝑘 and 𝑦𝑦𝑘𝑘 as the input and output variables in the kth sample of m 
training sample set (k=1,2,…,m, k<m) respectively, the fuzzy curves are constructed by a 
fuzzy membership function 𝑢𝑢𝑖𝑖𝑘𝑘 in Eq. (10) and the centroid defuzzification function 𝑐𝑐𝑖𝑖 in 
Eq. (11), respectively, as follows. 

𝑢𝑢𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖) = 𝑦𝑦−�
𝑚𝑚𝑖𝑖𝑖𝑖−𝑚𝑚𝑖𝑖

𝑏𝑏 �
2

           (10) 

𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖) = ∑ 𝑢𝑢𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)⋅𝑦𝑦𝑖𝑖𝑚𝑚
𝑖𝑖
∑ 𝑢𝑢𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)𝑚𝑚
𝑖𝑖

            (11) 

where (𝑘𝑘 = 1,2, … ,𝑚𝑚, 𝑘𝑘 < 𝑚𝑚), (i=1, 2, 3, …, n, i< n) and b is taken around 10% of the 
length of the input interval of 𝑥𝑥𝑖𝑖. 
The fuzzy curves plotted in the 𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖) space can demonstrate whether an individual 
input has a significant influence on the output or not. The importance of the inputs can be 
sorted explicitly by the ranges that they cover on fuzzy curves. The input variable that has 
the most significant impact on the output is obtained with the largest value 𝑐𝑐𝑖𝑖.  

3 Results and discussion 
3.1 Conventional models and ANN 
The following two evaluation metrics (correlation coefficient (R) and root mean square 
error (RMSE)) are resorted to measuring the predictivity and the accuracy of the trained 
ANN model and the conventional models on novel unseen datasets. 

RMSE = �∑ (𝐸𝐸𝑖𝑖−𝑃𝑃𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
           (12) 

R = ∑ �𝐸𝐸𝑖𝑖−𝐸𝐸��𝑃𝑃𝑖𝑖−𝑃𝑃�𝑁𝑁
𝑖𝑖=1

�∑ �𝐸𝐸𝑖𝑖−𝐸𝐸�
2

 ∑ �𝑃𝑃𝑖𝑖−𝑃𝑃�
2𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 �

1
2�
           (13) 
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where E and P are the actual and predicted values of atmospheric corrosion respectively, 
N is the number of data records used in the models, 𝐸𝐸 and 𝑃𝑃 are the average values of E 
and P respectively. 
There is a linear relevance, which can determine the reliability of the model, between the 
actual and predicted atmospheric corrosion rates of carbon steel on the test dataset for 
three individual models, as illustrated in Fig. 6. Deliberating to the prediction of unseen 
data, according to Ratner [Ratner (2009)], both of the correlation coefficient R=0.5656 
for linear model and the correlation coefficient R=0.68596 (that is higher than the linear 
model) for Klinesmith models indicate moderate positive linear relationships between 
predicted and actual atmospheric corrosion rates while our early stopping criteria-based 
ANN model gives a strong positive linear relationship and a better agreement between 
them with R=0.78877. Alternatively, the ANN model can explain about 80% (more than 
75%) of the variance of the actual value in the forecasting of atmospheric corrosion of 
carbon steel. 

 

Figure 6: Relevance between the actual and predicted atmospheric corrosion rates of 
three analytical models on the test dataset 

Tab. 6 lists the comparison of evaluation metrics of three models. It can be seen that the 
RMSE of the linear model (RMSE=0.1356) is the highest value and ANN has a slightly 
lower RMSE value (RMSE=0.1011) than the Klinesmith model. According to the 
comparison results of the evaluation metrics for three models for new data, it can be 
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concluded that the ANN model gives a better performance than conventional models for 
predicting atmospheric corrosion of carbon steel and the Klinesmith model provides better 
prediction results than the linear model. Thus, the integration of early stopping method with 
ANN makes a significant contribution to ANN performance with acceptable generalization. 

Table 6: Performance evaluation metrics of three models for test data 

Model RMSE Correlation Coefficient (R) 
Linear Model 0.1356 0.5656 
Klinesmith Model 0.1027 0.68596 
ANN 0.1011 0.78877 

Despite using a large dataset in this work, those data were measured from different 
sources by different methods so that corrosion data might have inherently scattered. 
Although this work does not consider other possibly more critical parameters on 
atmospheric corrosion (such as the effect of microclimate) for the prediction model, it can 
be seen that ANN can still give more satisfactory results by its fault-tolerance ability than 
the conventional analytical models. 

3.2 Fuzzy curve analysis 
The fuzzy curve is used as an input ranking method to evaluate the influence of each 
climatological variable and each pollution parameter on the atmospheric corrosion of 
carbon steel. The fuzzy curve is derived from fuzzy theory, which is still be applied 
successfully in many areas [Wang, Wang, Zheng et al. (2018)]. A plot of the fuzzy curves 
constructed for atmospheric corrosion is presented in Fig. 7 and each input variable is 
expressed with the corresponding range of ci in the legend. The significance of the input 
variable is ranked by the range of ci such that the input variable with a broader range has 
a higher impact on the atmospheric corrosion. Fig. 8 shows the different ranges of all 
fuzzy curves for each input parameter. In this work, the ranking of the influence of input 
variables on the atmospheric corrosion can be defined as TOW>Cl->SO2>T>Year which 
is conformed to the fact that TOW, Cl- and SO2 are the most significant meteorochemical 
variables with a well-known nonlinear relationship in atmospheric corrosion of carbon 
steel [Pintos, Queipo, de Rincón et al. (2000)]. 
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Figure 7: Fuzzy curves determining the influence of each input parameter on 
atmospheric corrosion rate 

 
Figure 8: Plot showing the ranges of all fuzzy curves for all input parameters 

4 Conclusions 
In this work, the result of the linear model exploits its weaknesses of being still not 
perfect, limited to capture non-linearities of data, and its poor ability to handle a large 
amount of data. The Klinesmith model predicts acceptable results by considering the 
impact of possible environmental variables. Thanks to the abilities of noise-tolerance and 
fault-tolerance, our stopping criteria-based ANN model yields the most satisfactory result 
among three models so that ANN can deal well with real-world data that are somewhat 
noisy, uncertain, complex and incomplete, and is an appropriate solution to complicated 
problems to give the satisfactory result.  
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It is expected that ANN can also be used as an analytical model for high-throughput 
experiment data that are quite different from traditional data. The nature of non-linearity, 
complexity, data similarity and data accumulation of high-throughput data can decrease 
the performance of existing analytical models. Some new methods may be applied to our 
prediction model to get the robust result [Yu, Liu, Xiao et al. (2019)]. To highlight the 
significance of ANN, it is a typical state-of-the-art application to solve the prediction 
problems in materials science by considering more affecting parameters and more 
accurate data. 
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