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Abstract: Smoking is the main reason for fire disaster and pollution in petrol 
station, construction site and warehouse. Existing solutions based on wearable 
devices and smoking sensors were costly and hard to obtain evidence of smoking 
in unmanned scenarios. With the developments of closed circuit television (CCTV) 
system, vision-based methods for object detection, mostly driven by deep learning 
techniques, were introduced recently. However, the massive GPU computing 
hardware required by the deep learning algorithm made these methods hard to be 
deployed. This paper aims at solving the smoking detection problem on edge and 
proposes the solution that has fast detection speed, high accuracy on micro-objects 
and low computing budget, i.e., it could be deployed on the edge device such as 
NVIDIA JETSON TX2. We designed a new framework named RTVBS based on 
yolov3 and made a smoking dataset to train our model. We raised several methods 
to improve detection accuracy during the training step. The validation results show 
our model has excellent performance in smoking detection. 

Keywords: Smoking detection; small object detection; real time; CNN; image 
processing 

1 Introduction 
Nowadays, safety and health are still the focus of public attention, as one of the most dangerous 

daily behavioral habits, smoking has caused plenty of fire hazards and other kinds of catastrophes.  
According to the investigation, there are around 5.2% of the total 312,000 fire events caused by smoking 
every year, causing thousands of casualties. Besides, World Health Organization attributes 10% annual 
early deaths to cigarettes and proves it increased risk for many serious diseases. In addition, smoking is 
also a main factor leading to air pollution. Therefore, preventing smoking is of great significance.  

It is not difficult to detect smoking behaviors indoors, such as malls, colleges, restaurants. We can 
deploy smoking sensors and CCTV systems for detection. These indoor places were located near the data 
centers with ultrahigh bandwidth. It has the abilities to process requests and video data timely through the 
central server. However, in edge scenarios [1], the hardware resources are limited [2], such as weak 
bandwidth and network, we could not connect to central server timely. Besides, the sensor-based methods 
for detection do not work well outdoors. For example, smoke sensors find out the smoking events relying 
on the fumes concentration, but in outdoor environments, the fumes concentration is greatly diluted, this 
badly disturbs the detection results.  A light-weight vision-based smoking detection methods might be the 
best choice on edge [3]. 

Since AlexNet won the first prize on IMAGENET classification contest in 2012 [4], researchers 
gradually paid more and more attention to deep learning based methods on computer vision. Recently, 
object detection tasks utilized the CNN algorithms to solve practical problems successfully, such as face 
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detection, pedestrian detection and vehicle detection. The results are quite satisfying. There is too little 
work has been devoted to smoking detection by means of CNN. Therefore, so in this paper, we apply 
deep learning methods to perform smoking detection. 

Taking detection speed into consideration, we chose the one-stage detection algorithms for their high 
speed. Two-stage detection algorithms have high precision and perform well in small object detection, but 
their model parameters are very large and have a long period of detection which make they are difficult to 
satisfy the need for real-time processing.  

Though CNN has an advantage in extracting features from objects, cigarette’s features are not 
obvious, many little things might affect the detection outcomes. So, we use shapes of hand and mouth as 
features relevant to smoking events. Then, we build a smoking dataset to train our network and valid the 
detection results. We referred to the yolov3’s network architecture and proposed the RTVBS framework 
which was compatible for embedded board and it achieved significantly higher accuracy than tiny-yolov3 
with almost the same computing speed. Finally, we built a detection system with the trained RTVBS 
models. The rest of this paper is organized as follows: Section 2 provides the review of the related work. 
Section 3 introduces the dataset we have built. Section 4 describes the new model we proposed and some 
improvements as well as experiments on smoking detection. Finally, in Section 5, we present conclusion 
and future work. 

2 Related Work 
There were many researches on smoking detection, mostly they used wearable devices [5] and smart 

sensor to sense the movements of someone’s arm or the fumes concentration to detect smoking events [6]. 
But in the stations, it is impossible to equip everyone including passengers with smart sensors. Zheng et al. 
[7] utilize the changing of WIFI signal to identify the smoking activities, but as the author said, it works 
well only indoors. In outdoor environments, this approach is not so effective. Wu et al. [8] used traditional 
vision-based methods for detection, firstly, they extracted the region of interested objects from the 
background, secondly, they used color’s changes in chromatic ratio histograms of objects to retrieving 
actions and recorded the change sequences. Thirdly, they used Markov models of different event types to 
discriminate sequence records, then to figure out smoking events. This method didn't have fast speed and 
it was easily disturbed by some actions like drinking and eating. 

Traditional vision-based object detection techniques were mainly depended on handcrafted features. 
The lack of effective image representation forced the researchers to design sophisticated feature 
representations. Moreover, these methods’ generalization ability and anti-interference ability were quite 
poor, around 2010, these methods reached a bottleneck. Since 2012, the world saw the rise of CNN, it has 
extra ordinary capability to learn robust and high-level feature representations. Soon after that, experts 
successfully applied the CNN to solve object detection difficulties. The following are milestones in object 
detection history. 

2.1 Residual Learning Framework 
Though the Resnet [9] was designed for classification tasks instead of detection tasks, the deep 

thoughts behind the network left the scholars valuable illumination. It used the residual module to training 
deep CNN as pioneer and successfully solved the degradation and vanishing/exploding gradients problem 
what occurred when the amount of network layers increasing. Residual module learns mapping functions 
with reference to the layer inputs. The author proved the residual networks were easier to be optimized 
and gained higher accuracy from great amount of network layers, and converged much faster than the 
ordinary deep CNN structures. 
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2.2 The anchor from Faster RCNN 
In 2015, the first end-to-end and nearly real-time deep learning object detector, Faster RCNN, was 

invented. It proposed novel Region Proposal Networks that shared convolutional neural network layers 
with fast RCNN’s backbone [10]. RPN were designed to generating detection region proposals with 
multiple scales and aspect ratios. Then the author introduced translation-invariant box, anchor, which 
acted as regression references for sharing features without extra cost for addressing multiple scales and 
aspect ratios. Besides, usage of anchors also reduced model’s elapsed time. 

2.3 Feature Pyramid Networks 
The FPN architecture [11] was proposed on basis of Faster RCNN in 2017, it was a top-down 

architecture with lateral connections which was developed for building high-level semantic feature maps at 
all scales. The contribution of FPN was constructing feature pyramids with little marginal extra cost. The 
feature pyramids were formed naturally through CNN’s forward propagation. The FPN showed significant 
improvement as a generic feature extractor for detecting objects with different scales by integrating 
multiscale feature representations from each level of feature pyramids. Furthermore, low-level features had 
small receptive field but higher-resolution feature maps what is in favor of detecting small objects. 

2.4 YOLO Family 
As a leader of one-stage detectors in 2016, YOLO algorithm gave the object detection task a totally 

new definition, it treated detection problem as a regression problem and utilized a single neural network 
to predict bounding boxes and class probabilities directly from a raw input image in one evaluation [12]. 
Since the single network architecture, the inference speed of YOLO algorithm is extremely fast. To 
improve the detection accuracy while keeping a very high detection speed, YOLO’s family members, 
yolo9000, yolov3 and tiny-YOLO were proposed one after another. The improvements of all these 
different network architectures offer us enlightenment to design our RTVBS. 

3 Model Design 
Our vision-based method for smoking detection used deep learning network to located the smoking 

objects from a single picture, in other words, we treat the smoking detection problem as an object 
detection problem.  The objects we want to detect are cigars. There were a lightweight and fast detection 
framework called tiny-yolov3, it could perform detection with little time cost, but its accuracy is not high 
enough and has a poor performance in detecting micro objects such as cigars, hands and mouths. 
Generally, deeper neural network learns more characteristics and features of targets. The architecture of 
tiny-yolov3 is excessively simple, we should design a more sophisticated network structure to improve 
accuracy. Besides, we should place restrictions on the amounts of model’s parameters and cut down the 
model’s hardware resource demands to make it adapt for the embedded system environment. More 
importantly, the new model should detect tiny objects more accurately.  

The following were descriptions about the detection procedures. First, we trained an improved 
detection model with the training dataset we built. Then we deployed the model to edge embedded board. 
The board was connected to several surveillance cameras via local area network and the board processed 
the RSTP video stream from those cameras. When smoking events occurred, the board would capture the 
video frame and mark the cigar’s location, and then send alert to the central console which was also in the 
LAN and managed by security guards. It is obvious that the model's performance is the most important 
part in our framework. 

3.1 Architecture 
Fig. 1 demonstrates the whole architecture of our RTVBS. In general, invariance and equivariance 

are two important properties in one image’s feature representations. The feature maps near inputs have 
higher resolution and small receptive fields that help to discover small scale objects but hinder learning 
high-level semantic information for classification, we think these feature maps have weaker invariance 



 
58                                                                                                                                JIOT, 2020, vol.2, no.2 

but stronger equivariance. It is essential to balance the invariance and equivariance problems, so that we 
can detect objects with different scales more accurately. Inspired by the FPN and Yolov3 which use the 
feature fusion strategy, we add a larger scale feature map’s information into the original predictions with 
skip connections on the basic structure of YOLO, as Predict 2 and Predict 3 in Fig. 1 shows. Finally, we 
combine the three levels of predictions to figure out the final detection. This is helpful for finding out 
small objects. HyperNet [13] adopts the approach concatenating the different features of multiple layers, 
nevertheless, the feature maps of different layers may have various spatial and channel dimensions, we 
settle it with up-sampling operation. 

 
Figure 1: The total 44 layers architecture of RTVBS 

As mentioned in Section 2.1, residual module has advantages in the aspects, it helps model learning 
more features and converged faster than ordinary convolutional neural network. We chose to add two 
residual modules at our model’s backbone in order to make RTVBS learning more cigar’s features so that 
it can detect more accurately.  The details of residual module are also in Fig. 1.  

The ConvSet in Fig. 1 contains five convolutional neural network layers with different convolution 
kernels. The design of its architecture is inspired by the GoogLeNet’s Inception [14]. Consequently, the 
amount of our model’s parameters can be reduced, thus, our framework’s calculation speed is improved 
further more. It also helps to balance invariance and equivariance of the model and learning more 
comprehensive feature representations. 

3.2 Improvements for Training 
We adopt two strategies in the training steps. 

3.2.1 Random Training Shape 
According to the paper [15], random shape inputs reduce the risk of overfitting in model training 

and make model more robust in different detection situations. When training a batch of images, we resize 
them to an equal size, the size of different batches is not equal. In our RTVBS, there are total 6 times of 
down-sampling, including max pooling and convolution operation with two strides in one step. The final 
feature map has shrunk 64 times. Thus, the width and height of inputs should be a multiple of 64 and We 
calculate them as Eq. (1), Referring to Over Feat [16], we set convolutional neural network layers instead of 
fully connected layers to perform predictions. In this way, our model is able to handle random shape inputs. 
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3.2.2 K-means for Anchors 
Our RTVBS sets up 9 anchors introduced in Section 2.2 in 3 prediction layers, it means there are 

three anchors in one prediction layer. We apply k-means clustering algorithm to work out the nine cluster 
centers according to ground truth boxes’ edge lengths in our training dataset. There are three levels of 
prediction scale, in Fig. 1, feature map in Prediction 3 has the largest size (width × height), feature map of 
Prediction 2 takes the second place and Prediction 1’s feature map is smallest. We sort the size of the 
calculated anchors (width × height) and select the three smallest anchors to the Prediction 3 for its largest 
feature map scale, these feature maps have small receptive field, so it can find out and locate small objects. 
Then, the three largest anchors to Prediction 1 and the left anchors for Prediction 2. The coverage of 
multiple scales of targets is guaranteed in this way. By using anchors, our model can finish bounding box 
regression procedure in a shorter time and locate objects more precisely. 

4.1 Training methodology 
Yolov3 tried the focal loss proposed by RetinaNet [17] but did not work well, so we used binary 

cross-entropy loss for the class predictions rather than soft max. As for bounding box regression loss, we 
used the Mean Squared Error to measure it. Our RTVBS’s loss function as indicated below: 
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Definitions of parameters in the function are same with those in YOLO’s loss function. λcoord and 
λnoobj are two weight hyper-parameters for changing part of final loss. S means our system divides the 
input image into an S × S grid and for each grid cell predicts B bounding boxes. S is equal to the feature 
map’s width of last CNN layer. In our models, B’s value is three, which is same as the amount of anchors 
in one prediction level. obj

ijI denotes that the jth bounding box predictor in cell i is "responsible" for that 

prediction. obj
iI denotes if object appears in cell i. noobj

ijI is opposite to the obj
ijI . C means the number of 

labeled categories. The (xi, yi) represent the center coordinate of the box relative to the bounds of the gridi. 
The (wi, hi) are width and height relative to the whole image’s width and height. The (c)p̂ means the 

probability of the predicted class. The (c)p̂,Ĉ,ĥ,ŵ,ŷ,x̂ are the ground truth values from the training 
dataset and the x, y, w, h, C, p(c)are the predicted value from the model. 

We borrowed the batch normalization [18] to address the internal covariate shift problem and to 
accelerate the back-propagation between the CNN layers. Besides random input shapes, we adopt other 
data augmentation techniques applied in Yolov3 such as random cropping, color jittering and flipping. 
Finally, in the prediction layers before the final outputs, we use non maximum suppression [19] methods 
to delete duplicated bounding boxes.  

We performed 50 epochs of training with ainitial learning rate of 0.001 and divided it by 10 at 40 
and 45 epochs. The weight decay was set to 0.0005 and moment umparameter was set to 0.9. Our RTVBS 
was implemented in the Darknet framework for training. 
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4 Experiment 
Primarily, we created a dataset which was relevant to the smoking behaviors. Then we utilize the 

dataset to train our RTVBS model. Finally, we did several experiments with the dataset, after that we 
analyzed the experimental results. 

4.1 Build Dataset 
In the era of deep learning, data is the most essential elements to establish a high-performance model. 

The quality of model depends on the quality of the training data. But there is no smoking behavior dataset 
available on the Internet as far as I know, so, we created the smoking behavior dataset which was 
appropriate for the practical detection situation. The dataset contained three parts, the pictures from the 
Internet, the frame from smoking video we recorded and the frame from movies and HMDB we captured. 

4.1.1 Introduction of the Dataset 
The total number of pictures for training is about 2000, including the 1200 screenshot pictures 

captured from the online videos and HIKVISION surveillance cameras. And the remained 800 images 
were crawled from some photo websites. The features extracted by CNN mainly include contour, color, 
chromatic aberration, shape, size, texture and the combination information of these basic graphics features. 
If we only mark the box around the cigar as ground truth, there will be two flaws. The first one is that the 
cigar is too small to be labeled, we may make a wrong label. The second is due to occlusion, blur and 
other interference factors, the cigar’s graphic characteristics and features are not obvious, our model may 
learn incorrect features, which is harmful for detection. Considering cigar is held on the hand or stuck 
between lips, we regard hands and mouths as features of cigar objects. 

 
Figure 2: Samples of smoking category 

 
Figure 3: Samples of smoking distractor 

According to the specific patterns of normal smoking steps, there are three smoking status. Fig. 2 
presents three categories of smoking. To enrich the dataset, diversify the data and consequently enhance 
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the accuracy and robustness of our detection model, disturbing samples are necessary. Fig. 3 presents 
three kinds of distractor and Tab. 1 gives the explanations. 

The sizes of cigars are various in our dataset, which is beneficial for enhancing robustness and 
generalization of our detection model. Certain pictures contain multiple smokers, which is in favor of 
improving the multi-target detection results. Some pictures contain the smokers who are far away from 
the cameras, which is of great benefits to improving the results of small target detection. The diversified 
background, including indoor, outdoor, street and natural scenes, also improves the robustness of model. 

Table 1: Explanation of smoking categories 

Name Explanation Position 
Smoke Hand Lip Smoker holds the cigar near the lips with hand Fig. 2a 
Smoke on Hand Smoker just holds the cigar in the hand far from mouth Fig. 2b 
Smoke with Lip Smoker just sucks the cigar between lips without hand Fig. 2c 
Distractor one As the interference term of Fig. 2a Fig. 3a 
Distractor two As the interference term of Fig. 2b Fig. 3b 
Distractor three As the interference term of Fig. 2c Fig. 3c 

4.1.2 Data Annotation 
We chose the open source annotation tool YOLO Mark to label our data. The contents of annotation 

were composed of object’s category and ground truth box. For every picture in the dataset, we created a 
text document which duplicated the picture’s prefix name to store the label messages. There might be 
multiple detection objects in one picture, so the text file might contain several lines, one line denoted an 
object, its format was quintuple: (class, x, y, w, h). Class meant the category of the object. The x, y 
indicated the horizontal and vertical coordinates of the labeled box’s center point, the w, h represented the 
width and height of the box respectively. For disturbing samples, we didn’t give them annotation and just 
created empty text files. 

4.1.3 Composition of Dataset 
We divided the labeled dataset into training set and test set. Tab. 2 gives the detailed information 

about the composition of different classes in the dataset. 

Table 2: Statistics of dataset 

 Name of class Quantity  Name of class Quantity 

Training Set 
Smoke Hand Lip 600 

Test Set 
Smoke Hand Lip 60 

Smoke on Hand 600 Smoke on Hand 60 
Smoke with Lip 600 Smoke with Lip 60 

4.2Comparison Experiment 
We chose the RetinaNet, Yolov3 and Tiny-yolov3, three high performance frameworks in one-stage 

detection algorithms to make a comparison for our RTVBS. Tab. 3 describes the detailed experiment 
results of four trained model. By contrast, we gave up the RetinaNet for its slow detection speed and 
Yolov3 for its large model size and parameter quantity. Tiny-yolov3 seems to be the most suitable model 
for our detection scenarios, so we designed RTVBS on the basis of it. Finally, we train and valid the 
RTVBS with the same training dataset, the results are also contained in Tab. 3. 
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4.3 Results and Analysis 
We deployed the four trained models into the NVIDIA JETSON TX2 and test their performance 

with the test dataset we created before. Tab. 3 describes the detailed test results, additionally, Fig. 4 
demonstrates the outcomes more clearly. 

Table 3: Descriptions of the experiment results 

 RetinaNet Yolov3 Tiny-Yolov3 RTVBS 
Language Python C++ C++ C++ 
Framework Keras-Tensor flow Darknet Darknet Darknet 
Model size (MB) 146.27 246.35 34.72 36.93 
Detection rate (FPS) 1.32 3.72 14.42 13.63 
mAP (%) 72.32 69.18 58.57 69.44 

 

 
Figure 4: Histograms of four models’ comparisons 

We picked three benchmarks to measure the models’ performance. Model size is usually related to 
the number of parameters and reflects the computing demands. Larger model contains more parameters 
and it needs stronger GPU processor and more GPU memory. Our RTVBS is a lightweight model which 
consumes less hardware resources. The detection rate directly reflects whether a model is a real-time 
detection model, our RTVBS is up to 13.6 fps, which makes it suitable for real-time detection. The last 
benchmark is mAP, it was proposed in PASCAL VOC dateset and reflected the detection accuracy of a 
model. From Fig. 4, we know that the RetinaNet and Yolov3 have high detection accuracy but the low 
detection speed. Tiny-Yolov3 has the fastest detection speed, simultaneously, it has the worst detection 
accuracy. In my view, we only detected three types of objects, the CNN layers of model need not be too 
much, a well-designed lightweight model could solve the smoking detection problems. Even if RetinaNet 
and Yolov3 have good performance in detection, they are not suitable for the embedded board 
environment where hardware resources are limited. 

Taking the three benchmarks into account, only our RTVBS has both relative high accuracy and 
detection speed. 

5 Conclusion and Future Work 
In this paper, we designed a high speed and accuracy detection framework which consumed less 

hardware resources. Besides, we created a smoking behavior dataset to train our RTVBS framework. Its 
lightweight characteristics promised the widely application on edge. Additionally, we built a detection 
system on the basis of the trained RTVBS model. And then, we deployed the system into the NVIDIA 
JETSON TX2 board to performed the detection work. The integration of deep and shallow features in 
CNN model helps improve both invariance and equivariance works, so our model has good performance 
in small object detection as shown in Fig. 5. 

Our future work will focus on model compression and acceleration, we are considering the model 
pruning, Huffman coding and other methods. Besides, there are false detection and miss detection cases in 
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our model, we will expand the dataset and refine the model further more. In addition, we will attempt to 
deploy the model to the NVIDIA JETSON Nano for practical use. 

 
Figure 5: Detection results on three types of smoking 
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