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Abstract: Predicting the onset and metastasis of early tumor is the primary 
means of improving lung cancer prognosis. The purpose of this study was to 
identify the ability of plasma metabolomics combined with blood markers to 
establish benign lung disease versus lung cancer regression models. Blood 
samples were collected from 174 lung cancer patients, 350 benign lung disease 
patients and 100 healthy volunteers and the metabolites were analyzed by mass 
spectrometry. The target metabolites consisted of 23 amino acids, 26 
acylcarnitines and 45 conventional blood markers. A regression analysis model 
was established based on 12 metabolites and five blood markers selected by 
elastic network analysis. Two-thirds of the data were used in a training set for 
modeling and signature construction, and the remaining one-third were used in a 
validation set to test the model. This model was identified to have good 
specificity and sensitivity in distinguishing between lung cancer and lung disease. 
The performance of the model was evaluated using the area under the receiver 
operating curve, which was 0.915 in training set and 0.875 in validation set. In 
conclusion, this study demonstrates that regression model established by plasma 
metabolomics in combination with conventional serum markers has potential for 
the diagnosis of lung cancer. 
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1 Introduction 
Lung cancer is one of the most common cancers in humans, accounting for nearly 15% of all new 

cancers [1]. Lung cancer is also one of the most deadly cancers due to early stage detection difficulties, 
with a 5-year survival rate of less than 15% [2]. Most early stage lung cancer patients have no obvious 
signs and symptoms, which reduces the likelihood of early diagnosis and treatment. Currently, the main 
measures for the diagnosis of lung cancer include protein biomarker quantification, radiography, sputum 
cytology and endoscopy. These traditional methods are used to determine the stage, location and 
metastasis of lung cancer. However, they have some limitations, such as early diagnosis difficulties, high 
cost of examination, and lack of application for population screening. Therefore, new diagnostic methods 
for lung cancer are urgently needed [3,4]. Notably, the biomarkers of lung cancer also show markedly 
high levels in benign lung diseases. Due to its low sensitivity, tumor markers are generally not 
recommended as a tool for early detection of lung cancer [5,6]. To date, no serum biomarkers are 
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available for lung cancer diagnosis.  
Metabolomics is an emerging field in which the levels of small molecule metabolites in biological 

fluids or tissues are monitored at specific times under specific environmental conditions to study global 
metabolic differences in biological systems [7]. Cancer metabolism is an essential aspect of tumorigenesis 
[8]. Disordered metabolism is a key event in cancer development and progression [9]. Plasma has been 
used to identify cancer metabolic biomarkers by using targeted and non-targeted methods [10]. NMR, 
GC-MS and LC-MS are the main techniques used in metabolomics analysis, and LC-MS is the latest 
technological advancement in metabolomics that further improves the detection sensitivity and data 
reliability of cancer metabolomics [11]. In recent years, plasma or serum metabolomics has been widely 
applied to the differentiation of malignant tumors and benign diseases. 

The purpose of this study was to identify the ability of plasma metabolomics combined with blood 
markers to establish benign lung disease versus lung cancer regression models. 

2 Materials and Methods  
2.1 Subjects 

Flow chart for patient selection was shown in Fig. 1. A total of 174 lung cancer (LC) patients, 350 
benign lung disease (LD) patients and 100 healthy volunteers (CONT) from the First Affiliated Hospital of 
Jinzhou Medical University were collected. LC patients with non-small cell carcinoma (NSCLC) included 
adenocarcinoma (n = 93), squamous cell carcinoma (n = 42), and adenosquamous carcinoma (n = 3). There 
were 27 small cell lung cancer (SCLC) patients and 13 lung cancer with undefined molecular subtypes. The 
mean ages of patients with LC and LD were 60.3 (33–84) years and 62.8 (31–91) years, respectively. The 
study was approved by the Ethics Committee of the First Affiliated Hospital of Jinzhou Medical University, 
Liaoning. Of LC patients collected, 30 patients were in stage I, and remaining were in Stage II (16 patients), 
Stage III (43 patients), and Stage IV (71 patients) according to AJCC (Tab. 1). All the patients signed 
informed consents. The diagnosis of patients was confirmed by histology; all the patients received no 
medical treatment and surgical operation before this study. 

Table 1: Clinical characteristics of the patients included in this study 

Number of samples, n LD LC CONT 

Age (years) (range) 62.8 (31–92) 60.3 (33–84） 57.8 (29–81) 

Gender    

Male 79 72 69 

Female 53 62 31 

        Clinical stage according to TNM classification  

I, n / 30 / 

II, n / 17 / 

III, n / 43 / 

IV, n / 71 / 

Undefined stage / 13 / 

LD: Benign Lung Disease; LC: Lung Cancer; TNM: Tumor, Node, and Metastasis 
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Figure 1: Patient flow diagram 

2.2 Chemicals  
High-purity water and HPLC grade acetonitril (ACN) were provided by Thermo Fisher Scientific 

(Waltham, MA, USA). 1-Butanol and Acetyl chloride were from Sigma-Aldrich (St Louis, MO, USA), 
internal standards for the 12 isotopically labeled amino acids (catalog number: NSK-A) and 8 
acylcarnitines (catalog number: NSK-B) were from Cambridge Isotope Laboratories (Andover, MA, 
USA). For quality control of the sample, the kit containing the mixed standard amino acids and 
acylcarnitines was obtained from Chromsystems (Grafelfng, Germany). 

2.3 Sample Preparation  
Dried Blood Spot (DBS) paper was drilled into a blood spot disc with a diameter of 3 mm, and 

transferred to Millipore MultiScreen HV 96-well plate (Merck KGaA, Darmstadt, Germany) to extract 
amino acids, and 100 μL of working solution was added to each well. The 96-well plate was gently 
shaken at room temperature for 20 min. Two high levels and two low levels of QC solution were 
randomly added to the blank wells to ensure the stability of the analysis. The plate containing the disc was 
centrifuged at 1,500 x g for 2 min, the filtrate was collected and dried with pure nitrogen (50°C). The 
dried sample was added to 60 μL of acetyl chloride and 1-butanol mixture at 65°C for 20 min for 
derivatization, and then 100 μL of the mobile phase solution was added to dissolve the derivative. The 
samples from each patient were subjected to mass spectrometry. Briefly, samples were separated by 
Ekspert UltraLC coupled with Triple TOF (AB Sciex, Framingham, MA, USA). UPLC HSS T3 column 
(2.1 mm × 100 mm, 1.8 μm, Waters, USA) was used. The mobile phase A was 1:9 acetonitrile/water (v/v) 
solution and the mobile phase B was 9:1 acetonitrile/water (v/v) solution. The flow rate was 0.3 mL/min.  

2.4 Statistical Analysis 
All data were normalized and discretized into categorical variables by dichotomy of the phenotype 

using the upper or lower limits of the normal range as cutoff values. Two-thirds of each comparison 
subgroup were used as a training set for modeling and signature construction, and the remaining third were 
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used as a validation set. The elastic network algorithm was used to model the equal penalty of the training 
set and validation set and build a composite biomarker signature. Youden Index was used to choose the best 
cutoff value. Receiver Operating Curve (ROC) was drawn, and the performance of the model was evaluated 
using the area under ROC (AUR). The area between ROC curve and the no-discrimination line was 
multiplied by two to calculate coefficient (COEF). All statistical analyses were performed using Python 3.6 
and IBM SPSS Statistics software package v.17.0 (IBM SPSS Inc., Chicago, IL, USA).  

3 Results  
3.1 Differences between the two Groups in the Diagnostic Model 

Total 49 metabolites (Ala , Arg, Asn, Asp, Cit, Cys, Gln,Glu, Gly, Hcy, His, Leu, Lys, Met, Orn, 
Phe, Pip, Pro, Ser, Thr, Trp, Tyr, Val, C0, C2, C3, C4, C4-OH, C4DC, C5, C5-OH, C5DC, C5:1, C6, C8, 
C10, C12, C14, C14-OH, C14DC, C14:1, C16, C16-OH, C16:1-OH, C18, C20, C22, C24, C26) were 
added to each sample of LD and LC, and additional 45 routine blood markers (Leukocyte, 
Monocytes/Leukocytes, Monocyte, Hematocrit, Red blood cell, Red blood cell distribution width, 
Lymphocytes/white blood cells, Lymphocytes, Average red blood cell hemoglobin, Mean red blood cell 
hemoglobin concentration, Mean red blood cell volume, Mean platelet volume, Basophils/Leukocytes, 
Basophils, Eosinophils/White Blood Cells, Eosinophils, Hemoglobin, Platelet hematocrit, Platelets, 
Platelet distribution width, Nucleated red blood cells, Nucleated red blood cells/white blood cells, 
Neutrophils/White Blood Cells, Neutrophils, 5’-nucleotidase, gamma-glutaminase, α1-microglobulin, 
α-L-Fucosidase, Albumin, total protein, globulin , Cholinesterase, bile acid, Alanine aminotransferase, 
Aspartate aminotransferase/Alanine aminotransferase, Aspartate aminotransferase, Cystatin C, Creatinine, 
Alkaline phosphatase, Leucine aminopeptidase, Urea Nitrogen, Adenosine Deaminase, Conjugated 
bilirubin, Bilirubin) were added for measurement and calculation. All of these indicators were used in the 
models to distinguish LC and LD. The accuracy of the training set and the validation set was stable about 
80%. Therefore, the model composed of blood index and metabolite parameters selected by the elastic 
network could distinguish LC and LD groups.  

3.2 Differential Parameter Selection 
In the elastic network, all indexes of LC and LD groups compared with healthy group were screened. 

17 related markers were selected from 137 detection indicators (Ala , Arg, Asn, Asp, Cit, Cys, Gln, Glu, 
Gly, Hcy, His, Leu, Lys, Met, Orn, Phe, Pip, Pro, Ser, Thr, Trp, Tyr, Val, C0, C2, C3, C4, C4-OH, C4DC, 
C5, C5-OH, C5DC, C5:1, C6, C8, C10, C12, C14, C14-OH, C14DC, C14:1, C16, C16-OH, C16:1-OH, 
C18, C20, C22, C24, C26,Arg/Orn, Cit/Arg, Gly/Ala, Met/Leu, Met/Phe, Orn/Cit, Phe/Tyr, Tyr/Cit, 
Val/Phe, C2/C0, C3/C0, C3/C2, C3/C16, C4/C2, C4/C3, C4/C8, C5/C0, C5/C2, C5/C3, C5-OH/C8, 
C5-OH/C0, C5DC/C5-OH, C5DC/C16, C8/C2, C8/C10, C16-OH/C16, C14:1/C16, C3DC, C3DC/C10, 
C18:1, C18-OH, C18:1-OH, C10:1, C10:2, C14:2, C18:2, C10:2/C10, C6DC, C5DC/C8, (0 + 2 + 3 + 16 + 
18:1)/Cit, (C16 + C18)/C0, C0/(C16 + C18), C3/Met, Leukocyte, Monocytes/Leukocytes, Monocyte, 
Hematocrit, Red blood cell, Red blood cell distribution width, Lymphocytes/white blood cells, 
Lymphocytes, Average red blood cell hemoglobin, Mean red blood cell hemoglobin concentration, Mean red 
blood cell volume, Mean platelet volume, Basophils/Leukocytes, Basophils, Eosinophils/White Blood Cells, 
Eosinophils, Hemoglobin, Platelet hematocrit, Platelets, Platelet distribution width, Nucleated red blood 
cells, Nucleated red blood cells/white blood cells, Neutrophils/White Blood Cells, Neutrophils, 
5’-nucleotidase, gamma-glutaminase, α1-microglobulin,α-L-Fucosidase, Albumin, total protein, globulin, 
Cholinesterase, bile acid, Alanine aminotransferase, Aspartate aminotransferase/Alanine aminotransferase, 
Aspartate aminotransferase, Cystatin C, Creatinine, Alkaline phosphatase, Leucine aminopeptidase, Urea 
Nitrogen, Adenosine Deaminase, Conjugated bilirubin, Bilirubin) to build the model (Tab. 2). These 
included 16 endogenous metabolites and 1 calculated ratio. Compared with CONT group, Gly/Ala, Ala, 
Glu, Gln, Pip, Lys, Leu, Pro, Thr, alkaline phosphatase, and uric acid levels increased in LC group, while 
Phe, Gly, Cit decreased in LD group, platelets, γ-glutamine transferase, and alanine aminotransferase levels 
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decreased in LC group, but increased in LD group. These results suggest that LD causes reversible 
metabolic changes compared to LC.  

Table 2: Regression model coefficient 
Marker COEF 
Gly/Ala 0.000285811 
Phe –0.004698505 
Ala 0.000413463 
Gly –7.82341 × 10–5 
Glu 0.003392312 
Gln 0.000299832 
Cit –0.001598781 
Pip 0.000279602 
Lys 0.000101959 
Leu 0.000288229 
Pro 0.000181724 
Thr 0.000215315 
Platelets –9.61985 × 10–5 
γ-glutamine –0.000129896 

 
 –0.000802072 

  
0.000387214 

  
0.000547153 

Gly: glycine; Ala: alanine; Phe: phenylalanine; Gln: glutamine; Glu: glutamate; 
Pro: Proline; Thr: Threonine; Pip: piperonylamide; Cit: Citrulline; Lys: Lysine 

3.3 Diagnostic Regression Equation 
In the statistical model, the AUC of the training set was 0.915, the specificity was 0.702, the 

sensitivity was 0.965, and the data screening accuracy was 0.789. In the validation set, the AUC was 
0.875, the specificity was 0.756, the sensitivity was 0.948, and the data screening accuracy was 0.791 
(Figs. 2A and 2B). The AUC of our model was better than that of cancer markers CEA, CY211 and NSE 
(AUC of 0.717, 0.690 and 0.698, respectively, Fig. 3), indicating that our diagnostic model has advantage 
over conventional tumor markers.   

 
Figure 2: The performance of the elastic network based on 16 endogenous metabolites and 1 calculated 
ratio. A. AUC results of training set obtained by two-thirds patients in the model. B. AUC results of 
validation set obtained by two-thirds patients in the model  
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Figure 3: Comparison of AUC of our model with that of tumor markers. The AUC of the overall model 
(whole) was significantly better than that of CEA, NSE, CY211   
 
4 Discussion  

At present, the most difference among lung cancer and benign lung diseases is histological pathology, 
but it is not easy to identify benign and malignant lung diseases in the early stage. Low-dose CT is a 
common method of diagnosis, but the false positive rate may exceed 90% [3]. Tumor markers such as 
CY211, NSE and CEA are used for detecting lung cancer, but they may be detected in benign diseases, 
resulting in low positive rates [12–14]. The combined assessment of multiple serum tumor markers was 
more accurate for LC detection than the use of single serum tumor marker [15]. On the other hand, it has 
been proposed that metabolites can distinguish LC and LD as novel biomarkers. For example, 
Callejon-Leblic et al. [16] identified 11 metabolites that could be as biomarkers of LC to distinguish LC 
from other lung diseases. Therefore, in this study we validated the potential of metabolites in combination 
with multiple blood biomarkers to establish a multiple regression model for the early diagnosis of LC. 

Amino acids are valuable clues in the metabolomics of cancer [17]. Amino acid metabolism is 
reversible in benign lung disease but is irreversible in malignant lung disease. Previous studies showed 
that amino acid metabolomics has obvious advantages in predicting disease in gastric cancer, breast 
cancer, and colorectal cancer [18–20]. The concentrations of tryptophan, glycine, citrulline, ornithine and 
proline reduced in LC, while the concentration of phenylalanine increased [21]. Therefore, the 
metabolism of amino acids is different in LD and LC, and provides more information for differential 
diagnosis of diseases.  

 Previous studies have demonstrated that changes in amino acid metabolism in cancer cells are 
associated with gluconeogenesis, especially in patients with advanced cancer. Most cancer cells are highly 
dependent on glucose [22]. Known organs associated with gluconeogenesis include tissues such as the 
liver, kidneys, and muscles. Moreover, these organs are closely related to specific amino acid metabolism 
[23,24]. In addition, platelets are key factors in cancer progression, metastasis, and cancer-related 
thrombosis [25]. Platelets interact with immune cells to stimulate tumor response, allowing platelets to 
aggregate or activate in cancer patients. The number of platelets varies between cancer patients and 
healthy individuals [26,27].  

 In this study, the AUC of the regression model was significantly better than the AUC of CEA, 
CY211, and NSE in serum, indicating that the quantification of differential metabolites identified by 
metabolomics can help distinguish between benign lung disease and malignant lung cancer. Based on 
metabolomics techniques combined with routine blood marker analysis, a reasonable regression model 
was constructed to accurately distinguish between LC and LD. However, our study has several limitations. 
First, our sample size is relatively small. Further studies with larger sample size are needed to confirm our 
conclusion. Second, metabolomics, unlike other omics techniques, could be easily affected by 
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environmental factors, especially for LC patients who often smoke. Therefore, better controls are needed. 
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