
Comput Syst Sci & Eng (2020) 4: 271–282
© 2020 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

A Proposal for Addressing Security
Issues Related to Dynamic Code
Loading on Android Platform

Aleksandar Kelec∗ and Zoran Djuric†

Faculty of Electrical Engineering, University of Banja Luka, Banja Luka, Bosnia and Herzegovina

One of the constant challenges faced by the Android community, when it comes to the safety of the end users, is the ability of applications to load code
dynamically. This mechanism may be used for both legitimate and malicious purposes. A particular problem is the fact that remote code is not analyzed
during the verification process because it doesn’t have to be present in the application package at the publishing time. Previous research has shown that
using this concept in an insecure way can cause serious consequences for the user and his device. Solving this problem has proved to be a big challenge
that many have tried to address in different ways. This paper deals with the problem of dynamic code loading on Android platform. For the purpose of this
paper, an application that demonstrates the abuse of the dynamic code loading concept has been developed and published in the Google Play Store. Also,
a proposal of the modified Android ecosystem that should address this problem and improve the security of the whole platform is given.

Keywords: Android security, Dynamic code loading, Privacy issues

1. INTRODUCTION

Android platform was designed to provide applications the
ability to load an additional code from an external location
during the execution, such as various third-party servers that
offer additional functionalities (like ad serving). Dynamic
Code Loading (DCL) mechanism brings a lot of flexibility
when it comes to code reuse, application extensibility, rapid
updating, improving application startup performance, etc. On
the other hand, this option is very critical in terms of security,
considering that potential attackers can add a malicious activity
to the application after the application has successfully passed
the security check at the publishing time. Since the remote
code is not contained in the APK (Android Package Kit) file
during the vetting process, while publishing an application in the
Google Play Store, it is very difficult to analyze such a code and
determine whether it is malicious or not. In addition, attackers

∗aleksandar.kelec@etf.unibl.org
†zoran.djuric@etf.unibl.org

can intercept the communication of applications that legitimately
seek to download and execute remote code and modify that code
or replace it with the other (malicious) one (MITM i.e. Man-In-
The-Middle attack).

However, the previous research [1–7], has shown practically
that DCL mechanism may be abused by malicious applications
in order to circumvent the mechanisms of static and dynamic
code analysis and perform malicious activities. Furthermore,
research [3] has shown that the implementation of a secure DCL
functionality is really challenging and non-trivial.

This paper describes techniques and attacks based on loading
and execution of the remote code within the Android application.
It conducts an analysis of several techniques which provide the
use of DCL mechanism on the Android platform and gives
examples of the use of this mechanism for both legal and
malicious purposes (Section 2). Related work is discussed
in Section 3. An application that demonstrates the abuse of
the DCL with the aim of compromising user’s privacy has
been developed. This application is described in details in
Section 4. Additionally, a proposal of the modified Android

vol 35 no 4 July 2020 271

A PROPOSAL FOR ADDRESSING SECURITY ISSUES RELATED TO DYNAMIC CODE LOADING ON ANDROID PLATFORM

ecosystem that could address the problem of verification of code
that applications load at runtime is given in Section 5. The
proposed solution introduces two additional components to the
Android ecosystem - DCLVerifier service and verification server,
which are in charge of detection and verification of the code that
applications load during runtime. Section 6 describes testing and
evaluation of the proposed system. Limitations of the proposed
system and segments which could be improved are discussed
in Section 7. Before concluding the paper, the comparison of
the proposed solution with the existing solutions is given in
Section 8.

2. MOTIVATION FOR DCL

There are various situations where it is suitable to use DCL
techniques [3, 8, 9]. Previous research [3] has shown that 9.25%
of 1,632 popular applications (including Facebook) from the
Google Play store use DCL. Aysan and Sen [10] showed that
19.60% of 25,000 applications from three different markets use
DCL for the purpose of updating. The research conducted
by Maier et al. [11] on a sample of 14,885 malicious and
22,032 benign applications, showed that 36.4% of malicious
and 13.1% of benign applications use DCL. Spreitzenbarth
et al. [9] have found that 24% of 36,000 applications from
alternative sources use native calls. Thus, a growing trend
of applications that use DCL for different purposes can be
noticed. These purposes include, but are not limited to, the
following: new features testing, using common frameworks to
extend application’s functionality, updating third-party libraries
which provide additional functionalities, using external modules
to improve application performance and using add-ons.

2.1 Dynamic Code Loading Techniques

The combination of Class loaders and Java reflection provides an
efficient implementation of DCL. However, this feature can also
be used for malicious purposes, as it allows the application to be
extended at runtime with additional code. The existing state of
the art static analyzers for mobile applications [12–14] assume
that the code base does not change dynamically and the targets
of reflection calls can be discovered in advance. AnserverBot
Trojan [15] illustrates the abuse of DCL and reflection in order to
circumvent the mechanisms of static code analysis and perform
malicious activities. The name and location of the file are not
known at compile time but are computed at runtime. Thus, a
malicious code is allowed to be loaded during the application’s
execution.

The Context class allows the Android application to access
its resources as well as the resources of the other applications.
The example of abusing the context of the Swift keyboard
application is demonstrated in [16]. This application provides
the keyboard on the Samsung devices. The application is signed
by a manufacturer’s private key and runs with system privileges.
The attackers used a MITM attack to modify the zip file that
application was downloading during the update and added the
malicious code into it. After the application unzips the file, the
malicious code is executed with system privileges.

In order to load the code into the Java Runtime Environment,
the programmer has to go through a well-defined API. On
the other hand, loading and execution of a code from the
native environment are significantly easier and are based on
the execution of the arbitrary executables. While the previous
research [3] has argued that attacks that originate from the native
code are in the domain of theory, more recent studies [8, 17, 18]
have demonstrated that they are practicable and may be various.
Furthermore, they are resistant to most of the static application
analyzers, because they occur below the layer of the Dalvik
Virtual Machine (DVM). Rasthofer et al. [18] showed how
to abuse the native code in order to circumvent the tools for
automatic application analysis. They have concealed a malicious
code within the native code, making it unreachable for tools that
analyze Dalvik bytecode.

The PackageManagerService is responsible for managing the
installation and uninstallation of applications on the Android
OS. There are situations where an application requires a direct
installation of the APK, thus circumventing legitimate online
markets. PackageManagerService verifies the digital certificate
of each APK file during its installation, but it can not verify the
trust level of the certificate because any self-signed certificate is
acceptable.

In addition to techniques for loading a code that is executed
within the DVM or on the native level, there are mechanisms for
loading the code which are interpreted by specific applications.
A typical example is the web browser which executes an arbitrary
script written in the JavaScript language. Moreover, Android
provides a WebView component that is able to display the web
page within the Android application.

3. RELATED WORK

Different studies have examined the influence of DCL on
Android applications, during the past few years. Most of them
successfully identified the problems that may arise in the case of
various abuses of this approach.

Poeplau et al. [3] have identified the various uses of the DCL
mechanism as well as techniques that provide an implementation
of the DCL on the Android platform. They have developed a
tool that detects vulnerabilities in the applications that use this
mechanism, as well as a mechanism for code verification. This
involves a series of modifications to the Android framework that
should detect any attempt to load remote code.

Zhauniarovich et al. [1] have examined the problems of the
static analysis of applications that use DCL. They have shown
that a significant number of applications from different sources
use DCL and reflection. Specifically, on a sample of 29,406
applications, they showed that 12.3% of applications use a DCL
and 81.1% uses reflection. Their tool, StaDynA, combines static
and dynamic analysis to detect hidden method calls that can load
malicious code. StaDynA allows the application to load the
code. Then, StaDynA loads the same code and submits it to the
static analyzer. Thus, it is possible to extend the method call
graph (MCG) of the application and provide enhanced accuracy
of the tools for static analysis. This tool can be used by teams
who analyze malicious applications to enhance the ability of
detection of the suspicious samples.

272 computer systems science & engineering

A. KELEC AND Z. DJURIC

Vidas and Christin [6] proposed a mechanism that alleviates
the specific problem of verifying the authenticity of an applica-
tion, to protect the user from repackaged applications that contain
malicious code. Their tool, AppIntegrity, is based on creating
a simple public-key infrastructure and using reverse package
names for fetching the certificates for signing. This system
protects applications from unauthorized repackaging and allows
applications to safely download and load remote code which has
been proven as legitimate.

Falsina et al. [5] have developed Grab ’N Run, the tool which
consists of a protocol for the code verification as well as a set of
libraries and APIs that could provide an implementation of the
secure DCL mechanism. This tool is an important step forward
when it comes to the secure implementation of the DCL. An
application must include the library in order to use its services.
In addition, Grab ’n Run contains an application-rewriting tool,
which allows existing applications to use the secure APIs they
were developed. This solution is based on the DexClassLoader
class as well as corresponding API for the code loading, while
other techniques that provide the implementation of DCL are not
supported.

Ali-Gombe et al. [8] have presented AspectDroid, a system
for dynamic analysis of applications which, among other things,
focuses on DCL and reflection. The system is based on a static
instrumentation of the bytecode at the compile time and detection
of potential leaks of sensitive information. AspectDroid also
includes a containment policy that allows defining the way in
which sensitive calls can be restricted to the applications. In this
way, the system can block execution of the code for which it
is determined that it intends to send sensitive information to a
remote location.

Athanasopoulos et al. [7] have studied applications that use
third-party libraries containing native code. They showed that
native code can completely modify the runtime environment,
given that the native code is mapped to the same address
space as well as the runtime environment, i.e. DVM. Their
framework, NaClDroid, separates the native code from the
application during the runtime and places it into the specific
sandbox. Thus, the framework allows an application to use
native calls, while concurrently preventing it from arbitrarily
reading process memory, tampering with the Dalvik runtime,
or directly accessing operating system interfaces, like system
calls.

Spreitzenbarth et al. [9] developed a Mobile-sandbox which
combines static and dynamic analysis in order to find any
suspicious calls and activities. The results of the static analysis
are used to guide dynamic analysis and extend coverage of
executed code. The main purpose of this system is to provide
malware investigators with an efficient tool for malicious
behavior detection.

The problem of improper use of the DCL is characteristic not
only for Android but also for the other mobile operating systems.
Wang et al. [19] demonstrated issues related to verification of
malicious applications on the iOS platform. They developed
a proof of concept malicious iOS application that successfully
passed the review process on Apple’s App Store. The code
submitted for review was benign, however, the application was
able to update itself in order to introduce malicious control flows
and to perform various illicit tasks.

4. THE FAST NEWS APPLICATION

Fast News [20] is an Android application developed with the
aim to show that DCL mechanism can be abused in order to
compromise user’s privacy. The main purpose of this application
is to provide the user with the latest news. Besides its main
purpose, the application also performs one malicious activity:
downloads and executes a malicious code that violates the user’s
privacy and steals confidential information.

Although Google has lately devoted significant attention
to protecting user’s privacy and providing a safe and secure
environment for its users, the Fast News application shows
that this is not applied sufficiently in practice. Android’s
Developer Program Policies Update from June 2017 has paid
a special attention to the malicious behavior originating from
the download of executable code [21]. They claim that an
app distributed via Google Play may not modify, replace, or
update itself using any method other than Google Play’s update
mechanism. Likewise, an app may not download executable
code (e.g. dex, JAR, .so files) from a source other than Google
Play. However, this paper shows that it is possible to publish
an application that loads the code from the third-party server.
The Fast News application has successfully passed all the tests
during vetting process and found its place in the Google Play
Store. Thus, it has become available to the users worldwide.
Furthermore, three more applications have been published in
September 2017, showing that Google does not apply mentioned
policy properly. More details about these applications are given
in the next section.

4.1 The Attack

Fast News application provides users with the latest news.
When the application is started, the first screen shows the news
list, while in the background a remote code is downloaded and
executed without the user’s knowledge. This code tries to collect
sensitive information from the device and send them to the
remote server. Figure 1 shows the basic function of the Fast News
application, as well as the attack that it performs. The working
principle can be explained through the following six steps:

1. When started, the application sends a request to the server
for the latest news. In order to create a response, the server
contacts certain free online services, which return the latest
news, in the RSS format. Thereafter, the server parses those
responses and sends the final response to the application
with the latest news in JSON format.

2. After receiving the response, the application parses it and
displays to the user a list of news articles.

3. Then, the application sends another request, without the
user’s knowledge, requesting an APK file which contains a
malicious code. Sending request, as well as downloading
and storing APK file in the memory of the device, is
performed within an AsyncTask. Thus, the main thread
runs without interrupts, so the user will not find anything
suspicious. In addition, the application checks whether the
device is connected to a WiFi network before sending the

vol 35 no 4 July 2020 273

A PROPOSAL FOR ADDRESSING SECURITY ISSUES RELATED TO DYNAMIC CODE LOADING ON ANDROID PLATFORM

Figure 1 Fast News application - the basic mechanism of the attack

request because the cellular network usage and MMS might
cause some extra fees.

4. The application downloads the APK file and stores it in the
temporary directory of the external memory.

5. In order to read from the device’s external memory and
write to it, the application should request appropriate
permissions. Requesting these permissions could be
suspicious to the user. However, this could be justified
by the additional explanation that application periodically
caches the news and images while running, so the user
could read the news even when he is offline. Actually,
the application really does that. In addition, it would be
possible to implement a functionality which allows the user
to save favorite articles and images. However, it is not hard
to find justification for a request of some, at first glance
not logical, permission. Especially if one has in mind that
requesting such permission has passed Google’s vetting
process.

6. When the file download is finished, the application loads
it using the class DexClassLoader and makes a call to the
certain method. This method searches the external memory
and collects potentially sensitive information and packs
them into a single file. Subsequently, the file is sent to
the attacker’s server. After the attack was successfully
executed, the application removes the directory containing

the malicious APK file and continues to perform its primary
function.

4.2 An Attacker’s Possibilities

After all the steps have been successfully completed, the
appropriate file on the server is updated with the new data
collected from the end users. A part of this file is shown in
Figure 2. In this case, the data related to the specific device and
the version of the operating system are sent to the server.

However, in this way, the attacker could also gather other data,
such as user’s credentials, banking data, contact information,
SMS messages, search history, etc. Therefore, the application
will misuse permissions allowed by the user, in order to gather
personal information and send them to the server.

An attacker could use collected data to monitor the user and
analyze his behavior. Thus, he could try to perform some
activities on the target group of users, including identity theft
and compromising user’s privacy.

Limitations of the applications that misuse a DCL largely
depend on users and their decisions. Such applications usually
have as much freedom as the users give to them, which means that
their limitations are related to the permissions assigned by the
users. This especially refers to devices with the latest versions of
the Android OS (Oreo, Nougat, and Marshmallow), where users
can selectively grant permissions to the applications. However,

274 computer systems science & engineering

A. KELEC AND Z. DJURIC

2018-02-17 (08:21:01)
Debug info:
 OS Version: 3.4.0-perf-gd2f961e(D80210e)
 OS API Level: 17
 Device: g2
 Hardware: g2
 Board: MSM8974
 Model: LG-D802
 Product: g2_open_com

2018-02-26 (10:48:18)
Debug info:
 OS Version: 3.18.14-11940524(A520FXXU2BQH4)
 OS API Level: 24
 Device: a5y17lte
 Hardware: samsungexynos7880
 Board: universal7880
 Bootloader: A520FXXU2BQH4
 Model: SM-A520F
 Product: a5y17ltexx

Figure 2 A part of a file with the confidential information collected by the Fast News application

considering studies [22, 23] which have shown that a very small
subset of users even reads information about permissions, the
Fast News application has no significant limitations from that
point of view.

5. EXTENDED ANDROID ECOSYSTEM

In order to install an application on the device, Android OS
contacts the appropriate server that provides applications, such
as the Google Play Store. This procedure, which begins when
the application is published in the Google Play Store and ends
with application’s installation on a user’s device, is followed by
a number of security mechanisms, such as Google Play Review
[24], SafetyNet [25], Google Play Protect [26], etc. Some of
these mechanisms are placed on the server and some on the
Android device. They are responsible for protecting the entire
Android ecosystem from malicious applications and a variety
of fraud originating from the external environment. Although
they are introduced as strong and secure mechanisms, in the
previous section it is practically demonstrated that they can
be circumvented, putting a significant number of users at risk.
Google Play Review has allowed the Fast News application to
be found in the Google Play Store, while Google Play Protect
has allowed the application to be installed and launched on the
user’s device. Even after a subsequent scan, this mechanism has
not detected the Fast News application as malicious.

In order to address problems related to the execution of the
remote code which is malicious, a proposal of the extended
Android ecosystem is presented in this section. The extended
system relies on DCLVerifier, an Android service which should
be responsible for detecting every download of a remote code
and for sending that code to the verification server before the

application is allowed to load and execute the code in question.
In this way, it is not allowed to execute any remote code that has
not been verified and marked as legitimate.

5.1 DCLVerifier Service

For security reasons, Android requires that all the content which
applications download from a remote location must be stored
in the external memory of the device before the content is
used. Exactly this restriction has served as the basis for the
implementation of the DCLVerifier. DCLVerifier is an Android
service whose assignment is to observe the changes occurring in
the external memory and thus detect any attempt to download any
remote code. For observing the file system, it uses a modified
version of the class FileObserver, called RecursiveFileObserver,
which allows detection of changes in the entire tree of directories
and files. In order to detect changes in the entire file system,
DCLVerifier is configured to observe the root directory of the
external memory.

DCLVerifier runs in the background, thus, the user of the
device is not aware of its presence. Furthermore, it is very
lightweight when it is about resources consumption, so the
impact on the device performance is negligible (this will be
discussed in more detail in Sections 6 and 7). The service starts
automatically after the device powers on. The BroadcastRe-
ceiver launches the DCLVerifier service after receiving the action
BOOT_COMPLETED from the OS. This service is running in
the background as long as the device is turned on so that it could
not be circumvented.

When detects the presence of a new file in the file system,
DCLVerifier first replaces the original file name and extension,
with some randomly generated array of characters. Thus, an

vol 35 no 4 July 2020 275

A PROPOSAL FOR ADDRESSING SECURITY ISSUES RELATED TO DYNAMIC CODE LOADING ON ANDROID PLATFORM

1 10:47:47.066 fastnews REQUESTING: http://.../rem.apk
2 10:47:47.068 dclverifier DETECTED: /storage/.../rem.apk
3 10:47:47.068 dclverifier RENAMED: /storage/.../q1$.14
4 10:47:47.068 dclverifier VERIFYING: /storage/.../q1$.14
5 10:47:47.172 dclverifier APPROVED: /storage/.../rem.apk
6 10:47:48.173 fastnews LOADING: /storage/.../rem.apk

Figure 3 An excerpt from the log files of the DCLVerifier service and the Fast News application at the moment of downloading the file

appropriate application cannot find the expected file by its name.
Although this step does not seem to be quite safe given that
renaming the file could produce a race condition or would not
hide the file sufficiently well and it could still be found by a
malicious application, this approach has proven to be convincing
and reliable. For instance, a malicious application could search
an external memory in order to find a file by its hash, but this
is an incomparably longer process than the verification process
performed by the DCLVerifier. Alternatively, the DCLVerifier
could use the class FileLock to lock the file after its detection. In
this way, other processes would be prevented from accessing the
file until the DCLVerifier releases it. However, such an approach
has not proved to be necessary.

After the file is downloaded, the service checks if the file
contains any piece of the executable code or it is the arbitrary
file, such as image, audio or video file. This check is performed
inside the method containsExecutiveCode which returns true if
one of the following conditions is met:

• APK file, i.e. an archive containing the files such as
classes.dex, AndroidManifest.xml, etc.,

• JAR file, i.e. an archive containing files with the Java code,

• other archives that contain at least one file with the extension
.class or .java,

• an executable file, i.e. a file containing some of the famous
magic numbers related to the executable file types [27].

• a binary file with the unknown content, i.e. a file which
mime type could not be determined by calling a method
probeContentType of the class Files or methods of the
class MimeTypeMap, or a file that has the mime type
application/octet-stream, representing an arbitrary binary
content.

In the case of some of these files, the service computes the
hash of the file, signs it digitally and sends to the verification
server. The original name will be returned to the file, only after
it is determined that the code that is contained within the file
is not malicious. Otherwise, the service will remove the file
and add its hash in the register of the malicious files. If the
method containsExecutiveCode returns false, the service will
automatically restore the original file name, so the appropriate
application will have the access to the downloaded file.

If the application tries to dynamically load multiple files, the
service will detect any attempt and all files will be processed
separately. This is possible due to the fact that the service is
executed within the AsyncTask. In this way, when the new file

is detected on the file system, a new instance of the service,
which is responsible for the processing of that file, is created.

DCLVerifier has successfully detected any attempt to load
a malicious code by the Fast News application. During the
first launch of the application, the hash of malicious code
was added in the register of malicious applications, thus
permanently preventing applications to load this file. An
attacker could try to circumvent this hash-based approach
by creating multiple different files and injecting the same
malicious code in them. Although each file would have a
different hash, the service would detect each file as mali-
cious and add all these different hashes to the database. In
addition, an attacker could generate several different appli-
cations that will load the same malicious file, but such an
attempt will also be blocked by the DCLVerifier. In order
to demonstrate this, three more applications, Fast News
Sport, Fast News Cars and Fast News Business, have been
created. All three were published in the Google Play Store
successfully and were installed on the user’s device, but
all three were stopped in an attempt to load malicious
code.

DCLVerifier is implemented to verify the presence of a new
file on the file system and react before the application that
initiated the file download comes into possession of it. This
is possible due to the fact that the class FileObserver detects the
presence of the new file as soon as the first byte of that file is
saved on the file system. Unlike to this class, an application
that tries to download the file has to wait until the entire file
is downloaded. As a proof of this claim could be used an
excerpt from the log files of the DCLVerifier and the Fast News
application. The conjoint excerpt of those two logs is presented
in Figure 3. The excerpt refers the period from the beginning of
the (benign) file download to the completion of its verification
and loading by the application. Line 1 shows the moment when
the application initiates the file download. Line 2 shows the
moment when DCLVerifier detects the presence of a new file
in the file system. After that, the service renames the file
with some randomly generated string of characters, as shown
in Line 3. Line 4 refers to the process of verification of the
file to determine whether a file contains malicious executable
code. Lines 5 and 6 show the moments when the service returns
the original name to the file and the application loads the file,
respectively.

The figure shows that the DCLVerifier service detected the
presence of the file as soon as download started. On the other
hand, the Fast News application tries to load a file from the
external memory after the file is verified. Thus, the application
could not load the file before the file is approved.

276 computer systems science & engineering

A. KELEC AND Z. DJURIC

Figure 4 Deployment diagram for the modified Android ecosystem

5.2 Extended Ecosystem Overview

Figure 4 shows a deployment diagram for the extended Android
ecosystem. The system implies the existence of the verification
server which communicates with the DCLVerifier.

Since the remote code has an equivalent structure as the
application code, the existing mechanisms that verify applica-
tions while publishing in the Google Play Store can also be used
for the verification of downloaded code. Google Play Review is
a security mechanism responsible for the detection of potentially
dangerous applications and preventing such applications to be
in the Google Play Store. Due to the comprehensiveness of this
mechanism, this paper does not focus on the creation of a new
protocol for code verification, but it proposes the introduction of
the verification server in the Android ecosystem.

Verification server hosts an application that has the assignment
to compare the hash values and to verify the remote code. The
server maintains two registers which contain digital signatures
of the files that are verified. The first register contains signatures
of the legitimate files, while the second register contains the
signatures of the malicious files. The verification server would
be introduced as a separate module, so the existing system would
not have to be subject to any modifications.

5.3 The Working Principle

Integrity checks that this system imposes, include searching the
register which contains the digital signatures of the legitimate
files. The digital signature of the code implies the hash computed
by the SHA-256 algorithm.

The working principle of the proposed system consists of the
following three steps:

1. When an application attempts to download and execute a
remote code, DCLVerifier service detects the attempt and
computes the hash of the code. Then the service sends the
hash to the verification server. The server then searches
the register with the signatures of legitimate files to find a
match with the received hash. If the match is found, the
server sends a response to DCLVerifier with the permission
that allows the application to load the file. Otherwise, the
server will search the register of the malicious files. If
the match is found in this register, the server will send a
response to not allow the code loading. If there is no match
in any register, then the server will require the downloaded
file for its verification.

2. After receiving the response, DCLVerifier decides the next
step. If the server requires a remote code, the service
adds it to the new request and sends to the server. The
server verifies the code in order to determine whether
it is malicious. The tests could be similar to the those
performed within the Google Play Review mechanism. If
the tests show that the code is legitimate then its hash will
be added to the register with signatures of legitimate files.
Otherwise, the register with signatures of malicious files
will be updated. After that, the server returns a response to
the DCLVerifier service.

3. DCLVerifier service decides whether the application will
be allowed to execute the downloaded code.

vol 35 no 4 July 2020 277

A PROPOSAL FOR ADDRESSING SECURITY ISSUES RELATED TO DYNAMIC CODE LOADING ON ANDROID PLATFORM

Figure 5 Protected communication between the DCLVerifier service and the verification server

5.4 The Secure Communication

In order to protect a communication between DCLVerifier
service and the verification server, it is necessary to use
appropriate algorithms and protocols. In the case of the insecure
communication, an attacker could perform MITM attack and
modify the data contained in the request and response. In this
way, for instance, the user’s device could allow execution of a
malicious code.

It is well known that all the applications that are published in
the Google Play Store have been signed by a programmer’s self-
signed certificate. This means that there is no certificate authority
to issue certificates to the participants and verify them during
communication. Creating a PKI (public key infrastructure) and
storing certificates of all Android devices on the server side
would significantly facilitate the implementation of the secure
protocol for the communication between the DCLVerifier and
verification server. However, it would require too much effort,
so that idea was not considered in this paper.

Instead, the proposed system implies that the user devices
keep the server’s certificate for the response verification. This
certificate could be forwarded to the user devices through the

secure channel using a simple update from the Google Play
Store. The certificate would be stored in an appropriate system
directory, in order to protect it from an unauthorized use.
Figure 5 shows a Sequence diagram that models the protected
communication between the DCLVerifier and the verification
server.

The protected communication can be described as follows:

1. When a request is prepared, the DCLVerifier computes a
hash (h1) of the entire request and saves it for the later
verification. Then, DCLVerifier encrypts the request using
the public key from server’s certificate and sends encrypted
data to the server.

2. After the request is received, the verification server can
decrypt it using its private key and extract the hash of the
code from it. When the search of registers is finished, the
server creates a response for the client. In addition, the
server computes a hash (h2) of the request in the same way
as the DCLVerifier and includes it in the response. Then,
the server digitally signs the response and sends it to the
client.

278 computer systems science & engineering

A. KELEC AND Z. DJURIC

Table 1 Results of testing a DCLVerifier service with various file types.

File type Detected Proc. time (ms) Detection rate (%)

APK 10/10 120 100
JAR 10/10 114 100
class 10/10 88 100
dex 10/10 94 100
exe 10/10 93 100
com 10/10 92 100
bin 19/20 84 95

binary file 20/20 106 100
unknown file 18/20 102 90

jpg 0/10 0 0
pdf 0/10 0 0
avi 0/10 0 0

Summary 117/120 99.22 98.33

3. After receiving the response, DCLVerifier first verifies the
digital signature. Then, it checks whether the received
hash (h2) matches to the computed one (h1). If hashes
are matched, it means that the server received an original
and unmodified request and the service should consider the
response content. If hashes do not match, the service will
reject the response.

The proposed communication model can be considered a safe
and resistant to attacks. The only way to break this secure
communication is by performing hash collision attack. Since
it is proven that the SHA-1 algorithm is not completely resistant
to collision [28], the proposed system uses the SHA-256.

Additionally, this communication could be based on a more
complex protocol, which would include a Session ID, in order
to protect the server against invalid requests. Such a protocol
implies establishing a secure tunnel between the client and the
server and generating a Session ID on the server. The Session
ID must be included in the first message that is sent from the
server to the client. Furthermore, the client should include a
Session ID obtained from the server at every request. However,
such communication protocol would introduce an additional
delay and would slow down the whole process of the code
verification.

6. TESTING AND EVALUATION

Any new software should go through a detailed process of testing
and evaluation in order to determine its relevance, efficiency,
and effectiveness. When it comes to the proposed system,
DCLVerifier and its capability of detection files with executable
code, as well as the communication to the verification server,
are the main components to be tested. Furthermore, the impact
of this service on the performance of the device as well as the
resources needed to perform such a processing is very important.

For testing DCLVerifier a test set of 150 files of various
types has been created. The testing application loaded these
files dynamically using DexClassLoader class. In addition,
a simple prototype of the verification server is developed for
testing purposes. On the server, the two registers with 100,000
different hashes have been created.

Testing results are shown in Table 1. The results show
the success of detection of files that could potentially contain
executable code. In addition, the average time required to
process these files is shown. When it comes to the standard
Java-based file types, such as APK, JAR, class, dex, etc., the
detection rate is very high. DCLVerifier has detected all of 40
files of this type and sent them to the verification server. The
same success rate has been achieved when it comes to executable
files, i.e. files with the extension exe, com, etc. When it comes
to the files with unknown (binary) content, service has detected
57 out of 60 files that potentially contain executable code, while
3 files were omitted. Other file types, such as pdf, jpg, avi, etc.
are not detected because they have famous magic numbers, that
are not related to the executable files. Thus, the application has
been able to load them.

Table 1 shows that the average detection rate of the files that
potentially contain executable code is about 98%. However,
when calculating this percentage, files which are recognized as
files with the standard types, have not been considered.

Furthermore, Table 1 shows the average time required to
process a file. Processing time includes time needed for detection
of the file, time spent for hash computation and sending to the
server, a time needed for searching the registers and time spent
for returning the results back to the device. The table shows
that the average time required to process any type of file is
about 99 milliseconds. In the tests devices with the following
specifications have been used:

• Samsung Galaxy A5 with octa-core 1.9 GHz CPU,

• Red Hat server, i.e. a virtual machine powered by two
vCPUs with memory ratio up to 512 MB and 1GB of RAM.

The results show that such a system could operate without
the need for allocation of the significant amount of resources
on both sides (device and server). When installed on a device,
DCLVerifier occupies only 5.04 MB of the storage. Furthermore,
the time required to process files that applications dynamically
load should not affect the performance of the devices and
applications.

An analysis of power consumption is also an important aspect
to consider when it comes to introducing additional processing

vol 35 no 4 July 2020 279

A PROPOSAL FOR ADDRESSING SECURITY ISSUES RELATED TO DYNAMIC CODE LOADING ON ANDROID PLATFORM

on mobile devices. It is well known that smartphones have
limited power resources, so any additional consumption could
have negative consequences. Research [29] has shown that
the majority of power consumption can be attributed to the
GSM module and the display when it comes to smartphones.
Furthermore, the paper [30] has shown that the CPU-intensive
calculations are minor power consumers compared to some
hardware components, such as GPS receiver. DCLVerifier
runs in the background and most of the time it resides in a
sleeping mode. It wakes up only when a new file appears on
the device. The Android operating system runs many services,
so the addition of DCLVerifier service increased the power
consumption insignificantly. Additionally, the “App Info” from
the device’s settings has shown no battery draining.

7. LIMITATIONS

Although the proposed system shows the potential to seriously
and fully address the problem that exists since the very
beginnings of the Android, there are certain limitations of the
proposed system and segments which could be improved.

7.1 Static Analysis

Static analysis typically involves inspection of the application
bytecode and monitoring of instructions and calls that can
be potentially dangerous and lead to leaks of confidential
information. Dynamic analyzers monitor the application during
its execution and focus on the actions that application performs
dynamically. The system described in this paper is based
solely on the dynamic analysis and does not consider the APK
file, but only the content that application downloads at the
runtime. Theoretically, it is possible to pack a malicious code
within the APK, which the application would load and execute
at the runtime. However, detection of such code is subject
to mechanisms for verification of the application before its
publication.

7.2 Detection of Files With Executable Code

Although the DCLVerifier is very effective when it comes to
detecting new files in the external memory, it is hard to determine
the success of detection in the real system. Section 5 describes an
algorithm that, among other things, uses a method of the magic
number for detection of executable code in files. Theoretically,
there is a chance to circumvent this checking mechanism if
the magic number is removed from the file or changed to an
unknown value. However, this situation should be also addressed
by considering that, in this case, it comes to the binary file
with unknown content, which would be detected. In addition,
this algorithm also uses other approaches to detect files with
executable code.

7.3 Executing Scripts

If they want to avoid executing code directly on the Android
platform, attackers can take advantage of some of the scripting

languages for the injection of malicious code. In that case, the
application does not have to load executable code, but a simple
text file that will be interpreted by the appropriate interpreter.
Examples of misuse of the WebView related to this approach
are given in [31]. Unfortunately, this paper does not address
such attacks, given that it is a code that is not executed directly
on the Android platform but in the context of the web browser.
Obviously, this is more subject to web security issues.

7.4 Performance Impact and Costs

The proposed system introduces additional components in the
Android ecosystem, which implies certain costs. A number of
verification servers could grow significantly, depending on the
amount of the work that should be performed. The introduction
of the DCLVerifier service entails additional processing on the
device. However, the vetting process that the DCLVerifier
performs is very efficient and measured in milliseconds, so the
applications should not experience any degradation of perfor-
mance. Unlike sending a hash of the file to the server, sending the
entire file could have a greater impact on the performance. This
could be especially important if the application repeatedly
obtains remote files during execution. However, the assumption
is that these situations are rare and applications that load code
dynamically, do not perform it too often because it would
significantly affect the application’s performance. Sending the
file to the server, also should not be time-critical, if we take
into account that the size of these files is usually in the order of
kilobytes. Tests have shown that this time is usually expressed
in milliseconds.

8. COMPARISON WITH THE EXISTING
SOLUTIONS

The approach described in this paper has certain similarities
with the approach used in [3]. However, there are several key
advantages of the approach presented in this paper that make it
feasible as opposed to [3]. The main difference relates to the
method of detecting DCL as well as the layer of architecture
which implements this mechanism. DCLVerifier service can be
quickly and easily installed on all Android devices with just
one update from the Google Play Store. On the other hand,
modifications within the Android OS that have been proposed
in [3], require updating the OS on all devices, which is often
a very slow and lengthy process, when it comes to Android.
Furthermore, when one considers the high level of fragmentation
of the Android OS versions [32], it is very likely that a large
number of devices would never receive the necessary update. On
the other hand, any intervention and modification of the system
are very easy to apply by simply publishing an updated version of
DCLVerifier service, as opposed to complicated changes within
the OS. In addition, in the approach that is described in this
paper, the complete processing related to verification of the
remote code is performed on the verification server, unlike to [3],
wherein the verification performs mainly on the device, making
the verification mechanism transparent and vulnerable.

StaDynA [1] is the system that has successfully addressed
the problem of hidden calls related to the DCL mechanism.

280 computer systems science & engineering

A. KELEC AND Z. DJURIC

The system combines static and dynamic analysis to enhance an
MCG of the application. However, in order to detect malicious
DCL calls by the system, an application must initiate them and
load malicious code. In other words, this system cannot prevent
the application to dynamically load malicious code, but only to
find that the code loaded, is malicious.

AspectDroid [8] uses a similar approach, performing the
static instrumentation of the bytecode at the compile time and
detecting potential leaks of sensitive information. Furthermore,
this system includes a containment policy that allows defining the
way in which sensitive calls can be restricted to the applications.
However, this component is not described in detail in [8], and it
is not known on what principle it works and whether it can detect
all of the techniques for the implementation of DCL mechanism,
described in this paper.

The solution offered by Vidas and Christin [6] is based on
the PKI system and using reverse package names for fetching
the certificate for signing. Although this work represents a
significant step forward in ensuring secure communication and
protecting remote code against unauthorized modifications, yet
it does not solve all the problems that are related to the DCL
concept. Specifically, this system protects applications from
unauthorized repackaging and allows applications to safely
download and load remote code which has been proven as
legitimate. However, this system generally cannot detect
attempts to dynamic load malicious code and thus cannot prevent
misuse of the DCL.

Grab ’N Run [5] is the library that allows the implementation
of secure DCL concept, wherein it must be included in the
application in order to provide its services. In this way a
dependency between the application and the external library
is created, whereby a loss of the flexibility, portability, and
reliability of the entire system occurs. In addition, this solution is
acceptable only for applications that use DexClassLoader class
and associated API to load code, while other methods for DCL,
which are described in this paper, are not covered. Furthermore,
this solution, as well as one described in [6], provides the
implementation of the secure DCL only when it is used in
the legitimate purposes, while illegal attempts to download and
execute the code are not addressed. In other words, the Grab ’N
Run is statically oriented system and cannot detect attempts of
dynamic code loading by the malicious applications.

NaClDroid [7], as well as other systems based on the concept
of the sandbox, has addressed the problems related to the
injection of the malware through native code. However, the
techniques for dynamically code loading at the layer of DVM
are not covered by these solutions.

9. CONCLUSION AND FUTURE WORK

This paper describes the extended Android ecosystem that
addresses the problems related to the abuse of the DCL.
DCLVerifier service, as the main component responsible for
preventing the applications to load a malicious code, is
developed. In addition, the proposal of an organization of the
verification server is given as well as the working principle of
the whole system. The proposed system has shown promising
results in detecting files downloaded from third-party servers

that could potentially contain executable code. The paper also
describes the application whose publication in the Google Play
Store has shown that the existing security mechanisms still do
not properly address the abuses of the DCL mechanism.

As a future work, the plan is to develop a prototype of
the verification server as well as a complete system with
associated components and to optimize it in order to minimize
the impact on device’s performance. This particularly refers
to the development of the new version of DCLVerifier which
should increase the speed of processing by caching the hashes
of the files that are most frequently downloaded. It also refers to
a new version of the algorithm which DCLVerifier uses to decide
whether the detected file potentially contains executable code.
In addition, a detailed testing of the system and determining its
efficiency against all DCL-related techniques is imposed. As a
part of the future work, the plan is to integrate the appropriate
static analyzer in the proposed system, to achieve complete
protection against malicious code. Finally, the plan is to evaluate
the system against known malware databases.

This paper deals with Android as the most widespread
operating system. Although other operating systems are based
on different technologies, there are many common features that
would facilitate the implementation of the proposed system. For
instance, the iOS ecosystem has many similarities to the Android
ecosystem, such as application publishing, permissions model,
etc. Wang et al. have shown that iOS applications perform
dynamic code loading similarly to Android applications [19].
This encourages the authors to argue that the proposed solution
can be ported to other operating systems while retaining core
functionality and algorithm logic. Future work will include
plans to adapt and apply the proposed solution to other mobile
operating systems.

REFERENCES

1. Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F.
Massacci, “StaDynA: Addressing the Problem of Dynamic Code
Updates in the Security Analysis of Android Applications,” in
Proc. 5th ACM Conference on Data and Application Security and
Privacy, ACM, 2015, pp. 37–48.

2. V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating
Android Anti-malware Against Transformation Attacks,” in Proc.
8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, 2013, pp. 329–334.

3. S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! Analyzing Unsafe and Malicious Dynamic Code
Loading in Android Applications,” in Proc. of the ISOC Network
and Distributed System Security Symposium (NDSS), 2014.

4. L. Falsina, Y. Fratantonio, S. Zanero, C. Kruegel, G. Vigna, and
F. Maggi, “Grab ’N Run: Secure and Practical Dynamic Code
Loading for Android Applications,” in Proc. 31st Annual Computer
Security Applications Conference (ACSAC), 2015, pp. 201–210.

5. Y. Zhou and X. Jiang, “Dissecting Android Malware: Character-
ization and Evolution,” in Proc. of the 2012 IEEE Symposium on
Security and Privacy (S&P), 2012, pp. 95–109.

6. T. Vidas and N. Christin, “Sweetening android lemon markets:
Measuring and combating malware in application marketplaces,”
in Proc. of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY), 2013, pp. 197–208.

7. E. Athanasopoulos, P. V. Kemerlis, G. Portokalidis, and
D. A. Keromytis, “NaClDroid: Native Code Isolation for Android

vol 35 no 4 July 2020 281

A PROPOSAL FOR ADDRESSING SECURITY ISSUES RELATED TO DYNAMIC CODE LOADING ON ANDROID PLATFORM

Applications,” Computer Security – ESORICS 2016. Lecture Notes
in Computer Science, vol. 9878, pp. 422–439, 2016.

8. A. Ali-Gombe, I. Ahmed, G. G. Richard, III, and V. Roussev,
“AspectDroid: Android App Analysis System,” in Proc. 6th ACM
Conference on Data and Application Security and Privacy, 2016,
pp. 145–147.

9. M. Spreitzenbarth , F. Freiling , F. Echtler , T. Schreck, and J.
Hoffmann, “Mobile-sandbox: having a deeper look into android
applications,” in Proc. 28th Annual ACM Symposium on Applied
Computing, 2013, pp. 1808–1815.

10. A. I. Aysan and S. Sen, “Do you want to install an update of this
application? A rigorous analysis of updated android applications,”
in IEEE 2nd International Conference on Cyber Security and
Cloud Computing (CSCloud 2015), New York, USA, 2015, pp.
181–186.

11. D. Maier, M. Protsenko, and T. Muller, “A game of droid and
mouse: The threat of split-personality malware on android,”
Computers & Security, vol. 54, pp. 2–15, 2015.

12. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau and P. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps,” in Proc. 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014, pp.
259–269.

13. J. Hoffmann, M. Ussath, T. Holz and M. Spreitzenbarth, “Slicing
Droids: Program Slicing for Smali Code,” in Proc. 28th Annual
ACM Symposium on Applied Computing, 2013, pp. 1844–1851.

14. W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel
and A. N. Sheth, “TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32, no.2,
pp. 1–29, 2014.

15. Y. Zhou and X. Jiang, “An Analysis of the AnserverBot Trojan”,
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_
Analysis.pdf, last accessed April 2018.

16. R. Welton, “Remotely Abusing Android”, https://www.blackhat
.com/docs/ldn-15/materials/london-15-Welton-Abusing-Android
-Apps-And-Gaining-Remote-Code-Execution.pdf, last accessed
April 2018.

17. R. Fedler , M. Kulicke, and J. Schütte, “Native code execution
control for attack mitigation on android,” in Proc. 3rd ACM
workshop on Security and privacy in smartphones & mobile
devices, 2013, pp. 15–20.

18. S. Rasthofer, I. Asrar, S. Huber, and E. Bodden, “How Current
Android Malware Seeks to Evade Automated Code Analysis,”
Information Security Theory and Practice. Lecture Notes in
Computer Science, vol. 9311 pp. 187–202, 2015.

19. T T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on
iOS: When Benign Apps Become Evil,” in Proc. 22nd USENIX
Conference on Security, 2013, pp. 559–572.

20. A. Kelec, “Fast News, Google Play Store”, https://play.google
.com/store/apps/details?id=com.akelec.fastnews, last accessed
April 2018.

21. Google, “Developer Policy Center”, https://play.google.com/
about/privacy-security/malicious-behavior/, last accessed April
2018.

22. A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner, “Android permissions: User attention, comprehension,
and behavior,” in Proc. of the Eighth Symposium on Usable Privacy
and Security, 2012.

23. A. K. Jha and W. J. Lee, “Analysis of Permission-based Security
in Android through Policy Expert, Developer, and End User
Perspectives,” in Journal of Universal Computer Science, vol. 22,
no. 4, pp. 459–474, 2016.

24. Google, “How we keep harmful apps out of Google Play and
keep your Android device safe”, https://static. googleuser-
content.com/media/source.android.com/en//security/reports/
Android_WhitePaper_Final_02092016.pdf, last accessed April
2018.

25. J. Kozyrakis, “SafetyNet: Google’s tamper detection”,
https://koz.io/inside-safetynet/, last accessed April 2018.

26. Google, “Protect against harmful apps”, https://support.google
.com/accounts/answer/2812853?hl=en, last accessed April 2018.

27. G. Kessler, “File signatures table”, http://www.garykessler.net/
library/file_sigs.html, last accessed April 2018.

28. M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov,
“The first collision for full SHA-1,” accepted at CRYPTO 2017.

29. A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone”, in Proc. of the 2010 USENIX conference on USENIX
annual technical conference, Boston, MA, 2010, pp. 21–21.

30. C. Thompson, D. Schmidt, H. Turner and J. White, “Analyzing
Mobile Application Software Power Consumption via Model-
driven Engineering”, Advances and Applications in Model-Driven
Engineering, Chapter 16, IGI GLOBAL, 2014, pp. 342–366.

31. B. Hassanshahi, Y. Jia, R. H. C. Yap, P. Saxena and Z. Liang, “Web-
to-Application Injection Attacks on Android: Characterization and
Detection,” Computer Security - ESORICS 2015. Lecture Notes in
Computer Science, vol. 9327, pp. 577–598, 2015.

32. X. Zhou, Y. Lee, N. Zhang, M. Naveed and X. Wang, “The Peril
of Fragmentation: Security Hazards in Android Device Driver
Customizations,” in Proc. of the 2014 IEEE Symposium on Security
and Privacy (S&P), 2014, pp. 409–423.

282 computer systems science & engineering

