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Microarrays have reformed biotechnological research in the past decade. Deciphering the hidden patterns in gene expression data proffers a prodigious
preference to strengthen the understanding of functional genomics. The complexity of biological networks with larger volume of genes also increases the
challenges of comprehending and interpretation of the resulting mass of data. Clustering addresses these challenges, which is essential in the data mining
process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be
useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and molecular functions.
Clustering techniques are used to examine gene expression data to extract groups of genes from the tested samples based on a similarity criterion. Subspace
clustering broadens the traditional clustering by extracting the groups of genes that are highly correlated in different subspace within the dataset. Mining
the temporal patterns in high dimensional data is done with computational effort and thus normalization is needed. In this work, normalization using fuzzy
logic is applied to the data before clustering. The multi-objective cuckoo search optimization is implemented to extract co-expressed genes over different
subspaces. The proposed methods are applied to the real life temporal gene expression datasets in which it extracts the genes that are responsible for the
disease grouped in a same cluster. The experiment results prove that the impact of fuzzy normalization on the dataset improves the clustering.

Keywords: Fuzzy normalization; Cuckoo search; Multi-objective optimization; Gene ontology; Temporal gene expression data.

1. INTRODUCTION

Microarray technology has been very effective in the examina-
tion of the expression of thousands of genes at a time and it has
revolutionized the study of gene expression data. The activity
of all genes measured for a number of biological conditions at
each time point is referred to as three-dimensional datasets. The
temporal datasets in microarray technology has been used to
measure the expression values of thousands of genes under a
huge variety of experimental conditions across different time
points in a single experiment. As the volume of data is
huge, several computational methods are needed to analyze
such datasets. Therefore, Normalization is essential as a pre-
processing technique before analyzing the datasets. The results
∗E-mail: swa.pspd@gmail.com
†E-mail: kpl_barath@yahoo.co.in

of analysis will vary depending upon the normalization method
and analysis method used for the same dataset. In this work,
normalization using fuzzy logic is applied to the dataset. The
fuzzification concept is applied in some gene expression profile
analysis methods (Lim and Wong, 2014) (Geistlinger, 2011) and
also in proteomic profile analysis methods (Goh et al., 2015)
(Goh et al., 2016). However, the idea of fuzzification is used
as a component of those methods but its role and effectiveness
is utilized very less as a normalization procedure (Abha and
Limsoon, 2016) (Kim et al., 2006).

Clustering is one of the unsupervised approaches to identify
the coexpressed genes. Clustering algorithms aim to maximize
similarity within the clusters as well as to minimize similarity
between the clusters, based on a distance measure. The
traditional clustering algorithms fail to find the group of genes
that are similarly expressed over the subset of experimental
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Figure 1 Fuzzy membership function.

conditions. Subspace clustering solves the problem by finding
clusters with different subspace within a dataset. Subspace
clustering algorithms like PROCLUS (PROjected CLUStering
algorithm)(Aggarwal et al., 1999) and ORCLUS(arbitrarily
ORiented projected CLUSter generation) (Aggarwal and Yu,
2000) deal with high dimensional datasets by finding clusters
in different possible subset of dimensions using projective
clustering. PROCLUSfinds axis-aligned subspaces by selecting
k-mediods and then iteratively improves clustering by applying
hill-climbing techniques. ORCLUS extends PROCLUS by
considering non-axis parallel subspaces. This algorithm finds
arbitrarily oriented clusters using singular value decomposition
method and then determines the subspaces and finally merges it.
Other subspace clustering algorithms like CLIQUE(Clustering
In QUEst) (Agrawal et al., 1998) and ENCLUS(ENtropy based
CLUStering) (Cheng et al., 1999) find the clusters within
subspace but do not scale well with high dimensions and
have low coverage. DOC (Document Clustering) (Procopiuc
et al., 2002) fails to mine coherent patterns from microarray
datasets. CLIFF (Clustering using Iterative Feature Filtering)
(Xing and Karp, 2001) iterates between gene filtering and
sample partitioning. Initially it finds k best genes according
to the intrinsic discriminability. Then it partitions the samples
with these features holding minimum normalized weights and
iterates the entire process until convergence. COSA(Clustering
on Subsets of Attributes)is an iterative algorithm that assigns
weights to each instance using K nearest neighbour method.
Each cluster may exist in different subspaces of different sizes
but in similar dimension.

Cheng and Church proposed the first biclustering algorithm
that was used to analyse gene expression datasets and it
used a greedy search heuristic approach to retrieve largest
possible bicluster having Mean Squared Residue (MSR) under
a predefined threshold value δ (δ-bicluster) (Cheng and Church,
2000). Feng et al. (2004) proposed a time-frequency based
full-space algorithm using a measure of functional correlation
set between time course vectors of different genes. Jiang et al.
(2006) proposed an algorithm to mine biologically meaningful
coherent gene clusters using Spearman rank correlation similar-
ity measurement and extended the clique search technique for the
third dimension (Jiang et al., 2006). Yin et al. (2007) has given a
new definition of coherent cluster for time series gene expression
data called ts-cluster. The ts-cluster algorithm is able to

detect a significant amount of clusters of biological significance.
Aviles et al. (2014) also proposed TriGen algorithm which
implements genetic algorithm for mining triclusters in temporal
gene expression data. This algorithm implements the genetic
algorithm, an optimization technique in order to retrieve the
triclusters. Bhar et al. (2015) proposed EMOA-δ-TRIMAX,
multi-objective optimization algorithm by implementing genetic
algorithm. Liu et al. (2015) proposed fuzzy triclustering
algorithm to mine triclusters based on the membership function
for each dimension but it has computational efforts. Guigoures
et al. (2016) also applied triclustering approach to track patterns
in time-varying graphs. Anidha and Premalatha (2017) proposed
a feature selection method for identifying the biomarker genes
involving in causing cancer from microarray data. The data is
normalized using fuzzy Gaussian membership function before
classification which yielded higher accuracy. Prema and
Premalatha (2018) applied fuzzy normalization to the microarray
data before applying data mining techniques. Clustering using
cuckoo search algorithm for three dimensional microarray data
is performed for different encoding representations. Karmakar
et al. (2019) proposed tight clustering for larger microarray gene
expression data by applying k-means algorithm on several sub
sampling of genes.

2. FUZZY NORMALIZATION

Zadeh (1974) proposed fuzzy set theory which is based on
the intuitive reasoning by considering human subjectivity and
imprecision. The idea of fuzzy logic is to hold the vagueness of
human thinking and expressing it with mathematical tools. The
classical set is a point-to –point control where as fuzzy set is
a range-to-range control. In gene expression data analysis, the
crisp values of the dataset are transformed into fuzzy values and
the process is called fuzzification. A fuzzy set is constructed
by dividing each gene of the dataset into three intervals namely
low, medium and high. Figure 1 shows the common membership
function of a fuzzy set.

The fuzzy membership function is used to represent the vague
linguistic terms. The membership function value of each gene is
calculated using Gaussian membership function which is given
in the equation (1).
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Figure 2 Encoding representation of an egg.

Algorithm 1 Pseudo code for Cuckoo Search
Generate an initial population of n host nests representing
genes, samples and time points;
while t< (MaxGeneration) or (stop criterion)

Get a cuckoo subset matrix randomly (i) and replace its
solution by applying Levy flights;

Evaluate its fitness Fi

Choose a nest among n (j) randomly;
if (Fi < Fj )

Replace j by the new solution
end if
A fraction (pa) of the worse nests is abandoned and new ones

are built;
Keep the best solutions/clusters;
Rank the solutions and find the current best cluster;
Pass the current best cluster to the next generation;

end while

μAi = ex p

(
− (x−ci )

2

2σ2
i

)
(1)

Where Ci is the centre and σi is the width of the i th fuzzy set
Ai. After applying the Gaussian membership function, it is
represented with linguistic variables namely low, medium and
high. The membership function value of each gene will range
from 0 to 1.

3. CUCKOO SEARCH

Cuckoo Search is an optimization algorithm which is inspired
from the breeding parasitism of cuckoo species. Some cuckoo
species lay their eggs in the nest of other host birds in obligating
its breeding parasitism (Fister et al., 2014). If a host bird
discovers the eggs which are not their own, it will either throw
these foreign eggs away or simply abandon its nest and build a
new nest elsewhere (Payne et al., 2005). It initiates with number
of nests in which each egg in the nest represents a solution. A
new solution is generated by Levy flight (Yang and Deb,2009). It
aims to produce better solutions by replacing the worst solutions
in the nest. Each cuckoo lays one egg at a time and throws down
its egg in a randomly chosen nest. The best nests with good
quality of eggs will be carried on to the next generation. The
number of host nests is fixed, and a host can discover a foreign
egg with a probability pa ∈[0, 1]. The host bird then throws
away the egg or abandons the nest and also it finds the worst nest
which is to be replaced.

When generating new solutions xi (t + 1) for a cuckoo subset
matrix i , a Levy flight is performed using the following equation
(2).

xi (t + 1) = xi (t)+ ∝
⊕

Levy(λ) (2)

The symbol⊕ is an entry-wise multiplication. Basically, Levy

flights provide a random walk while their random steps are drawn
from a Levy distribution for large steps given in equation (3).

Levy ∼ u = t−λ (3)

which has an infinite variance with an infinite mean. Here the
consecutive jumps of a cuckoo essentially form a random walk
process which obeys a power-law step- length distribution with
a heavy tail. The step size α > 0 is related to the scale of
the problem of interest but in most cases α = 1 is maintained.
xi (t + 1) is the next location which depends on xi (t) is the
current location and the second term in the equation is the
transition propability. The Lévy flight based random walk is
more efficient to explore the search space through longer step
length. Here the consecutive jumps of a cuckoo essentially form
a random walk process which obeys a power-law step- length
distribution with a heavy tail.

CS is one of the best optimization algorithms that use elitism
method with passing the best solutions to the next generation.
The randomization through Lévy flight gives CS a random walk
that is characterized by a probability density function. In case
of Particle Swarm Optimization algorithm that depends on the
inertia weight which needs development to incorporate the elitist
concept of CS. Convergence to optimal solution is insensitive to
the algorithm dependent parameters. CS has advantage over
other algorithms by having only one parameter pa needs to be
adjusted.

3.1 Encoding

Each egg in a nest is represented by a binary string with three
parts. An egg encodes a possible cluster. A time series gene
expression dataset has G number of genes, S number of samples
and T number of time points. Therefore, a nest has the first m
bits corresponding to the genes, the next nbits corresponding
to the samples and the last k bits corresponding to the time
points. Each string is represented by m + n + k bits that have a
value either 1 or 0. If the value is 1, then the corresponding
gene or sample or time point is present in the cluster. For
example, a gene expression dataset having 10 genes, 6 samples
and 4 time points, a string {10101110010101011011} represents
that genes {g1, g3, g5, g6, g7, g10}, samples {s2, s4, s6} and time
points {t1, t3, t4} are the members of the cluster as shown in
Figure 2.

3.2 Fitness Function

Cluster is given as C = I, J, L = cci j l where i ∈ I, j ∈ J ,
and l ∈ L. The cuboid C represents subset of genes which have
similar expression values over a subset of samples during the
subset of time points.
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Dataset Description Type Size

Breast cancer dataset
GSE7561

It aims at finding IGF-I stimulated MCF-
7 cells which is breast cancer cell line that
is highly responsible to IGFs. Cells were
stimulated in triplicate with or without IGF
for 3 or 24 hrs.

Homo Sapiens 22277 genes

Ovarian cancer dataset
GSE6653

It identifies the genes that show the changes
after insertion of TGFb1 in IOSE which is
derived from normal ovarian cells.

Homo Sapiens 54675 genes

Thyroid hormone
dataset GSE24793

It has the target genes of thyroid hormone
in cerebellum neurons of new born wild
type mouse (mus musculus). To include
maximum number of target genes, several
cultures were treated or left untreated as
controls for 4 time points such as 6, 16,24 and
48 hrs and the results are compared pairwise
for each time point.

Mus musculus 45101 genes

Mean Square Residue (MSR) of the cluster can be modelled as

M S R =
∑

g∈G,s∈S,t∈T r2
gst

|G| × |S| × |T | (4)

rgst = T Sv(t, g, s)+ MGS(t)+ MGT (s)+ MST (g)

+ MG (s, t) − MS(g, t)− MT (g, s)− MGST
(5)

Where MGS(t) is the mean of genes under samples at a time
point, MMT (S) is the mean of the genes over time under MST (g)

a sample, is the mean of a gene in time under the samples,
MG (s, t) is the mean of the genes under a sample and a time
point, MS(g, t) is the mean of the values of a gene at a time
point under samples, MT (g, s) is the mean of a gene under a
sample at all time points and MGST is the mean value of all
values in the cluster.

The first objective is to calculate the MSR value of the cluster
which is given in equation (4) and (5).

f1 = M S R (6)

The low MSR value denotes there is strong coherence in the
cluster. This includes only the trivial cluster when there is no
fluctuation. The row variance is calculated in order to include the
non trivial cluster. The second objective function is to calculate
the row variance which is given in equation (7) and (8) in which
ai j is the value of a gene in the cluster, ai j is the mean of ith row
in cluster for all j conditions and ai j is the mean of ith row for
all k time points.

f2 = 1

|I |
∑
i∈I

vari (7)

var i = 1

|J |
∑
j∈J

(
ai j − ai J

)2 + 1

|K |
∑
k∈K

(aik − ai K )2 (8)

The third objective function is the volume of the cluster which
is calculated using the following equation (9).

f3 = |I | × |J | × |K ||G| × |S| × |T | (9)

Where (|I | × |J | × |K |) is the volume of the cluster and (|G| ×
|S|×|T |) is the volume of the dataset. And this objective function
is to be maximized in order to have increased size of the cluster.

The aim of this work is to find the clusters which should
have a lower MSR score and a higher variance and a larger
volume of the cluster. Thus, the first objective function is to
be minimized and the second and third objective function is to
be maximized in order to accomplish the goals. Therefore the
optimal solution of the objective function is different from each
other. Pareto optimal solutions solve this problem by considering
set of constraints to get the optimal solution (Yang and Deb,
2001). It is based on the dominance criteria where a solution x (1)

is said to dominate other solution x (2) if it holds the conditions
such as the solution x (1) is no worse than x (2) in terms of all the
objectives and the solution x (1) is strictly better than x (2) in at
least one objective. The set of solutions which are not dominated
by any others are called Pareto optimal front. Thus, the solutions
are selected based on the pareto optimal front. Figure 3 shows
the flowchart for the proposed work.

4. RESULTS

4.1 Description of Datasets

The proposed method is implemented on three different real life
datasets. All the datasets are obtained from Gene Expression
Omnibus (GEO). Two datasets are experiments for humans
(Homo Sapiens) for different diseases and the third one is
an experiment for human mouse (Mus musculus). All the
experiments are time course experiments that have the behaviour
of genes under samples for different time points.

4.2 Results and Discussion

Table 1 shows the parameters and values for the proposed work
and it is constantly maintained for all the three datasets. The
traditional CS algorithm uses fixed value for Lévy distribution
coefficientλ, probability of discovery rate of the eggspa and the
step size α and the same values are assigned here for performing
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Table 1 Parameters and values considered for cuckoo search.

Parameter Value

Number of nest (n) 50
Discovery rate of alien eggs (pa) 0.25
Step size (α) 1
Levy distribution coefficient (λ) 1.5
Number of iterations 20

Figure 3 Cuckoo search with multi objective function.

the clustering Initially the entire dataset is normalized using
fuzzy logic. Then the cuckoo search algorithm is applied for
clustering the temporal datasets. To compare its performance,
the other normalization methods such as quantile and z-score
normalization methods are also applied to the entire dataset
before clustering. During fuzzy normalization method, each
gene of the dataset is considered as a fuzzy set and the
fuzzification process is applied to all the genes. In the
fuzzification process, the Gaussian membership function which

is given in equation (1) is applied to all the genes where
each gene is divided into three intervals namely low, medium
and high. Figure 4 shows the Gaussian membership function
of four random genes. The raw data has gene expression
value ranges from 0 to 1600 which is hard to compute further.
After fuzzy normalization, each gene value ranges between
0 and 1.

The normalized dataset which has I genes, J samples
and K time points is given as input and that considers all
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Figure 4 Gaussian membership function.

Table 2 Performance comparison of fuzzy normalization impact on clustering.

Data Volume of the cluster Best MSR value of the cluster

Breast cancer

Raw 124490 0.0320
Quantile 126610 0.0239
Z-Score 126470 0.0204
Fuzzy 141640 0.0087

Ovarian cancer

Raw 190760 0.0112
Quantile 191760 0.0096
Z-Score 207880 0.0081
Fuzzy 229970 0.0043

Thyroid hormone

Raw 189530 0.1077
Quantile 199280 0.0849
Z-Score 199320 0.0723
Fuzzy 228450 0.0037

genes, samples and time points. It produces number of
clusters which has i genes, j samples and k time points for
which i ∈ I , j ∈ J and k ∈ K . Table 2 shows the
performance comparison of Fuzzy normalization with other
existing normalization methods in terms of the volume of the
cluster and best MSR value obtained from number of iterations.
The aim is to get lower MSR value even in the cluster with
larger volume. In all three datasets, quantile and z-score
normalization has little improvement from the raw dataset. But
Fuzzy normalization gives the lowest MSR value from a large
volume of the cluster which proves that it outperforms the other
methods.

Box plot is the effective way to assess the distribution of the
data graphically. It splits the dataset into quartiles. The inter
quartile which is the box in the plot represents the range of the
data. The median of the data is marked in the box which divides
the box in to two halves. The whiskers and the outliers can
also be easily interpreted. In all the three datasets, skewness is
witnessed in the raw dataset before normalization which shows
the asymmetric distribution of data. The degree of dispersion

and outliers are high in the raw dataset. Therefore, the dataset
is to be normalized.

In quantile normalization, the skewness and outliers are
slightly controlled. Z-Score performs better than quantile nor-
malization, but there are outliers. But after Fuzzy normalization,
all the data falls within the range, skewness is controlled and
there are no outliers found. In Figure 5 breast cancer dataset, the
median of the data varies slightly even in fuzzy normalization,
but in Figures 6 and 7, the median of the data almost falls in
the same range and also the degree of dispersion is very low.
In addition, the fuzzy normalization scales the expression value
which lies within 1 for all the genes.

Figures 8, 9 and 10 shows the sample five clusters obtained for
breast cancer, ovarian and thyroid dataset respectively. Hundred
genes are taken as sample for viewing the gene expression profile
of the clusters. It shows that all the genes are correctly grouped
in the clusters which have similar expression values. Only a very
few fluctuations are seen in the clusters. This may be due to the
missing values that are replaced by the random number but most
of them remain in the cluster without violating.
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Figure 5 Box plots of breast cancer dataset.

Figure 6 Box plots of ovarian cancer dataset.

Figure 11 shows the correlation analysis of the sample clusters
extracted from the proposed work. The Pearson correlation
coefficient method is used for performing correlation analysis of
all genes in the clusters. Figure 11 A) shows the correlation of
genes in breast cancer dataset between all the samples across all
the time points that are grouped together in the cluster. It clearly
shows that all the genes in the cluster are highly correlated. In
Figure 11 B) ovarian cancer dataset, most of the values are
1 which proves that all the genes in the cluster are strongly
correlated. In a sample cluster of thyroid dataset, 5 conditions
are grouped together in the cluster and their correlation among
all the genes is shown in Figure 11C.

4.3 Comparison With Other Clustering
Algorithms

The performance of the proposed work is compared with other
clustering algorithms based on two validation indexes. The first
measure is the Triclustering Quality Index (TQI) which is given
in Eq. (10).

T QI = M S Ri

volumei
(10)

Where M S Ri is the mean squared residue of the cluster i and
volumei is the volume of the cluster i . The volume of the ith
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Figure 7 Box plots of thyroid hormone dataset.

Figure 8 Five clusters obtained for breast cancer dataset.

Figure 9 Five clusters obtained for ovarian cancer dataset.
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Figure 10 Five clusters obtained for thyroid hormone dataset.

Figure 11 Correlation analysis of sample clusters.

cluster is defined as (|Ii |× |Jj |× |Kk |) where |Ii |, |Jj | and |Kk |
represent the number of genes, samples and time points of the ith

cluster. A lower TQI represents the better quality of the clusters
(Swathypriyadharsini and Premalatha, 2018).

The second measure is the Statistical Difference from
Background (SDB) score which signifies whether a set of
nclusters are statistically different from the background data
matrix or not. The SDB score is given in the Eq. (11).

SDB = 1

n
�n

i=1
M S Ri

1
r

∑r
j=1 RM S R j − M S Ri

(11)

Where n is the total number of clusters extracted by the
algorithm. M S Ri represents the mean squared residue of the
ith cluster and RM S R j is the mean square residue of the jth

random cluster having the same number of genes, samples and
time points as the ith resultant cluster. The higher the value of
the denominator denotes the better the quality of the resultant
cluster. Hence, lower SDB score signifies better performance of
the algorithm. Table 3 shows the comparison of the performance
of various algorithms in terms of SDB and TQI indexes in
which clustering using cuckoo search after fuzzy normalization
performs better.

4.4 Biological Significance

The biological significance of the genes which belongs to each of
the clusters is identified by performing Gene Ontology analysis.
David Ontology tool which is freely available in the Internet
is used for the analysis (Huang et al., 2009). The p-values
are adjusted using Benjamini Hochberg method (Benjamini
and Hochberg, 1995). The significant genes that have a p-
value below the threshold of 0.05 are selected. The lower
p-value represents the higher significance level. Thus, the
statistically enriched GO terms belonging to each cluster is
extracted. Table 4, 5 and 6 shows the gene ontology of the breast
cancer, ovarian and thyroid datasets respectively. The biological
process, molecular function and cellular component of the genes
in the different clusters are analysed and top three functionalities
are given based on the lowest p-values.

5. CONCLUSION

In this work, the impact of the normalization using fuzzy logic
is presented to cluster the temporal datasets. These temporal
datasets have thousands of genes under several conditions across
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Table 3 Performance Comparison.

Algorithm SDB Average TQI

Cluster extracted from Breast cancer dataset 0.25772 4.21E-09
Cluster extracted from Ovarian cancer dataset 0.33203 3.27E-09
Cluster extracted from Thyroid hormone dataset 0.20945 2.01E-09
δ-TRIMAX 0.46709 3.08E-05
TRICLUSTER 0.47753 3.35E-05

Table 4 Gene ontology for breast cancer dataset.

Cluster Biological process Molecular function Cellular component p-value

Cluster 1 Angiogenesis,
Viral Process
Signal transduction

Protein binding,
poly(A) RNA binding,
ATP binding

Cytosol,
Nucleoplasm,
membrane

2.9E-05
3.2E-04
3.0E-04

Cluster 2 Positive regulation of transcrip-
tion from RNA polymerase II
promoter,
cell-cell adhesion,
heart development

Identical protein binding,
enzyme binding,
transcription coactivator ac-
tivity

Golgi apparatus,
mitochondrion,
cell-cell adherens junc-
tion

1.9E-08
1.9E-08
3.3E-07

Cluster 3 Response to drug, negative reg-
ulation of apoptotic process, ex-
tracellular matrix organization

Protein tyrosine kinase
activity, ubiquitin protein
liqase binding, receptor
binding

Protein complex, tran-
scription factor complex,
extracellular space

1.3E-07
2.9E-06
2.3E-06

Cluster 4 Leukocyte migration, heart de-
velopment, response to hypoxia

Cadherin binding involved
in cell-cell adhesion, inte-
grin binding, actin binding

Apical plasma membrane,
melanosome, early endo-
some

2.3E-06
3.1E-05
1.5E-04

Cluster 5 Signal transduction, angiogene-
sis,
cell proliferation

Protein homodimerization
activity,
protein serine, protease
binding

Apical plasma membrane,
melanosome, caveola,

3.0E-04
2.8E-04
1.3E-04

Table 5 Gene ontology for ovarian cancer dataset.

Cluster Biological process Molecular function Cellular component p-value

Cluster 1 Protein phosphorylation, viral
process, intracellular protein
transport

Transcription coactivator ac-
tivity, metal ion binding,
calmodulin binding

Nucleolus,
cell junction,
membrane raft

9.9E-08
1.8E-05
5.6E-05

Cluster 2 Cell-cell adhesion, protein
poly ubiquitination, response
to estradiol

ATP binding, Ras quanyl-
nucleotide exchange factor
activity, liquase activity

Centrosome, endoplasmic
reticulum membrane,
chromatin

2.4E-09
8.4E-08
2.4E-08

Cluster 3 DNA repair,
cell migration, insulin recep-
tor signalling pathway

Zinc ion binding, PDZ
domain binding, cadherin
binding involved in cell-cell
adhesion

Endoplasmic reticulum
membrane, perinuclear
region of cytoplasm,
lysosomal membrane

3.5E-08
6.4E-05
3.2E-05

Cluster 4 Vesicle-mediated transport,
cell division,
protein auto phosphorylation

Protein homodimerization,
signal transducer activity,
protein complex binding

Postsynaptic density, sar-
colemma, mitochondrion

2.6E-04
1.2E-04
1.4E-03

Cluster 5 Cell proliferation, regulation
of cell cycle,
actin filament organization

Microtubule binding, actin
filament binding, transcrip-
tion regulatory region DNA
binding

Nuclear speck,
actin filament, extrinsic
component of membrane

1.8E-05
5.6E-05
1.4E-04

many time points. Therefore, these datasets are to be normalized
before clustering. The Gaussian membership function is applied
to each gene of the dataset for fuzzification process. Then, the

cuckoo search optimization technique is applied to subspace
cluster the genes under different samples at many time points.
The proposed work is applied to three different real life temporal
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Table 6 Gene ontology for thyroid hormone dataset.

Cluster Biological process Molecular function Cellular component p-value

Cluster 1 Multicellular organism devel-
opment,
cell differentiation, mitotic nu-
clear division

Hydrolase activity,
RNA binding,
protein homodimerization

Golgi apparatus, synapse,
neuronal cell body

2.3E-05
3.6E-04
1.3E-02

Cluster 2 Cell cycle, protein trans-
port, mRNA processing, RNA
splicing

Sequence-specific DNA
binding, transferase activity,
oxidoreductase activity

Cytoskeleton, perinuclear
region of cytoplasm, neu-
ron projection

1.5E-07
1.2E-06
2.5E-06

Cluster 3 Angiogenesis, DNA repair,
covalent chromatin modifica-
tion, mitotic nuclear division

Helicase activity, catalytic
activity, ubiquitin protein
liqase binding

Endoplasmic reticulum,
lamellipodium,
cytoplasmic vesicle

1.7E-06
1.4E-05
2.8E-05

Cluster 4 Positive regulation of cell mi-
gration, ion transport, axon
guidance

Quanyl nucleotide exchange
factor binding, magnesium
ion binding, GTP binding

Mitochondrion, dendrite,
postsynaptic density

2.0E-04
4.1E-03
1.6E-02

Cluster 5 Apoptotic process, cellular re-
sponse to DNA damage stim-
ulus, brain development

Nucleotide binding, protein
kinase binding, transferace
activity

Golgi apparatus, myelin
shealth, intercalated disc

1.4E-04
1.5E-03
5.8E-03

datasets. The fuzzy normalization is also compared with
other existing normalization methods and it outperforms other
methods. The biological significance of the clusters that are
extracted from the proposed work is analysed. In addition,
the correlation analysis is performed to evaluate the results of
the clusters which prove that all the genes in the cluster are
highly correlated. For instance, the proposed method aims to
cluster genes with related function, then the existing functional
annotations are used to validate the resultant clusters. Clustering
has been consistently applied in the medical sector to identify and
analyze several ailments such as cancer, malaria and hormonal
problems.
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