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Today, there is a growing demand for computer vision and image processing in different areas and applications such as military surveillance, and biological
and medical imaging. Edge detection is a vital image processing technique used as a pre-processing step in many computer vision algorithms. However, the
presence of noise makes the edge detection task more challenging; therefore, an image restoration technique is needed to tackle this obstacle by presenting an
adaptive solution. As the complexity of processing is rising due to recent high-definition technologies, the expanse of data attained by the image is increasing
dramatically. Thus, increased processing power is needed to speed up the completion of certain tasks. In this paper,we present a parallel implementation
of hybrid algorithm-comprised edge detection and image restoration along with other processes using Computed Unified Device Architecture (CUDA)
platform, exploiting a Single Instruction Multiple Thread (SIMT) execution model on a Graphical Processing Unit (GPU). The performance of the proposed
method is tested and evaluated using well-known images from various applications. We evaluated the computation time in both parallel implementation on
the GPU, and sequential execution in the Central Processing Unit (CPU) natively and using Hyper-Threading (HT) implementations. The gained speedup for
the naïve approach of the proposed edge detection using GPU under global memory direct access is up to 37 times faster, while the speedup of the native
CPU implementation when using shared memory approach is up to 25 times and 1.5 times over HT implementation.
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1. INTRODUCTION

Edge detection in digital image processing is a vital process
for many computer vision applications. It consists of common
pre-processing steps, such as object tracking, segmentation,
audio/video coding, and image enhancement [1]. Edge detection
of the image is an important problem that has been studied
for more than 60 years [2]. Assuming u0 is the given image
represented as a function u0:Ω ⊂ R

2 → R
d , the problem is

to find ue where ue = (A · u0) ⊂ R
2 such that it represents

an edge map image, and A can be considered any operator
as stated in Equation (1). Edges of a grayscale image are
represented as a sharp change intensity or discontinuity. The
interest of edges strengthened on the important information that
the image carries off [3]. Different categories of edge detection
have been proposed by many researches [4–7], and most of
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them have been based on applying a first derivative (gradient)
on the given image. Other techniques have been proposed
[8–10], based on the second derivative (Laplacian). Another
category of edge detection technique is proposed [11–16] to
overcome the problem of finding edges in images under different
circumstances with different methodologies.

Ue =
∑(∑

ai j · ui j
)

S
(1)

where ai j is the coefficients of convolution kernel, ui j is the
image data and S is the summation of coefficients if (|S| > 0
otherwise S = 1).

Ordinarily, images are often mixed with noise, and even a
little noise makes the edge detection process challenging. Noise
reduction is a well-known problem in digital image processing,
which draws from several type of resources, such as transmission
medium, imaging system, recording process,or any combination
that affects the subjective quality of the edge detection image
[17]. An adaptive solution is needed to enhance the accuracy of
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existing detectors by creating a mash-up detector that combines
the advantages of existing approaches with a preserving edge
noise removal.

Our main contributions in this paper are as follows: 1) we
propose an enhanced anti-noise hybrid image edge detection
method; 2) we implement the proposed method in the Graphical
Processing Unit (GPU) under naïve and shared memory
approaches; and 3) we evaluate the proposed solution and prove
its efficiency.

The proposed method consists of two phases derived from
[18]. The first phase of the proposed algorithm is the pre-
processing phase, where the RGB color map image is converted
to grayscale image type, using an NTSC weighting approach for
further image processing operations. The second phase involves
the edge detection process. Here, the result of ETVSB (the
overall operator noise detection and removal) is convoluted using
a high-pass operator to detect edges in the images. The high-
pass operator is an enhanced operator from existing detectors.
Ordinarily, a Sobel operator is an excellent operator used in
Canny. Besides, Laplacian is an isotropic detector that can detect
details in edges like lines and dots. Hence, an adaptive edge
detection is proposed to get the benefit from both gradient and
Laplacian methods.

Many image processing algorithms including edge detection
inherent parallelism. A good selection to speed up the process
and exploit the parallelism in the algorithm is to adapt the power
of GPU and harness the enormous stream processors. Therefore,
a GPU is used to boost the speed of sequential execution as
a proof of concept by proposing a parallel implementation of
the edge detection approach using a Computed Unified Device
Architecture (CUDA) programming model. Several parallel
implementations have been conducted in this work, such as
thresholding, gradient calculation, maximum image between
two image arrays, NMS, and finally edge detection. The edge
detection process is implemented using two main approaches.
The first approach is to use a native convolution process that
directly accesses global memory to warp data, while the second
approach uses caching (shared memory) inside each block,rather
than working directly with the global memory which is time
consuming. The speedup gained from implementing the first
approach is up to 25 times, while the latter is up to 37 times and
1.5 times over HT implementation.

A GPU-accelerated road extraction method in images is
presented in [19] where the edges are detected by the bi-windows
edge detection algorithm. The evaluation performed has
shown that a GPU-acceleration improves computing efficiency.
Moreover, this has specific applications in areas such as
navigation, topographic mapping, and more.

The remainder of this paper is organized as follows. In
section 2, we briefly describe related work on edge detection
techniques in parallel platforms based on GPU. Section 3
shows preliminaries for edge detection and parallel computing,
including a brief overview of CUDA concepts. A parallel
implementation of contemplation for our proposed method
is presented in section 4. It explores the process of noise
detection, restoration, and edge detection with helper operations
such as thresholding, max/min operations, convolution, gradient
calculations and non-maximum suppression. Additionally, two
approaches have been used to implement the convolution process
using global and shared memory of the GPU. Experimental

results are discussed in section 5. Finally, a closure to our work
and discussion of some future trends is presented in section 6.

2. RELATED WORK

Digital image processing is a vital component in medical, indus-
trial, surveillance and commercial applications. The evolution
of digital image processing applications demands a high-speed
processing power to meet real-time requirements. Consequently,
a graphical processing unit accelerator is introduced along
with other accelerators [20] in fields such as computer vision,
mathematics, encryption [21], and deep learning [22] and has
developed year by year to cut off the gap between the throughput
and the time consumed. Recently, many research-related
investments have been made in graphic design and computer
vision to improve the quality of the image by bringing high
definition quality in real-time applications [23–24]. Thanks
to the parallel computation property that GPU poses, edge
detection technique in GPU shows many promising results.
Many operations can be parallelized easily and handled by
threads in the GPU architecture. Most edge detection techniques
can be exploited and parallelized in the GPU platform. Here,
some implementations of edge detectors are provided to the
reader to show the power of GPU.

Parallel processing algorithms: Sobel edge detection and an
homomorphic filter are applied on the image using GPU in [25].
Results are compared with the CPU sequential implementation
where GPU outperforms CPU 49 times. They also showed that
by increasing the size of the image, the speed is increased. An
efficient Sobel detection implemented using GPU is proposed in
[26]. The authors conduct the experiment in different platforms
such as CPU, GPU, and FPGA. In terms of execution time,
the GPU implementation of Sobel detection is outperforming
the CPU implementation, which is implemented using C++
language, and the FPGA implementation under Xilinx ISE
synthesizer using VHDL.

A performance analysis of Sobel detector has been conducted
on a heterogeneous system using OpenCL [27]. The authors
implement the Sobel operator in GPU using OpenCL (i.e. open
standard framework). Results showed that GPU is highly
recommended for parallel computations. In addition, the
execution time on GPU outperforms the computation time taken
by the CPU. OpenCL has a property that can be implied in any
parallel unit regardless of the vendor of that unit.

An implementation of Canny edge detection on GPU using
CUDA platform is presented in [28]. The results indicated that
the GPU achieve better speedup over the conventional software
implementation by sub-dividing the image of size 1024× 1024
into smaller images. They used shared memory (caching) rather
than a global memory in GPU to reduce the number of reading
and writing operations while the input image is loaded into
global memory due to small storage of the shared memory. The
performance of GPU using CUDA achieved 50 times speed-up
of CPU system.

An improved implementation of Canny edge algorithm is
proposed by avoiding recursive operations of the conventional
Canny edge algorithm in [29]. The experiment has been
conducted in various images sizes. The speedup ratio is
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increasing by increasing the image size. In addition, the new
operator eliminates some of the noise and shoots such that it
provides clearer edges.

A GPU-based new parallel approach for accelerating the
execution of edge detection is presented in [30]. The existing
method for Canny approach is modified to run it in a fully
parallel manner. It is done by replacing the breadth-first search
procedure with a parallel method. The evaluations showed
that the proposed approach on GPU using the CUDA platform
improved the speed of execution by 2–100x when compared to
CPU-based processing.

A statistical image sampling method based on GPU using edge
templates is proposed in [31]. The proposed algorithm attempts
to accelerate our up sampling using GPU. This is accomplished
by reducing the input resolution-grids dependency artefacts and
rebuilding low resolution images to get high-quality up-sampled
images in real time. The method is applied for edge detection
large scale terrain rendering. However, it is not applied for
medical images.

An efficient Canny edge detection using a 2nd derivative in
CUDA implementation for the Insight Segmentation and Regis-
tration Toolkit (ITK) has been introduced by [32]. The proposed
solution was compared with ITK and OpenCV implementations
in different Graphics cards (i.e. different GPU generation).
Results showed that the proposed solution gives a good result
in execution time. Canny implemented using CUDA is
marginally better than the Canny version in OpenCV, while
CannyCV performs much better than ITK version due to thread
parallelization and SSE instructions.

A new level set algorithm has been presented in [33] which
is implemented using a GPU that uses edge, region, and 2D
histogram information to segment objects in a scene. The native
Level Set Method (LSM) is computationally expensive, hence,
the proposed algorithm implement Lattice Boltzmann method
(LBM), which greatly reduces the computation due to its high
nature of parallelization along with the body force to solve
the level set equation. It is robust against noise. Results are
compared with C-V, Li‘s and Chen methods. The proposed work
is independent to the position of the initial contour and applied in
different kind of images, including medical images, such that it
shows very good results with the lowest Hausdorff and Martins
values. The only limitation mentioned by authors is the memory
complexity when storing the distributed functions of Boltzmann
method.

As a result of the limitations in classical operators and
the imperfection of the traditional Gabor wavelet transform, a
parallel version of Gabor wavelet transforms [34] is proposed
using CUDA. The proposed solution is compared with Roberts,
Canny (TL= 0.3, TH= 0.85), and the serial implementation
of the Gabor wavelet transform. The test was conducted
using “Lena” 256 × 265 image in Windows platform with one
GPU model (9600M GT generation). Results showed that the
proposed solution has shortened time.

Generally, solutions with adaptive (combines the first and the
second derivative) and accurate edge detection tend to be more
computationally expensive than approximation approaches.
Parallelization plays an important role in image processing
techniques for obtaining high computational power; therefore, a
high throughput is gained. Many edge detection stages exploit a
degree level of parallelism; therefore, a parallel implementation

on GPU is a perfect selection to take the advantage of both the
accuracy of the adaptive solution and the speed gained from
using the platform.

3. PARALLEL COMPUTING IN
GRAPHICAL PROCESSING
UNIT (GPU)

Parallel computing is a form of concurrent (simultaneous)
execution, where many workloads (tasks) are carried out. In
other contexts, this kind of computing is referred to as a
computer science discipline that deals with system architectures
related to the concurrent execution of applications along the
software. Simply, a parallel system is a system which can
distribute the workload among individual processors and take
care of the computation challenges during processing. The
importance of parallelization was indicated back in the late
1950’s in the form of supercomputers. There were earlier
attempts to start High-Performance Computing (HPC) by using
many-core systems to accomplish certain tasks and introduce
a shared memory multiprocessor working on a shared data
side-by-side. Nowadays, multi-core systems are becoming
dominant in the market. The value of parallel computing can be
gained through increasing various overall performance metrics
such as enhancing speed, optimizing power efficiency and the
throughput. Shifting from one core systems with high clock
frequencies to multiple core systems with different kind of
voltage powers and clock frequencies opens many doors in recent
trends.

Currently, vendors are starting to build mobile and high-end
platforms that can do many tasks efficiently in terms of speed
and power. Today, many systems come with many packed cores
(e.g. GPU) that can do the job at extremely high speed [35–37].
Although the field of parallel computing is increasing year after
year which agrees somehow with Moore‘s law in the case of
several cores that are packed per chip, certain challenges are
raised in these kinds of systems. Increasing and scaling task
of the performance of many-core GPUs and CPU means facing
obstacles that make the task of improvement is not so naïve
Challenges can be discussed and labeled briefly in two main
classes as described in [35] and [38].

General Purpose Graphics Processing Unit (GPGPU) is a
concept derived from the idea of submitting GPU an ordinary
computation that is traditionally done on CPU[34]. It is not a
separate type of GPU; instead, it is a software concept. Many
GPGPU applications, such as DSP (Digital Signal Processing),
DIP (Digital Image Processing),ASP (Audio Signal Processing),
bioinformatics, FFT (Fast Fourier Transform) and many others in
scientific computing. GPUs have developed into a highly parallel
platform with numerous computational powers and high memory
bandwidth. Moreover, GPU is now used in many toolboxes
provided by certain types of applications using CUDA platforms,
such as Adobe Photoshop, 3D Studio MAX, MathWorks,
and many other scientific applications. Figure 1 shows the
comparison between the CPU and the GPU performance scale
in terms of floating-point operation [40].

A GPU is a specialized microprocessor that is dedicated to
accelerating 2D-3D operations on rendering graphics [41]. In
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Figure 1 A comparison study by NVIDIA on Floating Operation per second between GPU and CPU.

the beginning, GPUs were devices with a collection of core
amounts that had a massive appetite for both computation and
bandwidth. They were designed to handle a huge amount of
processing in computer vision and graphics; as a result, they
are very efficient and cost effective in terms of speed and time
on image processing algorithms. GPUs were first promoted by
NVIDIA in 1999 with the introduction of GeForce 256. Three
years later, ATI was marketing their first Visual Processing Unit
(VPU) under codename Radeon 9700. Modern GPUs are very
effective and efficient in dealing with image processing. GPUs
can be viewed in several forms.

As the development trades on GPU performance increases
and the idea of single processor computation is becoming old-
fashioned and inadequate, numerous demanding applications
such as computer vision, video-game industry, and a wide
range of other high-performance applications will be massively
dependent on the features that GPUs present. A worthy set of
arguments were most of them tackled today by GPU models
and introduced by Fayez Gebali [42] could be summarized as
follows:

• The performance of computers depends on processing
powers while increasing the clocking (aka speed) will
consume unacceptable power such that it produces heat and
new challenges.

• Developing programming tools that can sense parallelism
in given algorithms.

• Memory systems are still slower than processors and their
bandwidth is limited.

• The number of processors being deployed as well as the
communication overhead.

• Optimization of future computers considering parallel
programming at all levels such as algorithms, operating
systems, compilers and program developments.

In Desktop PCs, GPUs are presented as PCI-Es video
cards. While in mobile devices, such as laptops and modern

smartphones, GPUs are embedded in the motherboard. Lately,
Intel has started to include an integrated GPU with their same
CPU die processors with different codenames like Iris and
Pro Graphics [43]. Nowadays, GPUs are introduced into the
market with different capabilities and forms. As an example,
as it appears in smartphones, GPUs architectures differ from a
personal computer (Desktop) or video-game consoles, which are
specifically built for low-power management devices working on
limited battery power.

One of the forms presented to harness the power of the GPU
is an external GPU (eGPU) using specific docks. There is no
difference between ordinary GPUs that were sold for desktops
and eGPUs in the type of graphics card. Portable machines like
laptops demand a massive number of computational units (i.e.
ALUs) for advanced and intensive applications. Due to some
limitations, such as power management, spacing and cooling
down, the existing graphic card is not sufficient, hence, eGPU is
usually packed with a separate power supply in chassis to fulfill
this need. Although the eGPU solution resolves many issues, the
benchmarking tests show that there is a waste of up to 20% of
the overall performance due to connectivity and communication
between the external GPU and the machine compared to the
embedded GPU of the same brand or vendor [44]. In addition,
the approach is not cost effective and needs an external power
source, an interface connection (thunderbolt, PCI, etc.), and of
course a graphics card.

Before concluding this section, it is useful to look at a new
trend that was recently developed to overcome the problem of
some limited embedded GPUs in mobile machines like a laptop.

Although the proposed solution resolves many issues, the
benchmarking tests show that there is a waste of more than
15–20% of the overall performance, due to connectivity and
communication issues between the External GPU and the
machine, in comparison with the embedded GPU or graphic
card based on the same brand or vendor [44]. In addition, the
approach is not cost effective and needs an external Power Supply
Unit (PSU), an interface connection (thunderbolt, PCI, etc.) and,
of course, a graphics card (GPU). After the introductory about the
graphics processing unit, it is worth concluding by stating some
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Figure 2 A diagram illustrates the programming model of how the GPU offloading the workload and the variety of cores it has compared to CPU.
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Figure 3 An abstract level design for the proposed operator.

of the benefits. First, using GPUs frees up CPU resources by
offloading the workload. Second, a good selection to accelerate
embarrassing parallel workloads. Finally, the portability and
programmability using a certain type of programming models
on GPU.

As shown in Figure 2, refutation of arguments [42] could be
illustrated as follows:

1. A GPU is used to free up CPU resources by offloading the
workload.

2. A GPU is a best choice to accelerate embarrassing parallel
workloads.

3. The portability and programmability by using parallel
programming models and development processes.

4. PROPOSED ENHANCED GPU BASED
ANTI-NOISE HYBRID EDGE
DETECTION METHOD

Digital image processing,such as single thresholding, non-
maximum suppression and 2-D convolution for edge detection
process has been implemented by exploiting the power of

GPUs. We will show a real implementation of image processing
algorithms on GPU using various methods of programming
models. A break-down structure of code snippets will be given
for more illustration without digging into details. Furthermore,
a tackle on optimizing a vector and matrix operations is
presented by revising loop-based and scalar-oriented code using
vectorization that is based on a software approach using CPU
and GPU. The next section will show the numerical results
between the single and parallel execution of the presented
implementations in this section.

The proposed enhanced GPU based anti-noise hybrid edge
detection method algorithm is presented in Figure 3, which
is derived from [18]. The figure shows the abstract level
design of the proposed operator. The input colored image is
converted to a grayscale image and filtered using median filters,
Ranked-Ordered Absolute Differences (ROAD) statistics and
total regularization to remove the noise. The edge is finally
detected using operators like Soble and Laplacian.

4.1 Code Syntax and Conventions

In this subsection, many algorithms are presented as pseudo
codes in MATLAB and C extension style code and used
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Figure 4 A flow diagram of how the image is read and after applying operations on it using GPU platform.

(a) (b)

Figure 5 Thresholding implementation using (a) CUDA C. (b) loop-based code style (MATLAB).

interchangeably in the context. The loop-based serial execution
is usually represented as MATLAB style code while the parallel
implementation is presented in the context as a C extension code
(more precisely a CUDA C extension). Parallel implementations
are shredded into building blocks (do not confuse with CUDA
blocks) and thus, the concentration only deals with the actual
logic of the program rather than the initialization issue and
definitions. Some operations will be subjectively evaluated as
a proof of a consistent result on both implementations. For
simplicity, the process of reading or printing images is not
taken on consideration significantly during the implementation
of CUDA C and MATLAB image processing toolbox API‘s are
used to take care of the reading/showing functions.

As shown in Figure 4, the process of reading image is
done using MATLAB toolbox using the imread() function,
where the final image is shown using imshow() function after
applying set of operations such as convolution, thresholding,
and mathematical and logical operation on CUDA C. At this
rate, the focus will be on the computational procedures rather
than presentations and conversions.

4.2 Embarrassingly Parallel Problems
in Image Processing

Embarrassingly parallel problems are sometimes called “pleas-
ingly parallel problems” where little or no effort is needed to
separate the task into smaller parallel problems. In this type of
problem, there are no dependencies between executed subtasks
which build the overall problem. An example of this kind of
problem is the task of 3-D projection, where each pixel in the
screen is rendered independently.

4.2.1 Single Thresholding

Thresholding is one of the simplest operations that can be run
independently on each pixel without any dependency between

pixels. Hence, a good speedup will be done using parallel
execution where each pixel is compared to a certain threshold
value without waiting the previous one is finished as shown in
Figure 5(b) on the loop-based version of implementation. In
Figure 5(a),each pixel is working alone in 2-D array of an image
on the GPU.

As we can see, thresholding implementation is vectorized
under the GPU platform using Single Instruction Multiple
threads (SIMT) where each thread is holding a pixel and
compares it with the threshold value. Furthermore, the logic
representation of CUDA C syntax seems to be easier than that
shown in Figure 5(b) and C-style code loop-based version.
Figure 6 shows two identical outputs of thresholding Lena edge
map image using the same implementation on Figure 5(a) and
(b) for GPU and CPU, respectively.

4.2.2 Mathematical Operations on Images

Many image processing algorithms composed of a set of math-
ematical and logical operations such as addition, multiplication,
AND-ing, and OR-ing between pixels. As the size of the
image increases, these operations consume time and resources.
Therefore, the GPU is the best choice to complete this kind of
task due to the richness of ALU units that GPU possesses.

4.2.2.1 Image Manipulation and Scalar Product Image
manipulation techniques are essential operations in digital
image processing. Edge detection is a feature extraction
technique and is considered as a high-pass filter that needs, after
processing, many enhancements, such as add/remove content
to/from the image. Sometimes we need to implement some
logical operations such as morphological operations. The result
of edge detection is the summation of gradients (2-D arrays).
Thus, adding these arrays using a GPU will be in the blink of an
eye as shown in Figure A1 in Appendix A.
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(a) (b) (c) 

Figure 6 (a) A proposed edge map for Lena. (b) Thresholding edge map (a) for T<180 using the implementation in Figure 4(a). (c) Thresholding procedure is applied
on the same image (a) using the loop-based version in MATLAB.

(a) (b) 

Figure 7 Results of convoluting two operators in −x (a) and −y (b) directions for magnitude calculation.

(a) (b)

Figure 8 Gradient image computation using (a) MATLAB (b) CUDA C.

4.2.2.2 Squaring and Square Root The calculation of
gradient magnitude for the classical type of operators in edge
detection depends proportionally to the square root of the
summation of squaring the convoluted result in both –x and
–y directions of applying certain operators for the image. The
square root function presented in a C library is used to get the
value as shown in Figure A2 in Appendix A.

Although the syntax of the implementation using a MATLAB
software looks more elegant, the speed gained from GPU
implementations is much higher than the speed gained from
MATLAB. Moreover, due to the conversion between numerical
values, the output from CUDA C is more accurate. Figure 7
shows the two convoluted images Gx and Gy (implementation
of results will be shown later) of the enhanced Sobel operator.
Figure 8 shows the output images from CUDA and MATLAB
execution. Although edge map images shown in Figures 7
and 8 look the same, Figure 7 displays the histogram of both

images with more detail between gradient images showing their
difference.

While both images look similar in Figure 8, Figure 9 shows
not. Essentially, this is a proof of precision used in dealing
with numbers in both environments (MATLAB and CUDA C).
In CUDA, a precision of a double is used to consider more
significant figures rather rounding in MATLAB.

4.2.3 2-D Max and Min Functions

Max function for 2-D arrays such as images is simply the
largest/smallest element between a set of 2-D arrays at the same
index for all element arrays. Let A0, A1, A2 . . . An are 2-D
arrays of size N ×M and let max/min is a 2-D array that can be
defined as

max /min (A0, . . . . . . , An) = max /min
(
a0i j , . . . . . . , ani j

) ;
0 ≤ i, j < N, M
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Figure 9 A histogram chart of the magnitude computation gained from (a) MATLAB result (b) CUDA C result.

A good illustration is presented in Figure A3 in Appendix A
which describes how the function max is working with two 2-D
arrays A and B. The implementation of max function in CUDA
C between two images is shown in Figure A4.

Rather than looping around all arrays and checking each index
with each iteration and comparing, parallel comparison at the
same time for several block of threads is easily done in GPU,
where each thread is one comparison between two elements in
both arrays.

4.2.4 Non-Maxima Suppression

Non-Maxima Suppression (NMS) is a thinning algorithm based
on local processing operations, and is used to reduce the
thickness of edge pixels. The idea of NMS is to suppress all
gradient values to zero and keeps only local maximal values. In
this section, an implementation of NMS is given as a CUDA C
program.

Assume both Gx, Gy for gradient calculation are available for
further computation such that the returned result of ConvGPU()

is a gradient image in direction –x and –y for Gx, Gy,
respectively. Thus, the first step is to calculate the inverse
trigonometric function (arctan) for both image gradients Ix and
Iy. CUDA C APIs have a large set of built-in functions such as
math library and so on, inverse tangent is defined as atan2()
function. Since we are dealing with float numbers, CUDA
C math API thankfully provides a float-type version of arctan
which is defined as atan2f() CUDA C function.

The first process is to compute the edge direction for each
pixel at location (i,j =index) using atan2f() function.

Direction [index] = arctan(Y[ index ], X[index ])x
180

Pi

)

i f Direction [index] < 0

Direction[index] = Direction [index]+ 360

The result returned by atan2f() is defined as radian angles,
hence a conversion is needed to get degree angles by multiplying
the returned result with (180/PI = 3.14). The last step of
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the process is to adjust negative angles by adding 360 if the
direction possesses negative value. For each location in gradient
images X and Y, the tan inverse is calculated independently using
SIMT execution model such that each thread is computing the
tan inverse related to its index.

The next process is to update the obtained edge direction
array in parallel to be adjusted to nearest angle degree
∈ {0, 45, 90, 135} as shown in the next implementation.

After calculating the adjusted directions, we start the NMS
process and compare each magnitude along the obtained
directions from previous process. Shown below is how the
magnitude is calculated.

Magnitude[index] = sqrt(X)2[index]+ Y2[index]

The next step is to consider each adjustment edge direction
obtained to get the maximum magnitude by suppressing all other
magnitudes along this direction by comparing the magnitude of
the current pixel (i,j) with neighborhood pixels.

The result is presented in a binary format. In order to return
the original values of each pixel in location (i,j), a dot product is
needed between the final result and the acquired magnitude.

result[index]=result[index]*Magnitude[index]

In the next subsection, a tackle on a 2-D convolution on GPU
will be revised to improve the execution speed of the process such
as edge detection and operations requiring convolution between
signals.

4.2.5 Advanced Problem in Image Processing

The convolution is used without giving any clue or details about
the nature of the operations and how they are implemented. This
subsection focuses on showing the task of image convolution
on the GPU platform. An introduction to the problem is
given first graphically and mathematically. Second, a simple
way to implement a 2D convolution and finally, an optimized
implementation is provided.

4.2.5.1 Image Convolution Convolution is a mathematical
operation and a vital component ubiquitous in digital image
processing for image restoration, image segmentation, feature
extraction, and object pattern recognition. Mathematically, a
convolution is an operation on two signals, f and g, that measures
the amount of overlap between two signals and can be defined
continuously in a time domain as specified in Equation (2):

( f ∗ g)(t) =
∫ ∞
−∞

f (τ )g(t − τ )dτ (2)

In a 2-D image function as stated in Equation (3), convolution
could be performed discretely using a discrete kernel g such that

( f ∗ g)[i, j ] =
∑

n

∑
m

f [i − n, j − m]g[n, m] (3)

Image convolution is basically a scalar product of the filter
weights and all pixels of the image within a kernel as shown in
Figure 10.

As shown in Figure 10, the image f is convolved with a kernel
of radius 1 (one-ring neighborhood is deliberated throughout the
convolution process). In some cases, the kernel is centered at
a location (i,j) of the input image where pixels of the original
image at location (i+a, j+b) {−1 ≤ a, b ≤ 1} outside the image
are treated as zeroes.

4.2.5.2 Convolution on GPU Using CUDA This is the
most important part of the work where the convolution procedure
is parallelized, enhancing many operations, such as edge
detection and image filtering in digital image processing.
Initially, a naïve implementation for both CPU and GPU are
presented. The naive implementation of 2-D convolution is
time exhausted on the CPU. The GPU implementation of 2-
D convolution is a lot faster as shown later in the experimental
evaluation section.

Later, we enhanced the process of convolution using a shared
memory per block. Results of each block are computed locally
in the corresponding block and conquered later by writing the
value of the new pixel to the global memory. Because of using
shared memory approach, the gained speed up is up to a factor
of 37.
Naïve convolution on GPU using global memory on CUDA

An implementation of naïve 2-D convolution on a CPU is
presented in Algorithm 1. The time complexity of this kind of
algorithm are running on O(n4)

GPU is specialized to tackle this type of algorithm by running
each block of pixels concurrently, and thus reduce the time
complexity of the overall algorithm. Initially, the reduction is
greater than O(n2).

An implementation of naïve 2-D convolution on GPU is
presented in Figure A5 in Appendix A which runs on the GPU
device using SIMT execution model. As shown in Figure A5,
the two outer loops in Algorithm 1 are replaced with an index
of the current pixel (i,j) in global memory. Hence, each logical
outer loop that is now represented as indices of pixel locations
in parallel implementation will run concurrently, and each pixel
will execute the inner loops independently.
Convolution on GPU using shared memory on CUDA

Figure 11 shows the relation between the convolution process
(top box) with both shared memory and global memory and
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Figure 10 A diagram illustrates the process of a 2-D image f convolved with a 3× 3 2-D kernel at point p of image f.

Figure 11 The interaction between three objects: global memory, shared memory and the process (convolution).

Algorithm 1 A serial 2-D convolution on CPU composed of four
loops.

function 2DConv (Image, kernel)

for y← 0 to y < Image height do
for x← 0 to x < Image width do

sum← 0;
for j← 0 to j < kernel height do
for i← 0 to I < kernel width do
sum← sum + Image(y+j,x+i)*kernel(j,i)

Image(y,x)← sum

end function

how data flows. Convolution process is the kernel core where
each executed block holds the shared memory. Each block will
write to the global memory after working locally on the shared
memory data. Once the result is generated inside the block, the
kernel will write back the result to the global memory,such that it
reduces the amount of communication between kernel and global
memory. Initially, each block will warp the workload (pixels)
from the global memory. Once all blocks have gathered the data,

each block will run independently and write down the result to
the original location in global memory after finishing execution
as shown in Figure A6 in Appendix A.

Convolution is a serious operation in digital signal processing.
For a large set of signals (e.g. images), time becomes a
critical issue and optimization is necessary. Generally, a lot
of enhancement in image convolution under GPU has been
studied. However, not all operators are capable of being
applied practically due to some characteristics they possess (e.g.
separable filtering).

One sort of improvement for our implementation is to
enhance the execution of convolution operation under a graphical
processing unit using shared memory. Fortunately, CUDA
platform makes the programmer able to easily use the shared
memory within each block without involving any assembly and
low programming APIs. The shared memory’s own set of
characteristics which make the implementer control threads per
block.

So far, an illustration of a 2-D convolution implementation is
studied and tackled on GPU using global memory (native) and
shared memory approaches. A Total Variation (TV) denoising
problem is a classic example of prior analysis that grasps for
all linear transforms, and can be expressed for the sake of
convenience using Equation (4):
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arg min
u |u0 − u|qq + λ|DV (u)|pq + λ|DH (u)|pq (4)

Clearly, a TV problem is a finite difference transform
where DV and DH are vertical and horizontal finite difference
operators. Similarly, λ is the same regularization parameter that
appears in Equation (4), and p and q are constants span from
0 to 1. Since the impulse noise is sparse, the value of q is on
range (0,1]. Here, we are proposing the eROAD algorithm that
has been shown above with a split-Bregman algorithm and soft-
thresholding to solve Equation (4).

The first step needed is to substitute some terms such that
the problem in Equation (4) becomes a constraint optimization
problem. Let z = u0 − u, while v = DV (u), and finally w =
Dh(u). The problem then can be rewritten as following:

min
u, z, v,w |z|qq + λ|v|pp + λ|w|pp (5)

subject to:

z = u0 − u

v = DV (u)

w = Dh(u)

Weak penalty function can be introduced to the problem in
Equation (5) to become an unconstraint problem and the formula
could be re-expressed as the following

min
u, z, v,w |z|qq + λ|v|pp + λ|w|pp

+μ1 |z − u0 + u|22 + μ2 |v − DV (u)|22 + μ2 |w − Dh(u)|22︸ ︷︷ ︸
weak penalt y f unct ion

(6)
By applying a split-Bregman on Equation (6), three variables

are introduced to control the update value as following:

min
u, z, v,w |z|qq + λ|v|pp + λ|w|pp + μ1|z − u0 + u − ai |22
+ μ2|v − DV (u)− bi |22 + μ2|w − Dh(u)− ci |22

where a, b, c are updated as following:

ai+1 = ai + u0 − z − u

bi+1 = bi + DV (u)− v

ci+1 = ci + Dh(u)−w

Hence, the problem can be solved for (u, z, v, w) independently
such that each variable considered as a problem itself as stated
in Equations (7–11).

arg min
z |z|qq + μ1|z − u0 + u − ai |22 (7)

arg min
v λ|v|pp + μ2|v − DV (u)− bi |22 (8)

arg min
w λ|w|pp + μ2|w − Dh(u)− ci |22 (9)

arg min
u μ1|z − u0 + u − ai |22 + μ2|v − DV (u)− bi |22
+ μ2|w − Dh(u)− ci |22 (10)

arg min
u |I − u|22 + λ|u|pp (11)

where I denotes the original signal and u is the estimated signal.

In case of Equation (11), the equation can be differentiated as
a differentiable convex optimization w.r.t x such that

u(μ1 A + μ2 DT
V DV + μ2 DT

h Dh) = μ1(u0 − z + ai )

+ μ2(DT
V (v − bi)+ DT

h (w − ci )) (12)

As we can see, the estimated signal u that annotates the
reconstructed image appears in Equation (12) which gives an
indication of direct step involvement.

5. EVALUATION AND DISCUSSIONS

In this section, we demonstrate parallel processing by means
of a graphics processing unit versus sequential processing
using central processing unit. The evaluation is steered on a
different operation that is used in edge detection, such as image
convolution thresholding and other related processes. Results
show that the GPU is superior in terms of low execution time and
extreme speedup. Moreover, an optimized MATLAB technique
called “vectorization” is used against the loop-based and GPU
Single Instruction Multiple Thread (SIMT) where the latter
outperforms all in terms of speed and the simplicity of code

5.1 Experimental Setup and Machine
Configuration

Experiments are done using the scientific software MATLAB
that is used for technical computing and simulation. The ease
of writing code and the massive libraries available in the
software for various kinds of computations are reasons for using
this software as a proof of concept of the work. MATLAB
provides libraries of parallel functions where they are using GPU
integrated with CUDA platform to accomplish a task. CUDA C
is provides us the control for memory allocation and selection
of blocks-threads combination, while MATLAB does not. All
experiments are tested under machine configuration for CPU and
GPU as shown in Table 1 and Table 2.

5.2 Image Dataset

Experimental results and evaluation are gained by applying
different sets of algorithms including the proposed algorithm on
image restoration and edge detection on a set of subjects. There
are two categories of image subjects used in experimental results;
the first category is the general type of image, such as Lena
and Cameraman, obtained from the Gonzalez image database
[40]. Peppers and fishing boat are obtained from the USC-SIPI
image database [41]. Figure 12 shows the first category of image
dataset.

5.3 Time Execution for Edge Detection

Time execution is a definite issue in many applications including
digital image processing. In this section, a study on edge
detection on CPU and GPU is done to show the power of GPUs
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Table 1 Machine configuration for the CPU used for serial execution.

Processor Type CPU

Generation / Speed Intel core i7 / 2.3 GHz
Memory DDR3 / GDDR5

Table 2 Machine configuration for the GPU used for parallel implementation.

Processor Type GPU

Generation NVIDIA GeForce GT 750M
MaxThreadsPerBlock 1024
Compute Capability 3.0
MaxSharedMemPerBlock 49152
Memory DDR3 16 GB / 1600MHz
Driver Version 7.5
Toolkit Version 6.5

(a) (b) 

 
   (c) (d) 

Figure 12 Images dataset used for evaluation (a) Lena, (b) Peppers, (c) Cameraman, (d) Fishing boat.

over CPUs for well-known computational problems such as the
convolution process and many similar scientific problems. The
performance evaluation is tested under Nsight IDE profile for
time execution analysis. An alternative way to compute the time
execution for a certain kernel in CUDA platform is to use events
in CUDA RUNTIME APIs as shown in Figure 13.

The sequential execution of edge detection implementation
is done using MATLAB software. In contrast, a Hyper-
Threading (HT) implementation is conducted in the work using

the latter software. HT offers optimized methodology through
vectorization and usage of all available cores in the machine
(other than GPU cores) to execute the program.

The execution time is computed in MATLAB using tic and toc
built-in functions. Results are compared with the profiler tool
for consistency and reliability where both methods show almost
the exact result. Table 3 shows a study on convolution process
and how organizing threads per blocks affect the performance of
execution in two different approaches.

32 computer systems science & engineering



ABED ET AL

Figure 13 An alternative solution to compute the execution time for a CUDA kernel.
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Figure 14 Execution time for shared and native memory applied on 5122. Image using GPU.

Table 3 Different image sizes are tested on various block sizes in kernel configuration on a 2-D grid.

Lena Sample Time execution (ms)
Convolution 3 x 3 GPU

Image Size Threads/Block Native (Global Mem) Shared Memory

128× 128
8 0.285 0.310

16 0.344 0.241
32 0.531 0.108

256× 256
8 1.24 1.18

16 1.13 0.882
32 2.056 1.103

512× 512
8 4.30 4.75

16 4.7 3.44
32 8.104 4.5

As observed in Table 3, increasing the number of threads per
blocks is not always cooperative. Clearly, GPU implementation
using shared memory approach outperforms the native approach
by nearly 45–50% speedup latency on increasing threads per
blocks. Speedup can be obtained as introduced in Equation (13)

Speeduplatency = ExecutionT imeold

ExectutionT imennew
(13)

Time execution (ms) for various threads for GPU native
(global memory) and shared memory is given in Figure 13. It
shows that the shared memory takes less execution time.

In Table 4, an edge detection process is evaluated using four
approaches on CPU and GPU. In the GPU implementation, we
compare the best configuration obtained from Table 4 in both
approaches, global memory and shared memory, against native
(single core) and HT implementation. Results show that the
fastest execution time is primary for the shared memory and
the native GPU implementation is secondary. The speedup of
edge detection on GPU over naïve implementation on CPU is 37
times using the shared memory approach and 1.5 times over HT
implementation.

6. CONCLUSIONS AND FUTURE WORK

Edge detection is a widely-used technique in digital image
processing for various scientific applications to detect features
that characterize an image. Image processing techniques are
pleasingly parallel problems that can be executed in parallel as
shown in section 4 algorithms. Thus, parallel implementations
are used to harness the power of a GPU platform as a general-
purpose computing platform. In our proposed method, our
evaluation execution is done after unrolling sequential loops on
the parallel platform against the sequential implementation. We
evaluated our proposed solution under two approaches of GPU
implementation, the naïve approach, where data is processed
directly in global memory, and shared memory, where data
is processed locally per block. The proposed edge detection
method under GPU using global memory direct access is up to
25 times faster than the native CPU implementation, while in
using the shared memory approach, the speed gained is up to
37 times faster, outperforming all earlier implementations. As a
part of future work, we plan to use larger dataset of images and
perform further evaluation.
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Table 4 Edge detection time execution is shown against different approaches and software implementations.

Edge Detection Phase
Time execution

GPU CPU
Image Size Native (Global Mem) Shared Memory Native MATLAB (Hyperthreading)

128× 128 1.4 0.992 94.348 2.2
256× 256 5.53 3.42 333.441 6.35
512× 512 22.26 15.059 558.67 25.234
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APPENDIX A

(a b)

(c)

) )

Figure A1 Three different implementations of add operation of three 2-D arrays of images using (a) CUDA, (b) loop-based version, (c) MATLAB vectorization.
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Figure A2 The maximum of two 2-D arrays is an array where individual maximum per element array is calculated at the same location for both arrays.

Figure A3 Max function implemented using CUDA C.

(a) (b) 

Figure A4 Two different implementations of finding the magnitude operation of two 2-D arrays of images using (a) CUDA, (b) MATLAB implementation.
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Figure A5 An implementation of naïve convolution on GPU by accessing global memory directly.

Figure A6 A convolution process with a shared memory as a processing data set rather than using global memory directly.
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