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The genetic algorithm (GA) is a metaheuristic method which simulates the life cycle and the survival of the fittest in the nature for solving optimization
problems. This study aimed to develop enhanced operation by modifying the current GA. This development process includes an adaptation method that
contains certain developments and adds a new process to the classic algorithm. Individuals of a population will be trialed to adapt to the current solution of
the problem by taking them separately for each generation. With this adaptation method, it is more likely to get better results in a shorter time. Experimental
results show that this new process accelerated the algorithm and a certain solution has been reached in fewer generations. In addition, better solutions were
achieved, especially for a certain number of generations.
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1. INTRODUCTION

The genetic algorithm (GA) is an optimization and searching
method, that belongs to an extended class of algorithms that
are inspired by the natural selection process and are similar to
the evolutionary phase [1]. GA is widely used to produce high
quality genes for searching and optimization problems based
on biological facts such as selection, crossover and mutation.
In the GA, candidate individuals are expected to evolve the
existing population to better genes for optimization problems
[2]. Each candidate must have a number of features that can
be mutated and modified. Evolutionary stage begins with a
population that is generated randomly, then the fitness value
of every single individual is calculated and continued as a new
generation in each iteration [3]. Individuals with greater fitness
values are chosen from the current population and the genes of
individuals arealtered to a new form [4]. The generation that
created currently is used in the next phases of the algorithm
[5–7].

Once the fitness function has been identified, a gene
population begins to be generated through repeated application
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of selection, evolution, crossover, and mutation stages [8, 9].
The population size entirely depends on the situation and
the parameters. The first population is usually produced
indiscriminately and all possible gene variations are allowed
in this scenario [10]. In each generation, a part of the current
population is chosen to produce the next generation. Genes are
lined up from low to high as for that their fitness values,and genes
that are marked with higher fitness values are most likely to be
combed out depending on the parameters. Fitness functions that
evaluate the suitability of each gene are responsible for selecting
the best genes [4, 11].

Depending on the problem formula, the function is defined for
the simulated gene while also measuring the quality of the gene
[6, 12]. Next, new generation populations are produced from
the genes that were selected by the sequential combination of
crossover and mutation [7]. While reaching reasonable results
for the problem being studied, it is very important to set the
parameters of mutation, crossover factor and population size
[11]. A pair of parents are selected from the population for new
genes to be produced [13]. The crossover method generates a
child gene that shares most of the qualifications of the parents
[4]. New parents are chosen in order to create new offspring and
the process sustains until a new solution size is found [14–16].
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As a result of these processes, new generation chromosomes
are formed which are completely different from the first gener-
ation [17, 18]. It is expected that the average value of the fitness
value of the population will increase by these processes because
the genes with the best fitness values and other genes with slightly
less fitness value are selected for the crossover process [19]. The
main reason to keep these genes with less fitness value is to
increase the genetic diversity in both the genetic pool and future
generations [20, 21]. New offspring and some randomly selected
genes are subjected to low-probability mutations. This allows
some bits to be changed in their bit string [17, 18, 22]. The
mutation process is often used to retain variety in the population
and prevent early convergence [23–25]. The algorithm ends
when either the maximum population is generated or the aimed
fitness value of the population is reached [26].

Attempts have been made for years ed to develop and expand
the GA by considering various factors to reach the desired
solution in a shorter and more efficient way. These may vary
depending on the purpose of the investigator; purposes such as;
optimization design [24,27, 28], convenience function and range
[29], selection method [30, 31], population type and size [32],
iteration number [33], crossing and mutation values [34], elite
individual coefficient, stop criteria [25, 35] and gene pool [36]
can be important factors.

In this study, a new adaptation process will be added between
the crossover and mutation process which are the two main
genetic stages of the GA. In this stage, firstly the best individual
in the algorithm so far is determined as the donor individual. The
individual that has got the best fitness value among the population
(donor) is determined and cloned on the randomly determined
ones. Thus, the goal of the algorithm is to reach generations
much earlier and with much better individuals.

The rest of the article details and gives specific information
about the GA. In Chapter 2, selection, crossover, and mutation
processes are discussed in detail. In Chapter 3, detailed
information about the process and the placement of the
adaptation phase is given. In Chapter 4, the experimental results
that were obtained with the selected test functions and comments
on these results are given. Finally, Chapter 5 contains the
conclusions of the article.

2. BACKGROUND

In this section, the basic elements of the GA which are the
repetitive main stages of the traditional genetic algorithm (TGA)
such as selection, crossover and mutation are given [37]. After
examining these phases, details about the proposed adaptation
phase to be added to the algorithm will be given.

The GA is a method based on artificial intelligence, survival
of the fittest and evolutionary biology theory that used to find
optimized solutions for problems and to make extensive searches
among large data sets [6, 38–40].

2.1 Encoding and Initial Population

Encoding genes has great importance, when it is started to solve
problems using GA. Encoding depends on the problem, and it
is necessary to choose an encoding technique suitable for the

problem. In this chapter, the types of encoding techniques will
be introduced.

Binary encoding is one of the most popular techniques
since the very first studies about GA were used with this
encoding. In binary encoding, a gene has a combination of
a string of bits, 0 or 1. The binary encoding technique gives
genes many combinations. From another point of view, this
encoding technique is away being natural for many problems,
and therefore, there should be some enlistments that need to be
done after mutation and crossover phases [41].

Second, permutation encoding, which can be used kind of
problems that include the traveling salesman problem or the
task ordering problem. In this method, every chromosome is
a combination of numbers. Permutation encoding has benefits
if problem is an ordering one. This technique has mutation
and crossover corrections like the other techniques with the
difference of leaving the chromosome consistent [7].

Next, direct value encoding which can be used with real value
numbers. Using this technique brings some difficulties to the
algorithm. In this type of encoding, every has a combination of
a string that can be almost everything according to the problem
[42]. Value encoding is very effective for certain problems, and
this encoding is often essential to develop a new mutation and
crossover algorithm in order to make whole algorithm work
correctly [6].

Tree encoding is mainly used for progressing a program. In
this technique\ every gene is a combination of a tree scheme of
articles. Tree encoding is useful for progressing or developing
programs like LISP [33].

In the TGA, a population containing as many individuals
as the determined size is created. Population individuals
contain completely random values in the initial population size.
The number of genes of the current parameter size is created
according to the feature of the problem. The fitness values can
be calculated according to random values assigned to genes and
determined fitness function [6, 26].

2.2 Selection

In principle, an individual population randomly selected from
the search field offers candidate solutions to the problem. Then,
these individuals will be crossed-over and mutated into new
offspring. The new population is finally created by a procedure
between parents and offspring. This process replicates until a
aimed circumstanced is reached [43]

In Roulette Wheel Selection, the fitness function value is
proportional to the probability of selection. In Rank Selection,
the order of their fitness value degree is proportional to the
probability of selection. [44]. In the Tournament Selection
Method, a certain number of individuals are indiscriminately
picked and entered into the tournament according to their fitness
values. For example, two individuals would be indiscriminately
elected from the population as the 4th and 2nd individuals. One
of these individuals will be selected when they are entered into
the tournament among themselves: such as the 2nd individual
[45].

Those selection methods have different properties. For
example, the roulette wheel selection method will reduce the
diversity of the gene pool according to other selection features.
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Because individuals have the possibility of being directly
selected according to their suitability, the number of the best
individuals in the population will be higher. This event increases
the risk of tripping to the best local gene [45].

2.3 Crossover

Crossover, a method for recombination in GAs, is a genetic
phase that is used to produce and integrate the genetic
combination of two parents into new two offsprings. It is aa
efficient way of producing a new offspring from a stochastically
available population and resembles the gateway that occurs
during duplicating in biology [44]. Various algorithms in the
evolutionary calculation can involve various data to warehouse
genetic combinations, and each gene can be reassembled with
different attendant that belongs to crossover phase [46].

The crossover method is usually used to spawn two offspring’s
chromosomes from two selected chromosomes. In this operator,
the algorithm first selects the first two parental individuals and
then, by subjecting these two individuals to the determined
crossover process, creates two children according to the specific
gene variation. New individuals will continue to be created
according to the number of parents and populations which were
determined earlier [47].

One of the most popular methods for crossover is single-point
crossover. A random point, which is called the ’crossover point’,
is determined on the chromosomes of both parents. This occurs
in two offspring transporting the same gen combination from
both parents [23].

Another set of popular ways to constrain a crossover operation
are the two-point and k-point crossover methods. In two-point
crossover, two different points are indiscriminately chosen from
the main gene combination. Bits that remain between these
two points are switched between the main chromosomes. This
operation is almost the same as implementing two single-point
crossovers with particular combination of crossover points. This
method collects the k-point crossover that can be generalized to
the k crossover points [23].

There is also the uniform crossover method. In uniform
crossover, one bit from each genome is selected independently
from two parents. The uniform crossover replaces the individual
bits, not the whole sequence [48]. This means that there are
no hesitations for the two bits which are close to each other in
the sequence to be taken together [23]. Frequently, each bit
is selected from an equal probability parent. Sometimes other
proportions are used that cause offspring to get more inheritance
from one than another parent.

2.4 Mutation

The main object of this operation is to provide gene diversity for
present and future generations. Mutation changes gene values
from the beginning phase of a chromosome. In the mutation, the
gene combination of individuals may be completely different
from the previous combination. Therefore, GA can achieve
a better solution using this operator. It has the exact same
coefficient as the crossover method. If that coefficient is set

to a very high value, the results are expected to convert to a
completely different random search [44, 49].

The mutation rate is used to hold whether to change the value
of one or more genes of an individual. The algorithm will
produce a indiscriminate value in the [0,1] range, which will be
compared to this predetermined mutation rate. In cases where
the generated random value is greater than the mutation rate, no
changes will be made to that gene of the individual. In cases
where the mutation rate is greater than or equal to the random
number, a new value will be assigned according to the current
gene variation [44, 49].

First, as one of the most common mutation methods, Flip
Mutation is predicated on an engendered mutation chromosome,
flipping scarcely involves transmuting 0 to1 and 1 to 0. The
mutation phase then occurs optionally by taking pair of parents
into consideration [26]. This method is jointly taken place
with binary encoding. Moreover, other mutation methods,
such as Insert Mutation, Scramble Mutation, Swap Mutation,
Interchanging Mutation, and Uniform Mutation can be given
[50].

2.5 Termination

The selection, crossover and mutation procedures are executed
in the loop. A termination criterion is required in order not
to continue the process forever. Some of the basic termination
criteria are the Maximum generation, the Optimization Target
and the convergence of the population [51].

The maximum generation method is the limit on the generation
number. In this method, the number of a generation is determined
and the algorithm is stopped when aimed generation number is
attained.

When target value of the objective function is reached, the
algorithm is stopped. In the convergence method, improvement
in the values of the new generation may indicate that no further
improvement is expected. This means the termination of the
algorithm.

3. PROPOSED ADAPTATION PROCESS

The GA combines two different approaches when looking for
the optimum solution to a problem. The first is crossover, which
enables the local optimum to be found faster during the search.
New individuals are introduced with the help of a mixture of
existing solutions. Another approach is mutation, which adds
diversity to existing solutions. In this way, the algorithm is saved
at a local minimum or maximum.

The GA attempts to create a model of the natural evolutionary
process. Crossover assumes that an individual belongs to the
new generation. Unusual changes that occur at the end of a
generation are shown by mutation. These changes are called
genotype changes. Survivors of mutated individuals increase
diversity. However, there are also Phenotype modifications due
to environmental impact on individuals. This change is a direct
adaptation of the individual to the environment. These changes
are not transferred to new generations. However, it provides
the formation of more harmonious individuals. The likelihood

vol 35 no 1 January 2020 15



DEVELOPING AN ADAPTATION PROCESS FOR REAL-CODED GENETIC ALGORITHMS

Figure 1 Simplified flow chart of proposed Genetic Algorithm with Adaptation.

of survival of these individuals also increases. Environmental
conditions make physiological or morphological changes within
a shorter period than the life of the individual [52]. For
example, there are several studies on the effects of environmental
conditions on size changes in the organ systems of adult
organisms [53, 54].

The conclusion from this point is that individuals within
the population are crossover and mutated. In addition to
these processes, individuals adapt to their environment. This
phenomenon can be considered as an adaptation of the individual
to the environment. In other words, crossover and mutation are
indispensable processes of GA, but they are insufficient to reflect
the natural process. The purpose of this study is to eliminate this
deficiency. Our main goal is to design the adaptation process to
secure that the genetic process in nature is transformed into an
optimization algorithm.

The essence of adaptation is that the individual becomes more
adaptable to the environment. However, in the case of GA
processes, this is measured and evaluated by the conformity
function. Thus, if a gene is more compatible with environmental
conditions, it can be listed as what should be done. The best
individual of the previous and current populations is whichever
is the most compatible with the environment. The individual to
be adapted must naturally be similar to this best person. In the
continuation of the text, this will be called the best individual
donor.

The proposed adaptation process locates between crossover
and mutation processes and is shown in Fig. 1. In here, it is
given a simple flow chart of the GA that is added the adaptation
process.

As in the mutation process, the adaptation process is also
based on the gene. The first thing to do is to determine which
genes should be adapted. Generally, this is a standard process

independent of the encoding method. As with mutation and
crossover operations, an operator has been proposed for the
adaptation process. This parameter, called the adaptation rate, is
a real number ranging from 0 to 1. The decision is made based
on whether or not to adapt the genes. An indiscriminate number
will be created and if the number is smaller than the adaptation
rate, that gene will be modified.

The second is how to change a gene to adapt. This is described
in detail below through the adaptation process designed for
different encoding methods.

3.1 Classical Adaptation

In Direct Value Encoding, the genes are integers or real numbers.
The value of the gene to be adapted is assigned the value of
the same gene of the donor. This method is called classical
adaptation.

3.2 K-Individual Adaptation

In the K-individual Adaptation method, the adaptive gene will be
updated using some individuals. These individuals are the best
individuals in the whole algorithm. In Direct Value Encoding,
since the genes are integers or real numbers, the average of these
values creates the value to be used in the update.

4. EXPERIMENTS AND RESULTS

In this section, the effect of the proposed adaptation process on
GA was tested using five different benchmark functions. Four
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Table 1 Parameters of GA.

Parameter TGA GA with Adaptation

Encoding Value Value
Population size 50 50
Selection Tournament Tournament
Crossover rate 0.8 0.8
Adaptation rate None 0.1
Mutation rate 0.1 0.1
Max Generation 400 400

Table 2 Generation number results of optimal solutions for test function.

Test Function
TGA GA with Adaptation

Mean STD Mean STD

Ackley 179.7 93.69 57.6 43.21
Eggholder 352.1 24.42 252 74.27
Holder Table 203.1 98.38 139.3 104.56
Rastrigin 240.2 113.32 80.4 33.26
Bohachevsky 234.9 124.43 92.5 81.76

Table 3 Runtime results of optimal solution (seconds) for test functions.

Test Function
TGA GA with Adaptation

Mean STD Mean STD

Ackley 0.0628 0.0069 0.0519 0.0064
Eggholder 0.0762 0.0104 0.0694 0.0057
Holder Table 0.0612 0.0069 0.0588 0.0103
Rastrigin 0.0666 0.0209 0.0537 0.0129
Bohachevsky 0.0715 0.0266 0.0523 0.0083

Table 4 Results of test functions for 300 generations of GA.

Test Function
TGA GA with Adaptation

Mean STD Mean STD

Ackley 1.88E-2 2.6E-2 1.14E-3 2.8E-3
Eggholder −940.69 0.44 −959.46 0.12
Holder Table −18.57 0.34 −19.21 0.03
Rastrigin 6.91E-4 1.2E-3 2.19E-7 6.9E-7
Bohachevsky 5.63E-3 1.1E-2 1.82E-5 3.9E-5

of these functions were multimodal (Ackley, Eggholder, Hold-
ertable, Rastrigin) and the last was the unimodal (Bohachevsky)
test function. In the test functions, the dimension was selected
as 3.

To verify the productivity of the proposed adaptation process,
TGA and the GA that includes the proposed adaptation process
were run with the same parameters. The selected population size
was 50 for both algorithms. The method used for the adaptation
process was classical adaptation. The algorithms were run until
the test functions reached the optimal solution. The statistical
results of each test function were determined by 30 independent
runs. The parameter list used for GA is shown in Table 1.

The hardware used for the application was an Intel (R)
Core (TM) i5-6500 CPU 3.20 GHz and the software used was
NetBeans IDE 8.2.

As shown in Table 2, the proposed adaptation process
accelerated the algorithm significantly while the number of
generations needed for achieving the optimum solution has
decreased considerably. This applies to both the multimodal

test functions and the unimodal test function and reveals the
necessity of the adaptation process.

It is obvious that the adaptation process brings additional
complexity to GA. It draws attention to the impact of the
proposed process on the GA runtime. In Table 3, the effect of
the method in terms of working time was examined. This table
presents the CPU time in seconds for each benchmark function.
Although adding complexity, the working time decreases due
to the decreasing generation number needed for reaching the
optimum solution.

The performance of methods with constant generation number
is compared in Table 4. As it is understood from this point of
view, the adaptation process decreases the result values of the
test functions and this means that the success is increased.

The main purpose of this section is to compare the proposed
method with other GA studies in the literature. Previous studies
are commonly based on the development and improvement of the
traditional GA method. In addition, each study has its own set of
parameters. In order to get a proper comparison, the parameters
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Table 5 Comparison of proposed method with other GA based methods.

Methods Dimension Population size Max Generation Mean STD

QGA-MPC[55] 10 100 500 27.378 2.068
GA with Adaptation 10 100 500 1.46E-2 2.39E-2
QGA-MPC[55] 30 100 1500 232.408 10.54
GA with Adaptation 30 100 1500 1.56E-5 8.09E-5
QGA-MPC[55] 50 100 2500 517.172 13.224
GA with Adaptation 50 100 2500 1.08E-5 4.91E-6
MLEO-C[56] 30 200 1000 1.98E-2 4.73E-2
GA with Adaptation 30 200 1000 4.85E-7 1.36E-6
FMD-U&N[57] 25 400 250 2.6 -
GA with Adaptation 25 400 250 6.3E-3 6.9E-3

must be the same. Thus, the parameter that is used in the previous
studies were also used for the method that we proposed. The
comparison which has been made by considering this necessity
is given in Table 5.

The selected test function for comparison is the Rastrigin
function. Mean and standard deviation values are given by
considering the results of 30 independent operations for each
value.

As can be clearly seen from Table 5, the proposed method is
more successful than other GA-based methods when the same
set of parameters are considered.

5. CONCLUSION

In this study, a new additional process has been proposed for
GA. With this process, called adaptation, the aim is to adapt the
individuals in the population to the best solution of the algorithm
up to that step. In this way, natural selection, crossover, mutation
and adaptation are also included in the GA. As a result of
the evaluation with various test functions, the algorithm has
developed clearly. Experimental results showed that this new
process accelerated the algorithm and a certain solution was
reached in fewer generations. In addition, better solutions were
achieved especially for a fixed number of generations.

The global optimum was achieved with both fewer generations
and less time. This situation supports the idea that an
adaptation process is a natural and necessary part of evolutionary
algorithms. In the literature, more efficient optimization
models generally use hybrid structures. It is thought that the
adaptation process we proposed could increase the success of all
hybrid systems including GA. In addition, other evolutionary
algorithms (differential evolution, etc.) can be developed
through an adaptation process.

Genetic processes, such as crossover, mutation, and other cod-
ing methods can show differences in their methods. Although
the adaptation process is proposed only for value coding, an
adaptation process will also be developed for other coding
methods such as binary and permutation coding.
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