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The cloud computing paradigm facilitates a finite pool of on-demand virtualized resources on a pay-per-use basis. For large-scale heterogeneous distributed
systems like a cloud, scheduling is an essential component of resource management at the application layer as well as at the virtualization layer in order to
deliver the optimal Quality of Services (QoS). The cloud scheduling, in general, is an NP-hard problem due to large solution space, thus, it is difficult to
find an optimal solution within a reasonable time. In application layer scheduling, the tasks are mapped to logical resources (i.e., virtual machines), aiming
to optimize one or more QoS parameters, and conforming to several constraints. Various algorithms have been proposed in the literature for application
layer scheduling, where each of them is based on some fundamental design techniques like simple heuristics, meta-heuristics, and most recently hybrid
heuristics. Although ample literature survey exists for cloud scheduling algorithms, none of them present their study exclusively for the application layer. In
this survey paper, we present a study on task scheduling algorithms used only at the application layer of the cloud. We classify our study according to various
fundamental techniques used in designing such scheduling algorithms. One of the main features of our study is that it covers numerous application type
e.g., a set of independent tasks, simple workflow, scientific workflow, and MapReduce jobs. We also provide a comparative analysis of existing algorithms
on various parameters like makespan, cost, resource utilization, etc. In the end, research directions for future work have been provided
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1. INTRODUCTION

The cloud computing technology provides a virtualized pool of
on-demand resources and is based on a pay-per-use model [1]
[2]. The concept has been perceived as a realization of utility
computing where computing facilities are provided over the
network similar to other utility services like water, electricity,
telephone, etc. With an increase in on-demand resource
allocation and utility-based pricing, cloud service providers can
truly maximize the utilization of resources and thus minimize
operating costs [3]. Also, cloud computing technology plays
a major role in the success of various business enterprises as it
eliminates the essential requirements to plan before provisioning
resources. Hence, any business enterprise may start with a small
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virtual setup and scale the computing resources as per demand
[4]. Based on location, accessibility, and administration, a cloud
may be classified as public, private, hybrid or cloud federation
[5] [6]. On the basis of provided services, a cloud computing
architecture has three layers, namely, Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS) [7] [8] [9]. Further, with the advancement in cloud
computing technology, various other computing services like
storage, network infrastructure, security, and data analytics have
emerged and classified under Anything as a Service (XaaS) [10].

A cloud comprises hardware resources like servers, switches,
cooling and power infrastructure, etc., and software resources
like user applications, virtual machine monitors (VMMs),
operating system (OS) and cloud software [1][2]. The resources
are organized in different layers for simple management and in
order to deliver services to the users efficiently. Fig. 1 shows the
layered architecture of the cloud [3]. The resource management
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Figure 1 Layered architecture of cloud.

in cloud computing paradigm focuses on the organization and
usages of these resources to optimize energy consumption, cost,
execution time and other quality of service (QoS) parameters.
It further includes the efficient establishment of networking
infrastructure for better communication among servers within
data centers, and management of efficient power and cooling
infrastructure, etc. On the other hand, scheduling is just a tool
of resource management at the application and virtualization
layer of cloud. As the problem of scheduling is generally taken
into consideration at two layers of the cloud service stack, the
cloud scheduling problem can be classified into scheduling at
the application layer1 and scheduling at virtualization layer2

[3] as illustrated in Fig. 1. The scheduling at application layer
allocates various independent tasks, user applications, workflow
tasks, etc. to virtual machines. Whereas, at the virtualization
layer, scheduling focuses on the process of mapping virtual
machines on physical machines (i.e.,servers)usually considering
parameters such as energy conservation,resource utilization, and
optimal load balance. In this work, we study only application
layer scheduling algorithms. In the view of the above discussion,
the term resource management refers to the overall management
all resources available in a data center to optimize the QoS
parameters whereas, at application and virtualization layer, it is
handled by scheduling in order to assign shared resources from
the lower layer to upper layer tasks.

Traditional scheduling schemes that are used in multipro-
cessor, cluster and Grid environment fails to work in cloud
computing systems due to its specific characteristics like
virtualization, elasticity, and pay-per-use model. Therefore,
to overcome such limitations, various heuristic, meta-heuristic
and hybrid-heuristic techniques have been adopted to design
scheduling algorithms at the application layer. The heuristic
techniques are problem-dependent, thus, cannot be applicable
to every problem. On the other hand, the meta-heuristics
techniques are problem-independent and can be applied to a wide
variety of situations. The hybrid-heuristic technique merges the
previous two to take advantage in terms of improved efficiency
of an individual scheme. The task scheduling algorithms studied

1Scheduling at application layer is usually termed as task scheduling
2Scheduling at virtualization layer is generally termed as VM scheduling or

resource provisioning

in the paper have been classified on the basis of above-mentioned
fundamental techniques.

An adequate number of literature survey works [4], [5], [14],
[15], [6]–[13] have attempted to study various cloud scheduling
algorithms at multiple layers. Some of them discussed the cloud
schedulers which are designed only for a specific QoS objective.
Whereas, some of them studied the cloud scheduler designed
specifically for a particular application. Authors in [5]–[7],
[11] present a comprehensive study of energy-efficient cloud
schedulers at application and virtualization layer. Authors in
[10][9] discussed only workflow schedulers at various layers.
Although the existing surveys are comprehensive, none of them
focused exclusively at the application layer for scheduling of
different categories of applications. In this survey paper, we
include different kind of applications e.g., a set of independent
tasks, a simple workflow, scientific workflow, MapReduce jobs,
etc. and studied various cloud scheduler proposed for them. We
classify our study on the basis of the fundamental technique used
to design such schedulers.

The rest of the paper is organized as follows. Section 2
introduces the generic and cloud-based scheduling problem.
Section 3 describes the application layer cloud scheduling in
detail with various QoS requirements and characteristics of
scheduling algorithms. Section 4 presents the study of the
different cloud scheduling algorithms at the application layer
classified according to the fundamental technique used to design
it. The open challenges and current research trends have been
presented in section 5, followed by the conclusion in section 6.

2. THE SCHEDULING PROBLEM:
GENERIC AND CLOUD-BASED

The scheduling problem in computer science has evolved from
single processor to multiprocessor, and then to large-scale
multi-computer systems e.g., Grid, Cluster, and Cloud [16].
The cloud scheduling problem is similar to, multi-processor
scheduling problem where one has to find an optimal solution
for scheduling a given set of tasks T = {t1, t2, . . . . . . tn} to a
given set of machines M = {m1, m2 . . . . . . mm} with one or
more performance objectives to be optimized subject to some
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Figure 2 Task scheduling in cloud.

predefined set of constraints and measurements. In simple
words,nnumber of tasks (T ) is to be mapped (assigned) to m
number of resources (R). The criteria like makespan, energy
efficiency, tardiness, flow time, etc. are widely used to measure
the performance of scheduling algorithms.

Similar to traditional parallel scheduling, cloud scheduling
problem at the application layer is to focus on finding an
“optimal” mapping C:T×VM→F which will assign n tasks
T = {t1, t2, . . . , tn} on to m available virtual machines V M =
{vm1, vm2, . . . , vmm} such that the fitness of objective functions
F = { f1, f2, . . . , fz} is either maximized or minimized
collectively in weighting or individually with various constraints
such as deadline, budget, etc. [4]. In case of scheduling
problem at the virtualization layer, set T represents virtual
machines to be scheduled and set V M represents physical
machines. It is noted that cloud scheduling problem is an
NP-hard. Fig. 2 illustrates the schematic view of task
scheduling in the cloud where more than one task may have to
share the same virtual machine. The cloud-specific scheduling
objectives (objective functions)include makespan, cost, energy
conservation, load balancing, resource utilization, security, fault
tolerance, scalability, etc.

The scheduling problem usually transformed into some
mathematical formulations e.g., linear programming (LP),
integer linear programming (ILP), quadratic programming (QP),
quadratic constraint programming (QCP), etc. Among these
formulations, the most common is ILP problems [17] which are
optimization problems where one has to find the best solution
from many feasible solutions. The standard form of an ILP
problem is as follows [17]:

min cT x
Subject to Ax ≥ b

and, x ≥ 0

where x represents the vector of n unknown decision variables
whose value is to be determined, c(c1, c1, . . . cn) is a known
vector of coefficients of respective variable, b(b1, b2, . . . bm)

is a vector of right-hand side(RHS) values of m inequalities,
and A(m × nn is a two-dimensional known matrix of coef-
ficients. The expression cT x which is to be minimized is
called the objective function. Depending upon the variable
being optimized, the optimization problems can be divided
into two categories, namely, continuous optimization and
combinatorial optimization problems [17] where former can
have real values for variable x and the later can have only integer
values.

Cloud scheduling problem also leads to an ILP problem which
is proved to be an NP-hard optimization problem [18][19]. For
instance, in [20] scheduling problem of mapping dependent task
to VMs has been formulated for the solution (s) as follows:

minimize Cmax(s)+
∑n

i=1
∑m

j=1 Cij

subjectto Cmax(s) ≤ U(s)
C(s) ≤ B(s)

where n and m are the numbers of tasks and machines
respectively, U(s), B(s) and C(s) are the number of overdue
tasks, restriction on the budget for the tasks of schedule s, and
total cost of s respectively. And, Cij and Cmax (s) represents
the cost of processing the i th task on the j th machine and the
completion time of the last job i.e., makespan respectively.

3. TASK SCHEDULING ALGORITHMS
AT APPLICATION LAYER:
CHARACTERISTICS AND
CLASSIFICATION

The resource management in the cloud at the application layer
as well as the virtualization layer is handled through scheduling.
The application layer scheduling involves two stakeholders,
namely, cloud service provider and consumer. The cloud service
provider provides the resources in the form of VMs on a rental
basis to consumers who submit (schedule) their tasks over those
VMs for processing. Both these stakeholders have their own
set of QoS requirements. The consumer is concerned with the
performance of various applications in terms of execution time,
deadline, cost (budget), fault tolerance, security etc., whereas
the service provider is more interested in efficient resource
utilization and energy efficiency in the data center. Thus, the
QoS requirements can be categorized into two groups, namely,
Consumer-desired and Provider-desired. Efficient application
scheduling helps to achieve a better quality of services for both
stakeholders. The quality requirements of both categories have
been shown in Figs. 3(a) and 3(b) as explained by Xhafa et al.
[21] for clouds and Grid environments.

It is noted that some of these QoS parameters need to be either
maximized or minimized. While transforming the scheduling
problem into the linear program, choosing the QoS objective as
a variable in a linear function or keeping it as a constraint depends
upon the requirements, assumptions and the environment.

Apart from the various QoS requirements which are targeted
or optimized by scheduling algorithms, there exist few other
essential characteristics identified in the literature [22] that can
be used to classify the algorithms in various categories which
are as follows:

• Static/Dynamic

The static scheduling is aware of the arrival time of tasks
which is very hard to predict, however, gives less overhead
at runtime. On the other hand, dynamic scheduling incurs
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Figure 3 (a): Consumer-desired quality requirements.
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Figure 3 (b): Provider-desired quality requirements.

runtime overhead as the task arrival information is unknown
at rum time. Nevertheless, dynamic scheduling better
adapts to the timing changes [23][24]. In other texts, static
and dynamic scheduling are also referred to as off line
and online scheduling respectively. Min-min and Max-min
algorithms are traditional examples of off line scheduling.

• Centralized/Distributed

The centralized scheduling is controlled by a master
processing unit for the collection of tasks and further sent
to other workers for processing. On the other hand, in
distributed scheduling, local schedulers manage the re-
quests of resources and maintain the job states. Centralized
scheduling is more efficient than distributed scheduling due
to no overhead for maintaining the coordination among
local schedulers, however, it suffers from single node
failure.

• Preemptive/Non-preemptive

The preemptive scheduling allows each task to be inter-
rupted during the run-time and hence, resources can be
released from the task. On the other hand, the resource
can be released only on the completion of tasks in non-
preemptive scheduling,

• Single/Multi-objective

The single objective scheduling algorithm optimizes only
one metric at a time whereas multiple metrics can
be optimized in multi-objective scheduling [25]. The
multi-objective optimization becomes more difficult when
conflicting criteria are optimized.

3.1 Application Type

Job or application characteristics greatly influence the design
principal of scheduling algorithms. The type of applications

scheduled over VMs may vary from simple independent tasks
to complex graph applications e.g., social network analysis.
The scheduling algorithms differ significantly on the basis of
the application being scheduled due to later’s essential intrinsic
properties. For example, a MapReduce (MR) job is a set of
several map and reduce tasks to be scheduled over the limited
map/reduce slots on various VMs along with a constraint of
completing all map tasks before reduce tasks start [26] This
special characteristic drives the different methodology of MR
scheduling algorithm over the cloud On the other hand, a
scientific workflow application is a set of tasks, dependent
on each other and needs to be executed according to that
dependency [20]. While designing a scheduling algorithm that
dependency should be taken into consideration. Such diverse
characteristics of applications pose a great challenge while
designing an efficient scheduling algorithm. We note that the
different categories of applications that are usually scheduled
over cloud include a set of independent tasks, simple or scientific
workflow, MapReduce application, and most recently Big Graph
application, etc

3.2 Fundamental Techniques Used in
Designing Cloud Schedulers

Traditional techniques used in single or multiprocessor scenario
takes exponential time in the cloud environment to find a feasible
solution. Hence, other advanced techniques that find a sub-
optimal or near-optimal solution in a given time frame are
used to design cloud scheduling algorithms. Various Cloud
schedulers available in the literature are essentially based on
some fundamental technique. For example, some of them are
based on particle swarm optimization (PSO) technique,whereas,
some are based on problem-specific heuristic methods. Different
fundamental approaches that are used in the context of cloud
scheduling are as follows:
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Figure 4 General steps in heuristic and meta-heuristic techniques.

Figure 5 Steps hybrid heuristic techniques.

• Traditional approach: Several traditional scheduling
techniques e.g., FIFO, greedy approach, EDD [27],
CPM[28], PERT [29], dynamic programming [30] and
branch-and-bound [31] etc. may be used in a cloud
environment. However, such techniques fail to work due
to a large solution space and unable to find the optimal
solution in polynomial time. These methods are generally
much easier to implement in comparison to metaheuristic
and hybrid scheduling algorithms as their design is based
on one or few particular rules to manage and arrange the
tasks.

• Heuristic approach: The heuristic techniques,on the other
hand, are problem-dependent and can be adapted so as
to consider the intricate and essential particularities of a
given problem. However, being too greedy, the heuristic
techniques usually get trapped in a local optimum and thus,
fail to obtain a globally optimal solution. Because heuristics
use “tactical guess” to find the possible solutions, there is
a better chance to find an optimal result as compared to
rule-based deterministic algorithms.

• Meta-heuristic approach: The meta-heuristics techniques
are problem-independent and do not take advantage of any
specificity of the problem. It is a special category of
heuristic techniques. Here, the technique may adapt to
temporary deterioration of the solution to explore better
results. Though meta-heuristic is problem-independent,
it is nonetheless necessary to fine-tune the intrinsic
parameters of a problem in order to achieve an optimal
solution.

• Hybridheuristic approach: The hybrid heuristic tech-
nique combines two or more heuristic or meta-heuristic
algorithms into a single heuristic. Recently a new kind
of hybrid heuristic technique has been developed known as
hyper-heuristic which considers the space of heuristic or

meta-heuristic techniques as a solution space. Indeed, the
hyper-heuristic can be thought of as “heuristics to search
for heuristics" or sometimes as "heuristics to generate
heuristics.”

The basic idea behind heuristic and meta-heuristic techniques
is to use three key operators namely, transition, evaluation,
and determination for searching large solution space on the
convergence process. Fig. 4 shows the generic flow in heuristic
and meta-heuristic techniques. Both these techniques operate
in an iterative fashion. In each iteration, first, the transition
operator creates the solution s by using the perturbative or
constructive or both methods [43]. Thereafter, the fitness of
solution s is measured by evaluation operator using a predefined
measurement. Finally, the determination operator determines
the next search directions based on the s from the transition and
the evaluation operator.

The basic idea of the hybrid-heuristic algorithm is shown in
Fig. 5, where two or more heuristics/meta-heuristics algorithms
are combined to exploit the complementary advantages to find
a better result. At each iteration, during the transition (T ),
evaluation (E), and determination (D) stage in the convergence
process, any one of the participating heuristic/meta-heuristic Hi

may be used.
In view of the above discussion, the scheduling algorithms

at the application layer in cloud computing can be classified
on the basis of (i) QoS objectives, (i i) Other essential
characteristics e.g., static/dynamic, preemptive/non-preemptive
etc., (i i i) type of application scheduled, and (iv) fundamental
technique used in designing. In this work, we classify all
discussed scheduling algorithms on the basis of various fun-
damental techniques like heuristic, meta-heuristic and hybrid-
heuristic used while designing the scheduling algorithms. A
detailed taxonomy of discussed algorithms has been shown in
Fig. 6.
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Figure 6 Taxonomy of various scheduling algorithms on the basis of fundamental technique used.

4. STUDY OF SCHEDULING
ALGORITHMS AT THE
APPLICATION LAYER

The scheduling at the application layer is important and must
be efficient for both cloud consumer and service provider. An
efficient scheduling technique helps in the optimal utilization of
the available cloud resources. The problem cloud scheduling is
complex and NP-hard due to which the traditional techniques
like min-min [32], max-min [32], FIFO, round-robin, etc. may
not achieve better performance. Therefore, such techniques
may be either combined with other existing efficient techniques
or improved as proposed by Kumar et al. [32] and Gang
Liu et al. [33]. In this section, we present the main study
of various cloud scheduling algorithms classified according to
taxonomy given in Fig. 6. We devote a separate section for
each fundamental technique. At the end of each section, we
provide two tables which summarize the various attributes of
the discussed algorithms.

4.1 The Heuristic Approach

The heuristic approach is problem-dependent unlike meta-
heuristic techniques and can be adapted in order to consider
the intricate and essential particularities of a given problem.
Singh et al. [34] proposed a score-based fault-tolerant workflow
scheduling heuristic with a deadline as a constraint. The
proposed scheme reduces the failure rate and execution time
with a cost that is manageable by the user. The capabilities of
resources have been represented by score values that are used for
the allocation of a workflow task to resources. In the scheme, the
list of the workflow tasks (DAGs) is initially submitted to get the
available virtual resources from the data center. Afterward, the
entire workflow is imposed by a user deadline. Thereafter, the
final score of VM’s is obtained from the components of minimum
sub-scores and then a VM with the lowest sub-score is picked
that satisfies the threshold of the task. Lastly, the task is assigned

to the selected VM to execute the given task within a deadline.
In case, the VM fails to meet the deadline, the selection of a new
VM with the next minimum score is carried out. The process
continues until all the tasks are mapped to the VMs.

Bitten court and Madeira [35] proposed a scheduling algo-
rithm HCOC (Hybrid Cloud Optimized Cost) for a hybrid cloud
environment to minimize the cost and makespan of a workflow
application. The algorithm decides about the resources that
should be leased from the public cloud and aggregated to the
private cloud. The motive here is to provide enough processing
power in order to execute a workflow within a given time period.
Firstly, the selected tasks are rescheduled and thereafter the
resources from a public cloud are taken along with consideration
of both price and performance of the resource. The multi-core
awareness facility and known cost of a resource can minimize
the overall makespan as desired by the user. Moreover, the
adaptability of the HCOC algorithm to handle cost instead of
a deadline makes it more flexible.

Verma and Kaushal [36] proposed a Deadline and Budget Dis-
tribution based Cost-Time Optimization (DBD-CTO) algorithm
which minimizes the cost and execution time while meeting the
user-defined deadline and budget constraints. They divide the
workflow tasks into two groups of tasks. The tasks with more
than one parent or child task are categorized as synchronization
tasks and rest are categorized as simple tasks. The partitioning
of workflow is done in a way so that a group of simple tasks is
executed sequentially between two synchronization tasks. The
workflow actually starts executing when the calculated values of
execution time and cost are less than the user-defined deadline
and budget. Thereafter, the overall deadline and budget are
distributed into every partition of tasks, proportional to their
minimum processing time and cost. Finally, all service lists are
arranged in decreasing order of their cost. A service is chosen
to execute tasks such that the processing cost and execution time
are lesser than the partition’s deadline and budget value.

Poola et al. [37] used spot and on-demand instance pricing
models while scheduling workflow tasks on VMs to reduce
the overall execution cost, thereby, meeting the user-defined
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deadline. The main advantage of the approach is to tolerate early
termination of spot instances and variations in the performance
of cloud resources. In the scheme, for every ready task, the
critical path is evaluated and slack time is computed, i.e., the time
difference between critical path time and deadline. Whenever
the slack time decreases due to performance variations or failures
in the system, a checkpointing and bidding strategy is applied to
reduce the cost and hence, meet the deadline.

Bessai et al. [38] proposed three workflow scheduling
schemes to optimize the execution time and total cost of
utilizing the resources. The first scheme uses several allocation
techniques to minimize the communication and execution cost
while calculating the completion time of each solution. On the
other hand, the second scheme aims to minimize communication
and execution time while calculating the computation cost of
each solution. The third scheme is based on the pare to
solution obtained by the first two solutions and is called the
cost-time based approach. Thus, in the third approach, only
non-dominated solutions are selected by using the cost and time-
based approaches.

Among all the research work that has been conducted to
achieve fault tolerance in distributed systems like Grid and
Cluster, scheduling plays a significant role [39]. However, very
few fault-tolerant scheduling schemes have been studied in cloud
computing taking virtualization and elasticity into consideration.
To address these issues, Wang et al. [40] extended the
primary-backup model and presented a fault-tolerant mechanism
FESTAL (Fault-tolerant Elastic Scheduling algorithms for real-
time TAsks in cLouds) to incorporate the cloud-specific features.
The elastic resource provisioning method is used for real-time
tasks to achieve both, high resource utilization and fault tolerance
in the cloud.TheFESTAL comprehensively addresses the issue
of reliability, elasticity, and schedulability of virtualized clouds.

The cloud infrastructure is also used for big data processing
using Hadoop MapReduce framework. Its performance is
heavily governed by its scheduler, which implicitly assumes that
tasks make progress linearly and the cluster is homogeneous i.e.,
all cluster nodes are similar in terms of computational power,
disk, and network I/O bandwidth. However, the performance
of Hadoop’s scheduler degrades severely in a heterogeneous
environment. The most common place where this heterogeneity
occurs is virtualized cloud computing infrastructure like Amazon
EC2, Google, etc.

In the context of Hadoop MapReduce, slow tasks (map or
reduce) due to faulty hardware or heavy load on that particular
node are called stragglers. To address the straggler detection
problem while scheduling the MapReduce application over the
cloud, Zaharia et al. [41] proposed a scheduling algorithm called
as Longest Approximate Time to End (LATE) that is highly
robust to heterogeneous computing system like a cloud. LATE
decides when to speculatively re-execute tasks that appear to
be stragglers to improve response time in a cloud environment.
It prioritizes speculative tasks (unlike native Hadoop scheduler
which considers all stragglers equally low), selects fast nodes
for execution, and binds the number of speculative tasks using a
threshold to prevent thrashing.

A simple heuristic has been proposed in LATE that work well
in practice. The algorithm first calculates the ProgressScore (PS)
of a task as shown in Eq. 1 (like Hadoop native scheduler) where
M is the number of key/value pairs that have been processed and

N is the number of key/value pairs that need to be processed in
total for map task. In the same manner, M’ is the number of
key/value pairs that have been processed and N’ is the number
of key/value pairs that have been processed in any particular
phase of reduce task. Further, it calculates the ProgressRate
of each task as ProgressScore/T, and then the new heuristic,
“time to completion” or Approximate Time to End (ATE) of
the task is estimated as (1-ProgressScore)/ProgressRate. The
heuristic serves to prioritize the stragglers i.e., tasks with high
“time to completion” values are speculatively re-executed first.
A different technique to estimate the completion time may also
be incorporated into LATE. Furthermore, LATE also improves
the performance of speculative execution in a homogeneous
environment.

PS =
{

M/N f or map task
1/3∗

(
K + M ′/N ′

)
f or reduce task

(1)

To improve the LATE algorithm, Chen et al. [42] and Xiaoyu
et al. [43] proposed Self-adaptive MapReduce Scheduling
Algorithm (SAMR) and Enhanced Self-Adaptive MapReduce
scheduling (ESAMR) respectively, with a better heuristic to
identify the stragglers. Yang et al. [44] further improved
the original speculative execution in Hadoop (called Hadoop
Speculative) and LATE scheduler in a heterogeneous cloud
environment by proposing a new scheduling scheme known
as Adaptive Task Allocation Scheduler (ATAS). It employs
an efficient and more accurate heuristic called TimeToEnd
for each task in order to trace stragglers. The motive of
this improved method is to increase the success ratio of
backup tasks that consequently increases the system’s ability
to respond in an efficient manner. The nodes are divided
into QuickNode and SlowNode. The QuickNodeis always
given priority while the allocation of backup tasks. The
authors performed three simulation experiments and concluded
that ATAS effectively enhances the performance of Hadoop
framework in a heterogeneous cloud computing environment.

Security in the cloud computing environment is one of
the most important issues as sensitive data may get leaked
to unauthorized persons. Secure scheduling prevents the
allocation of tasks and associated data to vulnerable machines.
Abazari et al. [45] proposed a heuristic algorithm for tasks
scheduling which is based on the task’s security requirements
and completion time. To quantify tasks security requirements,
the authors introduced task security sensitivity measurement.
Besides this, they also proposed a new attack response to tackle
some security threats.

Table 1 summarizes the various QoS metrics used during
the evaluation of individual algorithm discussed in this section.
In addition, Table 2 analyzes the discussed algorithms on
the basis of objectives, SLA adherence, strengths/weakness,
experimental/environments scale, and target application type,
etc.

4.2 The Meta-heuristic Approach

The meta-heuristic technique has the following two categories:

(i) simple e.g., simulated annealing
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Table 1 Analysis of metrics measured during the evaluation of heuristic algorithms.

Algorithm Quality metrics measured Comparison done with

Score based [34] Execution time, Cost, Failure rate Other non-score based algorithms
HCOC [35] Makespan, Cost Greedy approach
DBD-CTO [36] Execution time, Cost None
Poola et al. [37] Cost, Failure rate Baseline Algorithms [37]
Bessai et al. [38] Time, Cost None
FESTAL [40] Deadline, Resource utilization, Fault tolerance Elastic First Fit and two variants of FESTAL
LATE [41] Running time, Hadoop native
ATAS [44] Execution time, Average throughput, Latency LATE, Hadoop speculative
MOWS [45] Makespan, security risk, security threat HEFT, SAHEFT

(ii) nature-inspired e.g., particle swarm optimization (PSO),
ant colony optimization (ACO), genetic algorithm (GA),
etc.

The simulated annealing (SA) is a probabilistic procedure to
approximate the global optimum of a given objective function.
Precisely, it is a meta-heuristic to estimate global minimum
or maximum in a given large search space. The basic idea
of SA has been derived from the physical annealing process
in metallurgy. The technique involves heating and controlled
cooling of a material to increase the size of its crystals and reduce
the defects. The so-called physical annealing has three stages,
(i) Heating to enhance the thermal motion of particles, (i i)
Isothermal to exchange heat with the surrounding environment
and (i i i) Cooling to make the thermal motion of the particle
weaken and become more orderly. Inspired by SA, Xi Liu et
al. [46]proposed a task scheduling mechanism to overcome the
shortcomings of the local optimum search method. The method
uses a greedy approach to generate an initial value. In the heating
stage, the temperature is raised sufficiently and afterward, a
given set of rules is used to generate a new value. In case,
the new value is either better than the original value or possess
an acceptable probability;the new value is replaced by original
value until cooling stage. Compared with traditional algorithms,
the task scheduling based on SA meets the user’s requirement as
well as enhances the overall performance of the system.

Analysis of metrics measured during the evaluation of
heuristic algorithms.

The application of genetic algorithm (GA)as cloud scheduling
technique can be traced back to Early 2009 when Zhao et al.
[47] proposed a scheduler to map independent and divisible
tasks to cloud resources with makespan as the objective. In
the scheme, M tasks are scheduled over N cloud resources with
a simple chromosome encoding as already depicted in Fig. 2
(section 2), assuming the number of tasks as its length. Each
gene is represented as an integer i where i ∈ {1, 2, 3, . . . , M}.
Further, each index of the resource is represented as j where j
(1, 2, . . . , N), indicating that i th task Ti has been scheduled on
the j th resource R j . Therefore, the use of GA is simple and
better to formulate cloud scheduling problems as proposed by
Kumar et al. [32] and Junwei et al. [48].The work proposed by
Kumar et al. [32] combines GA with Max-Min and Min-Min to
improve the speed of the algorithm and population initialization,
thereby, minimizing the makespan.

In classical GA method, the initial population (essentially,
schedule in this context) is generated randomly and may not

always be fit. Also, whenever mutated, there is a minimal chance
that the initial populations produce a better schedule. Hence,
using min-min and max-min with GA while generating an initial
population, a fit schedule can be produced resulting in better
schedules whenever mutated. Junwei et al. [48] used the same
encoding scheme as Zhao et al. [47] and proposed a modified
genetic algorithm (MGA) to schedule the cloud resources. The
parameters such as average makespan, total makespan, user cost
have been considered and prove MGA to be more efficient for
cloud computing. Nevertheless, the scheme of chromosome
encoding is typical. However, the same is widely used for cloud
resource scheduling.

Ant colony optimization (ACO) is another popular nature-
inspired meta-heuristic technique used in cloud scheduling. In
Fig. 7, a general framework is illustrated where ACO is used to
schedule user tasks on cloud resources [4]. In its simplest form,
M steps are used by each ant in order to construct a solution.
The heuristic information and pheromones are used by an ant
to select the suitable resource R j in the i th step for scheduling
the i th task Ti . Further, after executing M steps, all tasks are
scheduled with different resources.

Based on the same scheme aforementioned, Banerjee et al.
[49] and Liu et al. [50] schedule M tasks one by one to the
resources of the cloud as only a single task can be scheduled
on any resource at each step. Banerjee et al. [49] modify the
pheromone update scheme according to different time slots of
cloud service. In the scheme, each antis positioned on a starting
node and a state transition rule is applied to build an iterative
solution. In addition, a local pheromone has been used to
update rule until all ants built a complete solution. The analysis,
however, does not consider fault-tolerance issues. Liu et al. [50]
use the heuristic information based on the user’s QoS criteria
like cost, response time, system reliability and security to guide
ant to select an optimal resource. The scheduling algorithm is
designed to schedule service flow with several QoS requirements
as mentioned above. The end users are permitted to define QoS
threshold in software level agreement (SLA). In order to ensure
the QoS, the default rate is used to denote the ratio that may
be dishonored by a cloud service provider. An SLA monitoring
module has been introduced to keep a check on the running state
of cloud services.

In literature, the ACO-based approach was also used by Zhu
et al. [51] to optimize user cost, network bandwidth, makespan,
and system reliability while scheduling applications over cloud
resources. According to different QoS metrics, the tasks are
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Figure 7 Illustration of ACO techniques for cloud resource scheduling [4].

first classified in different categories and afterward bounded via
the ACO optimization to the cloud resources in each category.
Nishant et al. [52] use an ACO-based algorithm to schedule the
cloud resource in order to optimize the load balance of different
nodes. The modified algorithm is better in comparison to an
original approach where each ant builds their individual result
set. Here, the ants continuously update a single global result
set rather than updating their own local result set. The main
advantage of the method lies in its detection of overloaded and
under-loaded nodes and so carrying out operations based on the
identified nodes. Moreover, the modified ACO based approach
can choose a node with a maximum number of neighboring
nodes. This facilitates the ant to find more nodes that are
overloaded or under loaded while traveling in the optimal
direction. Thus, some of the load from heavily loaded VMs
may be redistributed to the light-loaded VMs.

In addition to ACO and GA, particle swarm optimization
(PSO)is also a meta-heuristic technique as it makes few or no
assumptions about the problem being optimized and can search
very large spaces of candidate solutions [53]. PSO is an effective
tool for scheduling cloud task on cloud resources and offers faster
convergence than other meta-heuristic algorithms. A simple
variation of the PSO procedure works by having a population
(called a swarm)of candidate solutions (called particles). These
particles are moved around in the search-space using few simple
formulae. The movements of the particles are directed by their
own best-known location in the search-space as well as the
entire swarm’s best-known location. Whenever an improved
position is being discovered, the particles participate and guide
the movement of the swarm. The process is repeated that
eventually lead to a satisfactory solution.

Pandey et al. [54] use the PSO technique to schedule cloud
tasks employing the same GA encoding scheme as described
in [47]. In the method, the task number is assumed to
position length of particles and the integer value indicates
the cloud resource is executing the corresponding task. The
approach considers, both, data transmission and computation
cost. The total cost of execution is obtained by varying the
cost of computing resources and communication cost between
resources. The proposed heuristic is generic in nature due
to the fact that any number of resources and task can use
it only by increasing the particle dimension and number of
resources. Later, Rodriguez and Buyya [55] proposed a PSO
based workflow scheduling algorithm in a public cloud to

minimize the overall execution cost while meeting a user-defined
deadline. Besides a scheduling algorithm at the application layer,
the proposed scheme also discusses a resource provisioning
algorithm at the virtualization layer. The scheduling algorithm
attempts to minimize the Total Execution Cost (TEC)of the
schedule. The formulated problem has been shown in Eq. 2
where L ETi and LSTi are Lease End Time and Lease Start Time
respectively of the i th virtual machines with τ as a unit of time.
Furthermore, TET is total execution time and δw is a deadline
associated with workflow (W ).

minimize T EC =∑n
i=1 cos ti ∗ f loor (L ETi − LSTi/τ)

subjectto T ET ≤ δw

(2)
In this scheme, the real number is rounded to integer number to
indicate the resource index on which the workflow is scheduled.
It is worth mentioning that the features of the resources are not
reflected by the index of the resource. Therefore, the particles
may fly randomly, in case, learning has been made from the
resources index.

Dhinesh et al. [56] designed an algorithm named as Honey
Bee Behavior inspired Load Balancing scheme (HBB-LB). The
algorithm aims to maximize the throughput of the system and
achieves a balanced load across virtual machines. In addition,
along with balancing the load of VMs, the priorities of tasks are
considered. The tasks are removed from heavily loaded VMs
so that the overall waiting time of the task in the queue can be
minimized. The removed tasks from these VMs are treated as
honey bees that act as information updater globally.

Wen et al. [57] proposed a secure Multi-Objective Privacy-
Aware workflow scheduling algorithm (MOPA) which min-
imizes both execution time and cost with a data privacy
protection constraint. Given a set of workflow instances in the
cloud environments the authors have modeled a multi-objective
optimization problem as shown in Eq. 3.

Minimize F = (T wtotal, Cwtotalsati s f ying P (3)

Where T wtotal and Cwtotal are total execution time and
monetary cost respectively, and P is the set of privacy protection
constraints. MOPA proposes a problem-specific encoding
strategy which is based on the currently-generated workflow
schedules, candidate lists of VM instances, and related privacy
protection constraints. The authors compare the proposed
scheme with NSGA-II and MOPSO which were modified with
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Table 3 Analysis of metrics measured during the evaluation of heuristic algorithms.

Algorithm Quality metrics measured Comparison done with

Zhao et al. [47] Resource utilization, Time uti-
lization

NA

IGA [32] Makespan Standard Genetic Algorithm
MGA [48] Completion time, Cost AGA, CGA
Modified ACO [49] Makespan Classic ACO
Liu et al. [50] Response time, Cost, Fault tol-

erance, Security
None

Zhu et al. [51] Makespan Random Distribution Algorithm
Pandey et al. [54] Cost Best Resource Selection (BRS)
Rodriguez and
Buyya [55]

Makespan, Cost IC-PCP [58], SCS [59]

HBB-LB [56] Makespan, Load balancing Weighted Round Robin, FIFO,
Dynamic Load Balancing (DLB)
[60]

Nishant et al. [52] Load balancing Classical ACO
MOPA [57] Average hyper volume, Average

coverage
NSGA-II, MOPSO

their encoding strategy. All discussed algorithms in this section
have been summarized in Table 3 and 4.

4.3 The Hybrid-Heuristic Approach

Every heuristic and meta-heuristic scheduling algorithm has a
tradeoff in terms of performance. For example, ACO technique
may provide a better schedule than other traditional scheduling
algorithm in terms of the total cost. However, it takes more
computation time. Hence, in order to overcome the limitations
of an individual technique, the latest approach in the field of
cloud scheduling is to combine the two or more heuristics or
meta-heuristic techniques into a single heuristic method. This
kind of integration may compensate for the intrinsic weak points
of the specific heuristic algorithm. For instance, Wen et al. [61]
improve the resource utilization ratio by combining PSO and
ACO schemes. The proposed scheme takes a longer computation
time at each iteration of the convergence process, however, it has
a higher chance to find a better result than a single heuristic.

Delavar and Aryan [62] propose a hybrid scheduling algorithm
GMSW to map workflow tasks (DAG) on the cloud resources
having various communication cost. It considers the suitable
distribution of the workload on VMs and helps in reducing
the number of GA operations via making an optimized initial
population. The algorithm uses two evaluation functions in order
to obtain a solution. The first function measures the priority
of every task in the workflow DAG and the second function
evaluates the value of the generated solution. Due to the hybrid
nature of the algorithm, the optimal solution can be achieved
early. Further, the searching process is done on the basis of
the failure frequency and workload, led by special mutation
method, considering the most effective task and the resources
reassignment.

In recent years, multi-objective cloud scheduling has emerged
as one of the major challenges. The concept is based on the

optimization of more than one QoS parameters simultaneously.
Though the problem is NP-hard, evolutionary computing
techniques i.e.,meta-heuristics proved to be efficient with
a minimum time overhead. However, the multi-objective
scheduling becomes difficult whenever one parameter has to
be minimized and other parameters need to be maximized.
In literature, a multi-objective scheduling algorithm has been
proposed by Yassa et al. [63] and Mezmaz et al. [64] where
energy is one of the scheduling objectives. In both algorithms,
Dynamic Voltage and Frequency Scaling (DVFS) technique have
been used to minimize overall energy consumption. Yassa et
al. [63] used a hybrid PSO scheme to optimize makespan, cost
as well as energy simultaneously. Also, the heterogeneity of
cluster nodes has been taken into consideration. Using the DVFS
scheme, the processor can be operated on the different supply
voltage. However, the clock cycles are sacrificed in terms of
speed. Therefore, energy can be saved only by decreasing the
execution time that may compromise the quality of schedules and
energy. The hybrid scheme i.e., DVFS Multi-Objective Discrete
Particle Swarm Optimization (DVFS-MODPSO) produces a
set of non-dominated solutions in order to evaluate the user
preference. Accordingly, a schedule can be selected to achieve
the QoS requirement. Mezmaz et al. [64] presented a new
parallel multi-objective (bi-objective) hybrid genetic algorithm
to schedule the precedence constraint application like DAGs
over heterogeneous computing system e.g., cloud computing.
Being bi-objective in nature, the algorithm optimizes makespan
(completion time of the last task in DAG) as well as energy using
DVFS technique. In the experimental study, the results exhibit a
reduction in energy consumption 47.5% and makespan by 12%.

Another important QoS parameter in hybrid heuristic is load
balancing A better workload balanced system always enhances
the overall throughput and energy efficiency. Delavar and Aryan
[65] proposed a scheme to optimize load balancing, speed-
up ratio and makespan. The algorithm combines GA with
Round Robin and Best Fit techniques. Hence, the iteration
of GA operations is decreased while executing the algorithm
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Table 5 Analysis of metrics measured during the evaluation of heuristic algorithms.

Algorithm Quality metrics measured Comparison done with

GMSW [62] Makespan, Fault tolerance/Failure
rate/Reliability, Speedup

GVNS [72] CMMS [73] and
LAGA [74]

HSGA [65] Makespan, Load balancing, Speedup LAGA [74] NGA [75]
DVFS-MODPSO [63] Makespan, Cost, Energy efficiency HEFT
Mezmaz et al. [64] Makespan, Energy efficiency,

Speedup
ECS [76]

HHSA [68] Makespan, Waiting time FIFO, fair scheduler
FUGE [66] Makespan, Cost, Load balancing Classical ACO, MACO [77]
ACO-PSO [61] Time, Resource utilization Classical ACO
Hybrid [70] Speed up, Energy efficiency Classical ACO

with an optimized initial population. Firstly, the impact of
tasks on other tasks is analyzed and prioritized accordingly
in the complex graph. Afterward, Best-Fit and Round Robin
are combined to generate an optimal initial population. M
Shojafar et al. [66] combined the FUzzy theory with the
GEnetic algorithm and proposed a hybrid scheme called FUGE
to balance the workload among VMs while optimizing execution
time and cost. In the scheme, Standard Genetic Algorithm
(SGA) is modified with a combination of fuzzy theory in order
to develop a fuzzy-based steady-state genetic algorithm which
may improve the performance in terms of makespan. The
jobs are assigned to the available resources by considering the
virtual machine’s memory,bandwidth, processing speed, and job
lengths. Authors formulated the job scheduling problem into a
Linear Programming (LP) model as shown in Eq. 4, where the
objective function is to minimize the total time required to finish
all jobs subjected to eight constraints [66].

min
(

fi , R j
) n∑

i=1

m∑

j=1

di j

=
n∑

i=1

m∑

j=1

Ltot( j)

/

Aij f j +Li

/

Bij R j (4)

Recently, hyper-heuristic techniques are gaining popularity
indifferent research domains. In these schemes, two or more
heuristic algorithms are combined [67] with two additional
operators namely, low-level heuristic selection (LLH) and
acceptance operator. LLH selection operator determines the
selection of a heuristic algorithm whereas acceptance operator
determines the timing to select a new heuristic algorithm. The
hyper-heuristic also attempts to use two or more heuristics during
the convergence process like other hybrid-heuristic schemes.
However, it uses “one and only one” heuristic algorithm at
each iteration. Hence, it is fundamentally different from the
so-called hybrid heuristic algorithm which uses more than one
heuristics (low-level) at each iteration, thus, requiring a much
longer computation time. In the existing literature, Tsai et al.
[68] proposed a hyper-heuristic scheduling algorithm (HHSA) to
find better scheduling of task on cloud computing systems. The
technique automatically determines the appropriate low heuristic
algorithm (SA, GA, ACO, PSO) to be used with the help of
two detection operators, namely, diversity and improvement.
These low-level heuristic algorithms are used in finding a better

candidate solution. Further, the solution is optimized through
low-level heuristic by using perturbation operator to improve
the performance in terms of makespan. The proposed “hyper-
heuristic” technique exploits the strengths of every low-level
algorithm keeping the computation time lower by executing one
low-level algorithm at a time. The proposed HHSA algorithm
has been validated through CloudSim and real Hadoop cluster.

Wen et al. [61] attempted to improve the resource utilization
ratio desired by a cloud service provider and proposed a hybrid
scheme consisting of ACO and PSO. The ACO is used as
the main procedure to select appropriate resources for various
tasks. The pheromone is associated with the resource node.
Whenever a resource node is selected for a newly arrived task,
the pheromone on the current resource node is reduced. The
ACO as an individual technique achieves local optima and may
terminate prematurely. Therefore, the PSO process is hybridized
with ACO in order to maximize resource utilization. However, to
calculate position and particle velocity, crossover and mutation
operations are used to combine the search information of the
individual best solution, global best solution and the particle
itself.

Cuckoo Search (CS) is another meta-heuristic optimization
technique developed by Yang and Deb [69] in 2009 which was
motivated by the obligate brood parasitic activities of some
cuckoo species in combination with the Levy flight actions of
some birds and fruit flies. Apart from the population size n,
The Cuckoo search uses a single parameter and hence it is very
easy to apply in a wide variety of scenarios. Babukarthik et
al. [70] and Navimipour et al [71] employed the CS algorithm
in combination with other meta-heuristics ina various cloud
scheduling application. Particularly, Babukarthik et al. [70]
combined the advantages of ACO with the CS technique and
proposed a hybrid algorithm to schedule the tasks to save energy.
In the scheme, ACO is used as the main framework where CS
is used to find the next resource for the task instead of heuristic
information. Table 5 and 6 present the summary of discussed
algorithms in this section.

5. OPEN CHALLENGES AND RESEARCH
DIRECTIONS

The existing schedulers available in the literature for the applica-
tion layer of cloud capture much of the aspects. Sometimes they
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come up with some heuristics to overcome the problem while
some other times they exploit the complementary advantages of
heuristic and meta-heuristic techniques to find a better result.
However, there is still some scope for improvement. In this
section, we will explore some aspects that must be examined to
improve performance. Followings are some research directions.

Real-Time Scheduling

Scheduling of real-time workflow applications has not been
taken much attention in a cloud environment. Traditional real-
time scheduling on multiprocessor,Grid and cluster environment
have been studied extensively in the available literature but
achieving strict time requirement in virtualized and scalable
cloud environment imposes great challenge. These time-
dependent and mission-critical application cannot bear deadline
miss. When and where to schedule real-time application
efficiently so that it may acquire its deadline is a complex task
to be still addressed.

Dynamic Scheduling

As the cloud resources (whether physical infrastructure or
number and type of VMs) and the requests of the user can
change dynamically, scheduling scheme must be smart enough to
adapt to a changing environment in real-time. As various cloud
users with different QoS requirement are migrating from an in-
house data center to the public cloud, scheduling approaches for
such dynamic environment should have the adaptability to adjust
accordingly.

Multi-Objective Scheduling

Until now, optimizing multiple scheduling parameters, all
variables except one are made constraints while transforming
scheduling problem into Linear Program. Multi-objective
scheduling has gained much attention in which more than one
parameter is optimized simultaneously. This multi-objective
optimization problem becomes more complex if conflicting
criteria are optimized at the same time as time and energy. If
completion time is to be minimized, the more powerful server
is to be fired that consumes more energy. This multi-objective
scheduling phenomenon is very common in cloud computing as
objectives of cloud user; cloud providers can be independent.
For example, cloud user can try to optimize time efficiency
while at the same time the service provider wants to optimize
resource utilization. Even for a single stakeholder some time,
more than one scheduling parameter need to be optimized for
example a cloud user may need to the optimized response time
of its application with minimum budget.

Scheduling for Big Data

Over the past few years, the world has witnessed the vast
generation of data from a variety of sources whether it is a
scientific lab, e-commerce site, business enterprises, banking
system, etc. This huge amount of data is characterized by

5 V’s that is velocity, variety, volume, veracity, and value.
There are many distributed framework like Hadoop MapReduce,
Hadoop Spark, GraphLab, Microsoft Dryad [78] to process it
efficiently. Now, everything is migrating towards the cloud;big
data processing has made its entry to the cloud computing
environment. In heterogeneous cloud environment scheduling
of big data for processing through these frameworks imposes
many challenges which need to be addressed.

5.1 Secure Scheduling

Data security, at all times, is one of the most important concerns
to cloud users because their data may be seized or stolen
by malicious parties during those data flows, specifically for
less protected hybrid cloud systems. Research is required to
implement scheduling in a way that it safeguards the sensitive
and/or private information related to tasks/users. This type of
scheduling is significant when the scheduled jobs carry private
and/ or special information about various subjects in a given
context.

6. CONCLUSION

In cloud computing, the problem of scheduling plays a significant
role to optimize QoS requirements of multiple stake holders
at the application as well as at virtualization layer. As the
problem is NP-hard, the traditional scheduling algorithms fail
to exhibit the required performance and take exponential time to
produce the best schedules. On the other hand, the scheduling
algorithms based on a scheme like heuristic, meta-heuristic
and hybrid heuristicproduces better results and are extensively
used to schedule different categories of application (e.g., set of
independent tasks, scientific workflow, MapReduce jobs, etc.).

This survey paper discusses various cloud scheduling algo-
rithms used only at the application layer. Algorithms are cate-
gorized on the basis of fundamental techniques used for design.
Among these techniques, nature-inspired meta-heuristics are
problem independent techniques which are used in many of
scheduling algorithms. Whereas the heuristic techniques are
problem dependent, hence, their scope is limited and specific
to the environment for which they are designed. Both these
techniques have their limitations which are overcome by hybrid-
heuristic techniques. It takes the advantages of complementary
benefits for heuristic and meta-heuristic techniques. During the
study, we have covered many application types which are usually
scheduled on cloud resources. Due to diverse characteristics of
such applications, the design of scheduling algorithms differs in
large scale. In the end, we provide the current research trends in
this evolving area.
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