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This paper provides an application of Fractional Model Predictive Control (FMPC) and fractional-order Proportional Integral controller (P Iλ) on a thermal
system with time delay.The first controller is based on Grünwald-Letnikov’s method to predict the future dynamic behavior of the system. This method
consists in replacing the non-integer derivation operator of the adopted system representation by a discrete approximation. Therefore, this controller is
developed on the basis of a fractional order model. However, the second controller is founded on an extended version of Hermite-Biehler theorem to
determine the complete set stabilizing P Iλ parameters Experiment results onto a time delay thermal system are given to illustrate the effectiveness of the
developed strategies.
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1. INTRODUCTION

Fractional order calculus is a mathematical discipline with a 300-
years-old history [1]. In recent years, it has attracted the attention
of researchers in several fields such as engineering, biology,
economics [2-6]. The non-integer order system appears also in
the process industries, in particular through control application
[7, 8]. The idea of using the fractional order regulator to control
the dynamic systems was proposed by Oustaloup in 1988 [9, 10].
In 1994, Podlubny proposed the fractional order PID controller
using mainly integrals and derivatives of non-integer order [1].
In [11], the authors proposed an approximation method for
fractional order controllers using the state-space realization. In
[12], the optimal control problems of non-integer order systems
were proposed. Vinagre et al. used the fractional calculus
in classic model reference adaptive control [13] In [14], two
methods of fractional order proportional integral controllers of
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non-integer systems were studied. It was found that many
physical systems have shown a dynamic behavior of fractional
order, the first dynamic physical system to be widely recognized
is the thermal systems. In Malti et al. [15], a thermal system
is identified using a fractional order model. In [16], authors
proposed an approach to the modeling of thermal systems and
their identification by a fractional order model. Moreover, the
presence of the integer derivation operator in the thermal system
model can lead to instability of the controller or to poor closed-
loop performances. Therefore, Stéphane et al. [17], have
presented a robust path tracking using flatness for fractional
thermal systems.

Moreover, the systems with time delay are widely encountered
in the industrial processes [18, 19]. Therefore, several tuning
methods have been developed for the setting of P Iλ controller.
In [20], the authors propose anew P Iλ tuning method for first
order systems with time delay. Some results on the control of
integrating systems with time delay using fractional order PD
controllers were obtained. Recently, Monje et al. [21] give a
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new tuning method called F-MIGO for P Iλ extended from the
MIGO method. These tuning rules are used to determine the best
fractional and the best P Iλ gains. In [22], the authors propose
two sets of tuning rules for fractional PID similar to those of
the first set of Ziegler–Nichols. A frequency approach for the
auto-tuning of fractional-order PID is proposed in [23], where
PI is used to cancel the slope of the curve phase of a position
servo system with time delay around a frequency point and the
P Iλ Dμ controller is designed to fulfill the specifications of gain
crossover frequency.

Therefore, the Model Predictive Control (MPC) has become a
mature control strategy over the last few years because it can take
in account explicitly different types of constraints on input and
output signals. It can handle a large class of systems especially
the delayed systems [24]. Consequently, there are recently
works which applied the predictive control to the fractional
order system [25, 26, 27]. The MPC is a control technique that
optimizes a cost function by using a model to predict the future
behavior of process output. Indeed, the presence of the model is
necessary for the development of the predictive control.

The originality of this work lies in applying both fractional
order controllers to a thermal system with time delay. The first
controller is the Fractional Model Predictive Control (FMPC),
which is based on Grünwald-Letnikov’s method to predict the
future dynamic behavior of the system. The second controller is
the Fractional Order proportional integral (P Iλ), this controller
is founded on an extended version of Hermite-Biehler theorem
to determine the complete set stabilizingP Iλ parameters.

The outline of this paper is organized as follows. In section
2, a problem formulation and some definitions of fractional
order systems are introduced, and the G-L definition used to
approximate the fractional order system is detailed. The steps
needed to find the optimal control law of the FMPC to fractional
systems are introduced in section 3. The section 4 is reserved
to focuses on the necessary steps in finding the design method
proposed for the P Iλ. Experimental results on a thermal system
are exhibited in section 4 to illustrate the effectiveness of the
both controller proposed. Finally, a conclusion is given.

2. PRELIMINARY AND PROBLEM
FORMULATION

The fractional calculus is a generalization of integration and
derivation to the fractional order fundamental operators t0 Dα

t
which is defined as:

t0 Dα
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dα

dtα α > 0

1 α = 0
t∫

t0
(dτ )α α < 0

(1)

where α ∈ R is the order, t0 and t are the limitations. The value
α can be negative or positive, corresponding to the integration
and differentiation respectively.

In the development of fractional order calculus, there are
several definitions of non-integer order [28]. The Grünwald-
Letnikov’s definition is the most known one for the fractional

order control and its application [29-30], it has defined as:

t0 Dα
t f (t) = lim

h→0

1

hα

(t−t0)/h∑
i=0

(−1)i
(

α

i

)
f (t − ih) (2)

with h being the sampling period and
(
α
i

)
meaning:(

α

i

)
= α(α − 1) . . . (α − i + 1)

i

The relation (2) may be used to numerically evaluate the integral
or the derivative of the non-integer order using some suitably
chosen value of the sampling rate as follows [30].

t0 Dα
t f (t) = 1

hα

(t−t0)/h∑
i=0

(−1)i
(

α

i

)
f (t − ih) (3)

As
(
α
i

)
does not converge rapidly when α is fractional, the

fractional operators are known to have a long memory behavior.
For real implementation, by using the short memory principle
[1], expression (3) can be rewritten using only the recent past
values of f (t) as:

t0 Dα
t f (t) = 1

hα

N∑
i=0

(−1)i
(

α

i

)
f (t − ih) (4)

where N is an integer.
Generally, a fractional model can be described by a fractional

differential equation characterized by the following form:

L∑
l=0

al D
αal
t y(t) =

M∑
m=0

bm D
αbm
t u(t) (5)

where (al , bm) ∈ R2, and (αal , αbm) ∈ R2+
The use of the numerical approximation (4), allows rewriting
equation (5) as follows [31].

y(k) = 1
L∑

l=0

al
hαal

M∑
m=0

bm

hαbm

N∑
i=0

(−1)i
(

αbm

i

)
u(k − i)

− 1
L∑

l=0

al
hαal

L∑
l=0

al

hαal

N∑
i=1

(−1)i
(

αal

i

)
y(k − i) (6)

In reality, this equation is described with time delay, which
means that the dynamic behavior of many industrial plants can
be mathematically described by first order time delay systems
[19].

The presence of time delay in the fractional order system
model can lead the controller to be unstable or to have poor
closed loop performances. In order to robustify the controller
against the system with time delay and to handle a large class
of systems, we will propose both fractional order controllers,
which are the FMPC and P Iλ.

3. FRACTIONAL MODEL PREDICTIVE
CONTROL DESIGN

In this section, we introduce the steps needed to find the optimal
control law using the new proposed approach of FMPC for
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the fractional order systems with time delay. Consequently,
the Grünwald-Letnikov’s method of fractional order system
represented in section 2 will be used to obtain the fractional
order model. Therefore, it is assumed that this fractional system
is described by the model given by relation (6).

The principle of predictive control is based on the following
calculations, which are performed at each sampling instant:

• Using the model to calculate the predictor ŷ(k + j/k), j ∈
[1, H p], H p is the prediction horizon.

• Calculation of the future controls sequence u(k + j), j ∈
[0, H c − 1]. H c is the control horizon.

• Only the first control signal u(k) of the optimized sequence
is applied to the process.

There are several approaches of model predictive control
employing different models to represent the relation between
output and input of the system. Predictive control involves
optimization of a cost function which indicates how well the
process follows the desired trajectory. This function can be
expressed by the future errors between setpoints and output
signals, and the future incremental control signals. The cost
function is given by:

J =
H p∑

j=Hi

(ŷ(k + j/k) − yc(k + j))2 + λ

Hc−1∑
i=0

�u(k + i)2

(7)
When Hi is the initial horizon, the predicted outputs ŷ(k +
j/k) are expressed in terms of the future control sequence,
system output and control past measurements, the future control
sequence is obtained by minimizing the cost function defined
above:

min J (�U) (8)

The initial horizon is chosen such that the product (Hi ∗ h) is
equal to the delay of the system. Indeed, if the system has a
delay d , it is useless to choose Hi less than this delay, since the
output only begins to react after this time [32].

For obvious reasons and without loss of generality, we will
express y(k) in terms of u(k − 1), depending on the input
deviation. So, the expression (6) becomes:

�y(k) = 1
L∑

l=0

al
hαal

M∑
m=0

bm

hαbm

N∑
i=0

(−1)i
(

αbm

i

)
�u(k − 1 − i)

− 1
L∑

l=0

al
hαal

L∑
l=0

al

hαal

N∑
i=1

(−1)i
(

αal

i

)
�y(k − i) + e (k)

(9)

where � = 1 − q−1 is an integral action introduced in order to
obtain, in a closed loop, a nil steady state error.

By using the relation (9), we obtain the predicted output of
the system in k + 1:

ŷ(k + 1/k) = yl(k + 1) + α1�u(k) (10)

where: α1 = 1
L∑

l=0

al
h
αal

M∑
m=0

bm
hαbm

and yl(k +1) is the free response

of the system:

yl(k + 1) = y(k) + s1 − s2 (11)

s1 = 1
L∑

l=0

al
hαal

(
M∑

m=0

bm

hαbm

N∑
i=1

(−1)i
(

αbm

i

)
�u(k − i)

)

s2 = 1
L∑

l=0

al
hαal

(
L∑

l=0

al

hαal

N∑
i=1

(−1)i
(

αal

i

)
�y(k + 1 − i)

)

The 2-step ahead predictor is given by:

ŷ(k + 2/k) = y(k + 1) + α1�u(k + 1) + β1�u(k)

+ β2�y(k + 1) + s3 − s4 (12)

where:

β1 = −1
L∑

l=0

al
hαal

M∑
m=0

bm

hαbm
αbm ; β2 = 1

L∑
l=0

al
hαal

L∑
l=0

al

hαal
αal

s3 = 1
L∑

l=0

al
hαal

(
M∑

m=0

bm

hαbm

N∑
i=2

(−1)i
(

αbm

i

)
�u(k + 1 − i)

)

s4 = 1
L∑

l=0

al
hαal

(
L∑

l=0

al

hαal

N∑
i=2

(−1)i
(

αal

i

)
�y(k + 2 − i)

)

as: �y(k + 1) = y(k + 1) − y(k)

then:

ŷ(k + 2/k) = (1 + β2)y(k + 1) + α1�u(k + 1) + β1�u(k)

− β2y(k) + s3 − s4 (13)

If were place ŷ(k + 1/k) by its expression (10), we obtain:

ŷ(k + 2/k) = (1 + β2) yl(k + 1) + α2�u(k)

+ α1�u(k + 1) − β2 y(k) + s3 − s4 (14)

where: α2 = ((1 + β2) α1 + β1)

We set: yl(k + 2) = (1 + β2) yl(k + 1) − β2y(k) + s3 − s4

then: ŷ(k+2/k) = yl(k+2)+α1�u(k+1)+α2�u(k) (15)

Consequently, the expression of the j-step ahead predictor ŷ(k +
j/k), ( j ≥ 1) is as follows:

ŷ(k + j/k) =
j∑

i=1

α j−i+1�u(k + i − 1) + yl(k + j) (16)

The output sequence on H p prediction horizon can be written
as follows:

Y = G�U + Yl

Y = [̂y(k + 1/k), . . . , ŷ(k + H p/k]T (17)
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where: �U = [�u(k), . . . ,�u(k + H c − 1)]T

Yl = [yl(k + 1), . . . , yl(k + H p)]T

The G matrix is illustrated as follows:

G =

⎡
⎢⎢⎢⎣

α1
α2 α1
...

αH p · · · αH p−Hc+1

⎤
⎥⎥⎥⎦ ; dim(G) = (H p, H c)

Hence, the cost function of equation (7) is equivalent to:

J = (G�U + Yl − Yc)
T (G�U + Yl − Yc) + λ�U T �U (18)

where λ is the weighting factor, Yc is the sequence of set-points
on H p prediction horizon:

Minimizing the equation (18), we obtain the optimal control
sequence.

�U = [GT G + λI ]−1GT [Yc − Yl ] (19)

4. FRACTIONAL-ORDER PI DESIGN

The aim of this section is to present the system which will be
controlled by a fractional order PI controller and to present the
design of the fractional controller. The first order time delay
systems can be described by:

G(s) = K

1 + T s
e−Ls (20)

Our tuning strategy, is based on Hermite-Biehler theorem and
the Pontryagin condition to determine the kp and ki parameters.

The fractional P Iλ controller transfer function C(s) is given
by the following equation:

C(s) = K p + Ki

sλ
(21)

The control input of the P Iλ controller is:

u (t) = K p (r (t) − y (t)) + Ki D−α
t (r (t) − y (t)) (22)

Where r(t) is the reference input or the setpoint signal, e(t) is the
error, u(t) is the control, y(t) is the output signal and D−α

t is the
fractional differential/integral operators.

The control design method proposed in this paper is based
on a Hermite-Biehler and Pontryagin theorem which consist
on interlacement property of the real roots of the polynomial
characteristic.

The closed-loop characteristic polynomial of a first order time
delay system is given by:

δ∗(s) = eLsδ(s)

= (K Ki + K K psλ) + (1 + T s)sλeLs

Replacing the term “Ls” in the previous expression by “z” we
obtain:

δ∗(z) = K Ki + K K p

( z

L

)λ +
(

1 + T
( z

L

)) ( z

L

)λ

ez (23)

We consider: z = jw

δ∗( jω) = K Ki + K K p(
jω

L
)λ +

(
1 + T

(
jω

L

))(
jω

L

)λ

∗ (cos(ω) + j sin(ω))

δ∗( jω) =
(

K Ki + K K p

(
jω

L

)λ
)

+
(

jω

L

)λ

∗
(

cos(ω) − T

L
ω sin(ω) + j

(
T

L
ω cos(ω) + sin(ω)

))

This expression can be rewritten by:

δ∗( jω) = δ∗
r (ω) + jδ∗

i (ω) (24)

Where:

δ∗
r (ω) = K Ki +

(
K K p + cos(ω) − T

L
ω sin(ω)

) |ω|λ
(L)λ

−
(

T

L
ω cos(ω) + sin(ω)

) ∣∣Im{( j)λ}∣∣ |ω|λ
(L)λ

sign(ω)

δ∗
i (ω) =

(
K K p + cos(ω) − T

L
ω sin(ω)

) ∣∣Im{( j)λ}∣∣
× |ω|λ

(L)λ
sign(ω) +

(
T

L
ω cos(ω) + sin(ω)

)

× ∣∣real{( j)λ}∣∣ ( |ω|
L

)λ

Clearly, the controller parameter k p only affects the imaginary
part of δ∗

i (ω) whereas both parameters kp and ki appear in the
real part δ∗

r (ω). In order to solve our stabilization problem, we
need first to determine the range of kp for which a solution to the
P Iλ stabilization problem of a closed-loop stable plant is given.
According to Pontryagin Theorem, δ∗

i (ω) has only real roots for
every K p ∈ [Ku_, Ku+

]
where Ku_ and Ku+ are respectively the lower and the upper
bound of kp range.

The successive step is to establish the ranges of the values of
k p and ki that fulfill the interlacing condition between the roots
of δ∗

i (ω) and δ∗
r (ω).

However, we present our theorem [33], which is useful to
compute the stability region of a first order system with time
delay. Based on the first property of Hermite-Biehler [34] which
consist that all the roots of the polynomial characteristic of the
closed loop equation are real.

Theorem 1 (33) We consider a first order plant given by the
following transfer function:

G(s) = K

1 + T s
e−Ls

where the parameters T, L and K are positive.

We can determine the set of all stabilizing (kp , ki ) values for
the given plant using the fractional order controller P Iλ

C(s) = K p + Ki

sλ
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Figure 1 Real schema of thermal system.

 
 
 
 
 
 
 
 
 
 PWM 

converter 

Actuator Object 

Data acquisi-
tion module 

Analogue 
Filter 

W (20-100°C) 

 
Computer 

Y(0-5V)

Controller 

U(0-5V)

Temperature 
Sensor 

         Measuring 

0-1V

Heating 
Resistor 

Aluminium 
Rod 

Figure 2 Synoptic schema of thermal system.

The stabilizing set of parameters kp values for a closed-loop
stable plant is given by:

max

(
− 1

K
, Ku−

)
< K p < Ku+

Where:

Ku− = 1

K

((
T

L
α1 cos(α1) + sin(α1)

)
real{( j)λ}
Im{( j)λ}

−
(

cos(α1) − T

L
α1 sin(α1)

))

Ku+ = − 1

K

((
T

L
α1 cos(α1) + sin(α1)

)
real{( j)λ}
Im{( j)λ}

+
(

cos(α1) − T

L
α1 sin(α1)

))

α1 ∈ [−π; 0] and α2 ∈ [0; π] are respectively the solutions of
the two previous equations:

tan(α1) = −
T
L α1

∣∣Im{( j)λ}∣∣+ (1 + T
L )
∣∣real{( j)λ}∣∣

(1 + T
L )
∣∣Im{( j)λ}∣∣− T

L α1
∣∣real{( j)λ}∣∣

tan(α2) =
− T

L α2

∣∣∣Im{( j)
a
b }
∣∣∣+ (1 + T

L )

∣∣∣real{( j)
a
b }
∣∣∣

(1 + T
L )

∣∣∣Im{( j)
a
b }
∣∣∣+ T

L α2

∣∣∣real{( j)
a
b }
∣∣∣

Once the k p range established, we determine ki as follows:

max{−m j K p − b j }
j=0,2,4,···

< Ki < min{−m j K p − b j }
j=1,3,5,···

Where:

m j = m(ω j ) = − ∣∣real{( j)λ}∣∣ |ω j |λ
(L)λ

b j = b(ω j ) = −(cos(ω j ) − T

L
ω j sin(ω j ))

∣∣real{( j)λ}∣∣ |ω j |λ
(L)λ

+
(

T

L
ω j cos(ω j ) + sin(ω j )

) ∣∣Im{( j)λ}∣∣ |ω j |λ
(L)λ

sign(ω j )

w j , j = 1, 2, 3 . . . are the roots, arranged in ascending order of
magnitude, of δ∗

i (ω).

5. EXPERIMENT RESULTS

In order to illustrate the effectiveness and performances of the
both fractional order controllers developed in this paper, we have
considered a thermal system depicted in figure 1. The synoptic
schema of thermal system is depicted in figure 2. Indeed, the
thermal flux throughout a metallic rod can be defined with the
fractional order model [27-35].
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Table 1 Parameters of open loop system.

u (v) 1.5 2 2.5 3 4

K 0.312 0.518 0.718 0.77 0.712
T(sec) 2250 1800 2260 2150 2050
D(sec) 120 110 105 100 70
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Figure 3 Open loop step responses.
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Figure 4 Identification data.

5.1 Modeling and Identification

The fractional thermal system is composed by an metallic rod of
2 cm section and 41 cm length. The input signal of this thermal
system is a thermal flux (Q) which is generated by a heating
resistor. The output of this system is the cylinder temperature
measured with a distance ‘d’ from the heated surface by an
LM35DZ sensor. The sensor signal is amplified to obtain an
output voltage varying from 0 to 5v. Several researchers are
modeling the thermal system by a fractional order model Cois
[36].

To determine the thermal system model, we have applied
various step input signals to the thermal system with different

amplitudes. The open loop step responses obtained are depicted
in figure 3.

The table 1 shows the response time (T ), the time delay (D)

and the static gain (K ) for each step input signal. The ambient
temperature of 15.4˚C, corresponding to 0.77v.

Based on the results presented on table 1, we deduce that
the time delay is about 100sec and the time response is about
2000sec.

To estimate the fractional order model of the thermal system,
we have applied to the heating resistor the input sequence given
by the figure 4. This last depicts also the evolution of the
temperature, at distance of d = 15 cm of the cylinder extremity.
For displaying reasons, we multiplied the input by 10. Based
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Figure 5 Validation data.
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Figure 6 Closed-loop results obtained with FMPC.

on this figure and the table 1, we notice that the thermal system
having a delay of 100sec.

The fractional model is established from the data identification
using the simplified refined instrumental variable for continuous-
time fractional models (SRIVCF) method [37]:

H1(s) = 0.8623

506.2843s1.5 + 135.3925s + 6.3598s0.5 + 1
e−100s

(25)
For comparison purposes, we have identified the thermal system
by an integer order model. Hence, by using the toolbox ident of
Matlab, we were able to determine this model which is given by:

H2(s) = 0.712

30.77s2 + 236.84s + 1
e−100s (26)

In order to test the both models performances, we have performed
another input excitation sequence and we have measured the
corresponding temperature. As represented in the validation
data of Figure 5, we deduce that the identified fractional model
is closer to the measured output than to the integer model. The
Normalized Mean Squared Error (NMSE) [38] computed on
validation data for the fractional order model is N M SE(H1) =
8.8 × 10−4, whereas for the integer model is N M SE(H2) =
5.7 × 10−3. Therefore, the fractional identification is more
adapted than integer one with this thermal system.

5.2 Controller Design

The goal is to maintain the temperature of the system measured
at 15cm from the heated surface by adjustment the power of the
heating resistor obtained with application of the FMPC and PI
developed in this paper.

In all experiences, we have used the fractional model given by
equation (24), the sample time is equal to 20sec and the control
signal is limited between the following values:

0 ≤ u(k) ≤ 5v

In the case of FMPC proposed in this paper, the j-step ahead
prediction is expressed by equation (9) with the following
parameters:⎧⎪⎨
⎪⎩

h = 0.1; L = 3; M = 0; b0 = 0.8623

a0 = 1; a1 = 6.3598; a2 = 135.3925; a3 = 506.2843

αb0 = 0; αa0 = 0; αa1 = 0.5; αa2 = 1; αa3 = 1.5

Figure 6 exhibits the measured temperature, the setpoint and the
control signal when the proposed controller is designed with the
following parameters:H p = 15, H c = 1 and λ = 0.5.

Based on practical results shown in figure 6 it is clear that the
temperature follows the desired set points. Consequently, these
results show good performances of the FMPC approach.
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Figure 7 Closed-loop results obtained with MPC.
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Figure 8 Closed-loop results obtained with P Iλ

A comparison of the closed-loop performances of the
proposed approach is established with a classic MPC based on
the integer order model given by equation (26). Both predictive
controllers are designed with the following parameters:

H p = 15, H c = 1 and λ = 0.5

Figure 7 presents the outputs and control signals evaluation
obtained by the predictive controller based on the integer order
model. Based on this figure, we deduce that the measured
temperature and the control signal present many fluctuations.
Comparing the results obtained by the proposed FMPC and the
MPC, we deduce that the first controller reaches the desired
reference, whereas the second controller presents oscillations at
the setpoint variations. We have also remarked that the control
law obtained by the RFMPC is smoother the one obtained by
FMPC.

To implement the fractional-order P Iλ of the thermal system
we have used the model given by equation (25). So, the
thermal system is defined as a first order system with time delay.
Therefore, we proceed the design of the controller by exploiting
the approach exposed in section 4.

The designed P I λ parameters are fixed as follows:

K p = 2, Ki = 0.6 and λ = 0.9

The evolutions of the setpoint, the measured temperature
(output signal) and the thermal flux (input signal) with P I λ

controller are represented in Figure 8. Based on these results,
we note that the measured temperature meets the desired
requirements and the control signal obtained provides a small
variation.

Comparing the results obtained by the FMPC and the PI
fractional controller, we deduce that the both controller exhibits
a good performance. But, we have also remark that the control
law obtained by the FMPC is smoother than one obtained by
fractional-order P Iλ.

6. CONCLUSION

In this paper, two fractional order controllers has been introduced
to fractional order systems. The first controller is the Fractional
Model Predictive Control (FMPC), which is based on the
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Grünwald - Letnikov’s definition. Therefore, the output
deviation approach is used to design the j-step ahead output
predictor and the control law is obtained by solving a quadratic
cost function. The second controller is the Fractional Order
proportional integral, this controller is tuned by our analytical
method based on Hermite–Biehler theorem gives a strong
performance. The experimental results on a thermal system
show that the FMPC and PI exhibits a good performance
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