
Comput Syst Sci & Eng (2019) 5: 259–281
© 2019 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

A Survey and Systematic
Categorization of Parallel K-means
and Fuzzy-c-Means Algorithms

Ahmed A. M. Jamel1∗ and Bahriye Akay2†

1Erciyes University, Institute of Natural and Applied Sciences, Department of Computer Engineering, 38039, Melikgazi, Kayseri, Turkey
2Erciyes University, Engineering Faculty, Department of Computer Engineering, 38039, Melikgazi, Kayseri, Turkey

Parallel processing has turned into one of the emerging fields of machine learning due to providing consistent work by performing several tasks simultaneously,
enhancing reliability (the presence of more than one device ensures the workflow even if some devices disrupted), saving processing time and introducing
low cost and high-performance computation units. This research study presents a survey of parallel K-means and Fuzzy-c-means clustering algorithms
based on their implementations in parallel environments such as Hadoop, MapReduce, Graphical Processing Units, and multi-core systems. Additionally,
the enhancement in parallel clustering algorithms is investigated as hybrid approaches in which K-means and Fuzzy-c-means clustering algorithms are
integrated with metaheuristic and other traditional algorithms.

Keywords: Clustering, Hadoop, Machine learning, Metaheuristic Algorithms, Multicore processing, parallel computing

1. INTRODUCTION

Data mining is a new inter-disciplinary field combining concepts
from machine learning, statistics, databases, and parallel
computing [1]. It refers to all comprehensive processes for
discovering new patterns or building models from a given
dataset. Additionally, it is the extraction of useful information
or patterns from a massive amount of raw data [2]. Statistical
analysis uses mathematical formulas to extract useful informa-
tion based on specific models and using static data [3]. Machine
learning is a branch of artificial intelligence modeling a system’s
behavior and predicting future results using instances of data or
employing past experiences. The types of machine learning are
supervised and unsupervised learning. The supervised learning
supports the classification techniques such as support vector
machine and artificial neural network. Unsupervised learning
supports clustering algorithms such as K-means and fuzzy-c-
means (FCM) algorithms.

Extracting useful information and reaching the specific data by
traditional and sequential algorithms is challenging because of

∗Email: 4010941311@erciyes.edu.t
†bahriye@erciyes.edu.t

analyzing the data by them requires plenty of time and capacity.
The main challenges of sequential clustering algorithms are
scaling up to enormous sizes of databases. This case will lead to
high computational and spatial costs. In order to obtain scalable
machine learning algorithms, the researchers introduced parallel
processing in which significant problems are divided into smaller
chunks to be manipulated concurrently [4]. Recently, some
multiple environments have been deployed to fulfill big data
analysis in parallel, i.e., Hadoop, MapReduce, Spark, and the
same circumstances used in the infrastructure of many well-
known companies. Likewise, there has been a surge in processor
manufacturing, where the companies have developed multi-
core processors that can analyze and calculate data in parallel.
The properties of parallel processing provide convenience in
code writing, debugging, and testing. In some environments,
a parallel processing topology consists of one master and many
slave nodes. Master node distributes the chunk of dataset among
slave nodes, and the associated job is accomplished concurrently.
In other surroundings such as Graphical Processing Unit (GPU)
and Central Processing Unit (CPU), the n data points are divided
into p parts and each participating p processor is responsible for
handling n/p data points.

vol 34 no 5 September 2019 259

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

Conversion of a sequential program into a parallel program
is still challenging because most of the programs have been
designed and implemented sequentially and converting a mas-
sive sequential program into a parallel program is a complicated
task. Lack of tools for debugging, tracing, and testing the
parallel programs is a disadvantage in parallel programming.
Additionally, a program written in a parallel manner may not
be ported in other environments. A parallel program written in
Spark environment is different from that in MapReduce. The
program written for several core processors may not perform
well on a different number of core processors nor a program
may not be complying with any other computing hardware
and software architecture. The communication bottleneck in
parallel programming is another issue when it is implemented
in the MapReduce and multicore processors because the same
communication channel is used for all the processors to access
the data and result. All these challenges should be investigated
by researchers and developers.

Due to the importance of parallel computing, this review
article lists comprehensive research about parallel K-means and
FCM algorithms. We investigated and focused only on the par-
allel K-means and FCM algorithms and their implementations
in various platforms. We reviewed about 250 papers regarding
K-means and FCM algorithms from different types of sources
(i.e., Elsevier, Springer, IEEE, and other databases). We chose
the papers related to parallel implementations, big data, and
clustering algorithms.

We systematically categorized these studies according to the
parallel file systems (Hadoop, MapReduce, and Spark) they are
implemented on, according to the software libraries they use for
CPUs or GPUs, and according to the enhancements proposed
for the parallel K-means and FCM clustering. To the best of our
knowledge, there is no report regarding multicore CPU and GPU
studies and regarding the enhancements related to the parallel K-
means and FCM algorithms in which metaheuristics and other
algorithms are integrated to them. This paper will enable the
readers to discover detailed information concerning the parallel
K-means and FCM clustering algorithms.

The remaining of the paper is organized as the following:
In Section 2, detailed information about parallel computing
is given. In Section 3, we provide general information
about clustering and K-means and FCM. In Section 4, a
discussion is presented about the parallel K-means, and FCM
clustering algorithms implemented on parallel file systems and
implemented usingsoftware libraries. In Section 5, we discuss
the enhancement of parallel K-means and FCM clustering
algorithms combined with metaheuristics and other algorithms
as a hybrid approach. In Section 6, the applications of parallel K-
means and FCM clustering algorithms are mentioned. Finally,
in Section 7, we give a conclusion the challenges, and our future
investigations based on this survey study

2. PARALLEL COMPUTING

Parallel computing is expected to overcome the sequential
processing bottlenecks, to provide scalable massive datasets,
to enhance the performance and to improve the response and
execution time [1]. Distributed memory machines (DMM)
and shared-memory (SMP) are two different approaches in

parallel computing. Both have the same goal in improving the
performance of traditional data mining approaches, but they are
built on different architectures. DMM data mining computers
are communicating with each other using MPI library, while
in SMP approach the computers deal with processors sharing
memory or disk. This difference between the two approaches
affects the algorithm design, performance, and cost model [5].
SMP systems have multiple processors which process with the
same clock frequency and share the same memory (Figure 1).
Since the communication between the processors is over shared
memory, data sharing is quite fast. In such systems, the single
operating system manages all processors and memory.

DMM architecture involves geographically distributed nodes
and located over a wide area network (WAN) such as the internet.
Furthermore, a distributed system is a group of computers
working independently, and it appears to its users as a single
cohesive system (Figure 2) [1, 3, 6].

The efficiency and the speed of parallel components in a
distributed environment are affected by load balancing, data
distribution, minimizing communication [1, 3, 5]. Load
balancing is the ability to manage and distribute the flow of traffic
and connection among nodes. It aims to increase the efficiency of
the parallelization algorithms by minimizing execution time and
maximizing resource utilization [7]. Data distribution provides
each node of the structure to process datasets that are reduced the
subset of the entire databases. Minimization of I/O reduces the
amount of I/O processes being substantial benefits distributed in
parallel data mining.

A cluster is a term referring to a group of computers,machines,
servers—each of the elements inside a cluster called node. At
least two nodes are needed to create a cluster. A cluster must
include a master node which is responsible for distributing the
job among the slaves and slave nodes which are responsible for
fulfilling the job came from the master node. Speed-up, size-up,
and runtime are the main metrics that are used to measure the
quality of a cluster and the performance of an experiment. The
runtime is the total time spent in the clustering process. The
speed-up metric defined by Equation 1 is the ratio of the runtime
of a task on one node(T1) and the runtime of the same task on a
cluster of m nodes (Tm) [8];

speedup(m) = T1

Tm
(1)

When the number of nodes increases, the speed-up of the parallel
algorithm rises as well. However, achieving a linear speedup is
challenging because the communication cost increases as the
number of clusters become large. The size-up measure is the
duration that an algorithm takes on a particular cluster when the
size of the dataset is (m) times the size of the original dataset.
The size-up is given by Equation 2.

si zeup(DS, m) = Tm DS

TDS
(2)

TDS indicates the runtime for clustering DS on a given cluster,
and Tm DS indicates the run time for clustering m* DS on the
same cluster.

Flynn’s Taxonomy [9] categorizes the computer architectures
into four classes based on several instruction streams and
data streams, as shown in Figure 3. These classes are Single

260 computer systems science & engineering

A. M. JAMEL AND B. AKAY

Figure 1 Shared memory architecture in parallel environment.

Figure 2 Distributed data mining environment.

Figure 3 Flynn taxonomy.

Instruction Single Data (SISD), Single Instruction Multiple Data
(SIMD) utilized in multi-core computers, Multiple Instruction
Single Data (MISD), Multiple Instruction Multiple Data
(MIMD) utilized for cluster applications. These architectures
can be combined with execution model used in parallel
computing, using threads.

A thread is the smallest processing unit and sequence of
programmed instructions that can be managed independently by
a scheduler, which is a part of the operating system. It allows one
process to perform several tasks concurrently. In other words,
a thread can perform several tasks in parallel. It means that the
process will not need to wait until the user finishes working while
another job starts.
Single threading: The process with a single thread performs one
task.
Multi-threading: The processes with multiple threads perform
several tasks (Figure 4).

3. CLUSTERING

Clustering is the process of placing data in similar groups. It
is a branch of unsupervised data mining and useful in various
fields such as pattern recognition, machine learning, image
segmentation, computer graphics, learning theory [10]. The
main criterion to obtain an optimal result in clustering is the
similarity of data to its cluster and the dissimilarity of data
to other clusters. In other words, the aim is to maximiz-
ing the intra-cluster similarities and minimizing inter-cluster
similarities.

K-means and FCM algorithms belong to the clustering
algorithms. The difference between them is that K-means
assigns each data point exactly to one cluster, while FCM assigns
each data point to multiple clusters with a degree of membership.
Therefore, when datasets have some uncertain cases such as
outliers, noises, FCM is likely to produce better results than
K-means does.

vol 34 no 5 September 2019 261

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

Figure 4 Single and multi-thread processes.

Algorithm 1
1: Determine k centroids
2: Calculate the distance between the data vector and cluster

centroid by this equation:

di j =
√√√√ n∑

k=1

(
xik − m jk

)2 (3)

where x denoted to the vector of data and m to centroid
respectively.

3: Assign each data vector to the closest centroid.
4: Take an average of vectors to obtain new centroid.
5: Repeat step 2–4 till the steps stabilize or converged.

3.1 Sequential K-means Algorithm

The main idea of the K-means algorithm is to divide a dataset
consisting of n objects into k sets. The steps of the K-means
algorithm are given in Algorithm 1.

The algorithm starts by initializing k by a scheme such as
a random selection from the dataset. Then, each data vector
is assigned to the nearest cluster centroid based on distance
metrics. Euclidian (Equation 3), Cosine, Manhattan distances
are commonly used metrics. When each dataset vector sare
assigned to a centroid, a new cluster centroid is calculated for
each cluster. The whole dataset is reassigned to new cluster
centers. The steps of centroid assignment and re-calculation are
repeated until the cluster centroids reach a stable state [11]. K-
means algorithm aims to minimize the Within-Cluster Sum Of
Square (WCSS) given by Equation 4 [12]:

min
k∑

i=1

∑
x∈c

dis2(x, m) (4)

where x is the current vector or pattern, c is the set of vectors or
patterns and m is cluster centroid. One way to minimize WCSS
value is increasing the number of clusters k.

3.2 Fuzzy-C-Means Algorithm

FCM algorithm is an improved and generalized version of K-
means algorithm. It has been used in various fields such as image
processing, remote sensing, and brain MR image segmentation
[12–15]. The steps of the algorithm are given in Algorithm 2.

FCM algorithm starts with assigning membership of each
data point to every cluster based on distance metric such as

Algorithm 2
Let X = {x1, x2, x3 …, xn} be the set of data points and V =

{v1, v2, v3 …, vc} be the set of centers.
1: Select “c” cluster center randomly.
2: Calculate the fuzzy membership “μi j ” using:

u j i =
(

c∑
k=1

(
d j i

dki

) 2
m−1

)−1

Where d j i = [
xi − v j

]
(5)

where: ‘n’ is the number of data points. ‘μi j ’ represents the
membership of ith data to the jth cluster center and

c∑
j=1

u j i = 1 (6)

‘m’ is the fuzziness index m ∈ 1,∞.
‘di j ’ represents the Euclidean distance between ith data and
the jth cluster center.
‘c’ represents the number of cluster centers.

3: Calculate the fuzzy centers ’v j ’ using:

vi =
∑n

i=1

(
u j i
)m

xi∑n
i=1

(
u j i
)m (7)

where: ‘v j ’ represents the jth cluster center.
4: Repeat steps 2 and 3 until the minimum ‘J ’ value is achieved

||U(l + 1) − U(k)|| < β where ‘k’ is the iteration.‘β’ is
the termination criterion between [0, 1]. ‘U’ = (μij) n*c’ is
the fuzzy membership matrix. ‘J’ is the objective function
defined by Equation 8.

J (U, V) =
n∑

i=1

c∑
j=1

(
μi j
)m ∥∥xi − v j

∥∥2 (8)

where ||xi − vj|| is the Euclidean distance between ith data
and jth cluster center.

Euclidean metric. In FCM a dataset sample is assigned to a
membership value (Equation 5) based on its similarity with the
cluster center (centroid) whereas the membership values range is
between 0 and 1 and the similarity means higher the membership
value [16, 17]. A data point closer to a cluster center has
a higher membership associated with this cluster center. The
summation of membership of each data point should be equal
to one (Equation 6). The cluster centroid is calculated based on
Equation 7.

262 computer systems science & engineering

A. M. JAMEL AND B. AKAY

Figure 5 Hadoop ecosystem [Hurwits et al. 2013, [18]].

Figure 6 MapReduce structure.

4. PARALLEL K-MEANS AND FCM
CLUSTERING ALGORITHMS REVIEW

In this section, we presented a review on the studies of parallel
K-means and FCM clustering algorithms. In the first subsection,
studies that were carried out on Hadoop, MapReduce, Spark are
provided. Hadoop is an online-library written in java language
used for parallelizing and processing large-scale data, and
Hadoop has a component used for storing data named Hadoop
Distributed file system (HDFS) (Figure 5). MapReduce is an
element of Hadoop that used for parallel processing consisting
of two separated tasks map allowing Hadoop to perform parallel
processing quicker. Spark, Mahout, and Flink are one of Apache
open source libraries, also used for processing large-scale data.
After that, studies performed on a hardware environment that
splits the big data along its multiprocessors such as CPU, GPU,
and using MPI is presented.

4.1 Studies of Parallel K-Means and FCM
Clustering Algorithm Implementations on
Parallel File Systems

4.1.1 Studies with Hadoop and MapReduce

Hadoop is an open-source library written in JAVA programming
language allowing parallel and distributed processing on large-
scale data across multiple cluster machines. Hadoop stores and
manages datasets on multiple machines. HDFS is a component
in Hadoop that is responsible for storing data. In the Hadoop
framework, datasets are split into blocks and distributed across
cluster nodes. A block can be proliferated by replication factor
to other nodes as a copy of the block. The main reason for
replication is to prevent data loss when one of the nodes is
damaged or removed [19].

MapReduce is a component in Hadoop allowing parallel
processing of large datasets. The term refers to tow separates
and distinct tasks in Hadoop framework. The first is map task,
which converts the data into another format of information when
elements are formed as <Key, value> pairs. The shuffle task
collects and sorts the output data from map and directs it to
reduce afterward; it takes the output from map task combines the
data and store the result to the source as HDFS [20] (Figure 6).

Hai [8] accomplished Canopy, K-means, and FCM algorithms
on Mahout and Hadoop framework. After implementation, the
author compared three algorithms according to three metrics
Run-time, Speed-up, and Size-up defined by Equations (1) and
(2) respectively. The experiment was performed on four datasets
with different sizes. By comparison among three algorithms
according to the metrics, they reported that when the dataset and
the number of nodes are the same, the running time of FCM
algorithm is the longest one and Canopy the shortest. As far
as the run time concerned, the study concluded that when the
number of nodes and dataset in the cluster are same, the run time
of FCM is the longest and Canopy the largest. The size-up is
smallest, second smallest and largest to Canopy, K-mean, and
FCM respectively. Finally, the speed-up of Canopy is the largest
one among the three algorithms.

Lv et al. [11] accomplished a sequential and parallel K-
means algorithm on Hadoop and MapReduce. Due to Hadoop’s
incompatibility with the images and their conversion to a text
file, the transformation process was performed to transform each
pixel from RGB to LAB value. LAB value refers to luminosity
’L’ or brightness layer, chromaticity layer ‘A*’ refers to color
falls along the red-green axis, and chromaticity layer ‘B’ refers
to color falls along the blue-yellow axis. This space describes all
colors visible to the human eyes. Initial clustering and the total
error variance minimization for each cluster are implemented
using Hadoop. Finally, the results are acceptable in a parallel
process because the visualization of output and assessment by
human eyes is more practical and designed for visualizing.

vol 34 no 5 September 2019 263

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

Garg and Trivedi [17] implemented the parallel FCM algo-
rithm on five various datasets with different sizes based on
multi-node Hadoop cluster and MapReduce being built using
Amazon Elastic Cloud Computing (Amazon EC2). The datasets
are converted to vector format. Distance calculation, creating
membership value, and assigning data point to closest centroid
are performed in the map function. Recalculation the centroid for
each cluster is performed in reduce function. They concluded
that as the number of nodes increases and the execution time
reduces.

Moertini and Venica [19] implemented a technique that
enhances the parallel implementation of the traditional K-means
algorithm based on MapReduce. The enhancement techniques
are: 1) data preprocessing by performing attributes selection,
cleaning, and transformation along with the clustering process.
2) Reducing the number of iterations by computing initialization
of centroids in map function. 3) Producing clustering patterns
and generating clusters of quality measures. When the technique
was tested on higher specification computer, they showed that
the K-means algorithm based on MapReduce scaled better when
it worked on two computers.

Zhao et al [20] adopted the K-means algorithm in MapReduce
model, which was implemented by Hadoop to build the
clustering process applicable to analyze big data. The per-
formance of the proposed algorithm was evaluated according
to speedup, scale-up, and size-up criteria. According to the
evaluation metrics, the presented algorithm achieved a very good
performance.

Xia et al. [21] introduced an algorithm for solving the traffic
problem of subarea roads in Beijing by Parallel Three-Phase
K-Means (Par3PKM) algorithm. They used large scale taxi
movement’s dataset. In order to increase the efficiency and
scalability of Par3PKM, the optimal K -Means algorithm was
applied on MapReduce framework in Hadoop. The optimization
was performed by using Distributed Traffic Subarea Division
(DTSAD) method and using large-scale GPS trajectories of
taxicabs. The optimization and parallelization of Par3PKM’s
algorithm reduced memory usage and reduced computational
cost, thus significantly improvement was achieved in traffic
accuracy, efficiency, scalability, and reliability.

Liao et al. [22] presented an improving of parallel K-means
algorithm based on MapReduce by decreasing the number of
iterations, and selecting the initial centroids which are consistent
with the distribution of the data and distance measure strategy.
The proposed algorithm achieved higher processing speed and
stability than the traditional K-means.

Liu and Cheng [23] compared both sequential and parallel
K-means algorithms according to results efficiency and time
consumption. The parallel K-means algorithm was implemented
on a cloud system based on MapReduce. They reported that the
parallel K-means algorithm is more efficient in terms of time
consumption and more suitable for large-scale data processing
than the sequential K-means algorithm.

Jiang and Zhang [24] proposed parallel k-Medoids on Hadoop
based on MapReduce named HK-Medoids algorithm. The
proposed algorithm was performed through three levels. The
map function divided each data sample to the nearest cluster
center (centroid). The combine function ran K-Medoids
clustering algorithm with the clustered data to get a temporary
center. In reduce function, the intermediate clusters were

clustered again and calculated a new cluster center for every
cluster. The algorithm was performed on three datasets. They
reported that the speedup of HK-Medoids algorithm increases
along with the extended number of the worker nodes, and the
speedup decreases when dealing with small sizes datasets.

Lin et al. [25] presented K-means and FCM algorithms on
land price dataset in Taichung City from 2006 to 2015. They
utilized Hadoop HDFS and MapReduce with R language and
visualized results on Google Maps. The project was applied on
nine computer nodes. The nine nodes consist of three physical
machines, and inside each machine, three virtual machines exist.
The physical machines properties are Intel Core i7-4790 CPU
and 8GB memory and virtual machines with 1Core CPU and
2GB memory. The master physical machine used a G860 CPU
and 8GB memory. They reported that the computation time
could be greatly reduced. Additionally, the inefficient memory
issue can be solved with enough number of compute nodes.
The performance of K-means is better compared with FCM
algorithms.

Anchalia et al. [26] implemented the K-means algorithm
based on MapReduce on a distributed network. This paper
showed the employing of MapReduce for implementing the K-
means algorithm. The designed system consists of one master
node and seven slaves. The study achieved acceptable results
in reducing the implementation costs of processing such huge
volumes of data.

Yushui and Lishou [27] presented a clustering technique for
clustering Chinese Commodity Information Web large scale
dataset based on Hadoop and MapReduce by implementing
parallel K-means algorithm. The calculation of the distance
between each sample and centroid is performed in map function
and calculating new cluster center is performed in Reduce
function. They proposed using the range of Unicode characters
to extract all the characters on the page and then using
the Chinese Academy of Sciences word software ICTCLAS.
They proved that the unstructured text of web content to be
recognized by MapReduce, it should be converted to text vector.
Experimental results showed that this method could achieve
better improvement according to the speed-up and scalability
of the clustering process.

Zhong and Liu [28] proposed an application of K-means
algorithm on spatial data based on the Hadoop platform and
MapReduce model. They analyzed the time complexity of
parallel K-means. They concluded that the implementation of
the K-means algorithm in a parallel manner gives effective results
in execution time. However, the time complexity of the parallel
K-means spatial clustering algorithm showed in Equation 9.

T ime complexi ty = O(nkdt)

P Q
(9)

where P denoted to the nodes in the cluster and Q to the tasks
respectively.

Abdouli et al. [29] offered a K-means algorithm to cluster
Moroccan users in the social network Twitter. First, the data
is converted to numeric feature; then, the K-means clustering
algorithm is applied in Hadoop and MapReduce platforms by
Python language and Natural Language Processing (NLP). Due
to the improvement of usage of different dialects and languages
and the changing of the meaning of the same words of Moroccan
dialect, the system improvement is their future work.

264 computer systems science & engineering

A. M. JAMEL AND B. AKAY

Chen and Ying [30] carried out the K-means clustering
algorithm in a cloud computing model based on Hadoop and
MapReduce. They simulated a set of data to scatter them by the
K-means algorithm and set k as three. They reported that the
K-means algorithm performance on the cloud computing model
is easy and quick in terms of data management.

Bandyopadhyay et al. [31] presented a parallel representation
of K-means based on Hadoop and MapReduce architecture
(HdK-Means) algorithm. The map function assigned the data
points to its nearest centroid. The reduce function performed
the summation of the data points in the same cluster and the
number of the data points. The experimental results showed that
the proposed HdK-means algorithm executes faster and more
efficient on big data than the sequential K-means algorithm.

Kang and Park [32] tested the performance of parallel K-
means algorithm by designing a MapReduce application. The
distribution of the dataset into k partitions was performed by
running on Twister and Hadoop, and the execution time of both
frameworks was evaluated. The comparison between Twister
and Hadoop showed that the average elapsed time decreases
over 112, 0 times in Twister than Hadoop.

Boukhdhir et al. [33] proposed an enhancement of parallel
K-means algorithm for clustering large datasets based on
MapReduce in Hadoop framework. The steps are: removing
outliers of datasets, selecting initial centroid systematically, and
partitioning the dataset into k clusters by using MapReduce. In
conclusion, the proposed method takes less time as compared to
traditional K-means, PK-means, and Fast K-means.

In summary, due to the difficulty of clustering algorithms to
find optimum minima, many researchers studied this problem
as reviewed in this section. Different clustering algorithms
and algorithms’ versions such as K-means and FCM have
been implemented on Hadoop MapReduce framework. The
main challenges in performing parallel algorithms are how to
keep the scalability of the implementation when a growing
amount ofthe work is happened by adding resources to the
system. Furthermore, also optimizing the speed-up, and size-up
metrics is a challenge in parallel computing by using Hadoop
MapReduce framework, but still, there is a gap, and more
researches are required to obtain the best values. Regarding the
datasets, usage of big datasets still not stated in many researches,
therefore, using big data in a parallel environment, and its
performance evaluation is an open field to study.

4.1.2 Studies with Spark, Mahout, and Flink

Apache Spark is an open-source library written in Scala
programming language permitting parallel processing on large-
scale data across multiple machines of clusters. Spark is simpler
to use and faster than Hadoop. Resilient Distributed Datasets
(RDD) is a fundamental data structure of Spark. It is an
immutable distributed collection of objects. Each dataset in
RDD divides into logical partitions, which may be computed
on different nodes of the cluster. Its architecture consists of four
components; Spark SQL, Sparks streaming, Machine learning
library (MLib) and GraphX [34, 35].

Apache Mahout is an open-source algorithm library for
scalable distributed and parallel implementation of machine
learning on Hadoop. Apache Mahout is one of the components
of the Hadoop ecosystem. It supports three main data science

use case: 1) collaborative filtering by mining user behavior and
makes product recommendation, 2) clustering by assigning items
and putting them into classes, such that the items belonging
to similar groups 3) classification by training the items from
existing categorization and then assigning unclassified items to
the best category [36].

Apache Flink is an open-source stream processing platform
used for distributed, high performing, and accurate data
streaming applications. Flink is developed by the Apache that
performs datasets running with on thousands of nodes with
excellent throughput and latency characteristics at large scale
[37].

Wang et al. [34] proposed parallelization of K-means
algorithm based on Spark clustering framework. They used
four datasets, and three ways to select centroid of the K-
means algorithm: randomly, sequentially and stochastically.
The evaluation of cluster efficiency and a comparison was
performed among the proposed methods based on Normalized
Mutual Information (NMI) validation measure. They reported
that the experiments on large-scale datasets and text datasets
demonstrated the effectiveness of proposed algorithms.

Kusuma et al. [35] presented an intelligent parallel K-means
algorithm based on Spark in the Hadoop platform. A parallel
K-means algorithm was applied on datasets first as RDD and
second as batch and comparing computational time between the
executions using original and batch RDD. The intelligence in
the algorithm comes from changing the original RDD to a batch
of data the instances split from the original RDD and maintains
the number of records in RDD. The operation is performed as
map and reduce used the batch of data. The comparison of
the efficiency of the cluster between intelligent K-means and
traditional K-means was evaluated using silhouette measurement
Equation 10. They concluded that the designed algorithm
could speed-up the computational time in analyzing big data
problems.

S = b − a

max(a, b)
(10)

Jain and K Jain [36] accomplished categorization of Twitter users
based on the user’s interest and implemented their approach by
Mahout over Hadoop platform. They used dataset consisted of
about thirty thousand tweets. In this study, the tweets of the
users were clustered according to their similarity. The proposed
work consists of three steps: the first, all the tweets of a user are
combined in one document. In the second, a pair of key and value
is assigned in sequence file where user name acts as a key, and
tweets act as value. In the third, the file is converted into vectors
then the K-means was applied by using cosine and Euclidean
distance measures. Experimental results of K-means and FCM
on Mahout over Hadoop frameworks showed that FCM is slower
than K-means in time execution, but gives better results. They
proved that Cosine distance is a good measure for finding the
distance in clustering text documents.

Li et al. [37] applied an improved K-means algorithm on
the context of E-commerce datasets based on Flink platform.
The improvement was performed by adopting a kernel density
option based on characteristics of density distribution. The study
concluded that the improved parallel K-means algorithm is an
efficient method to process big data in the context of e-commerce
based on the Flink framework.

vol 34 no 5 September 2019 265

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

Manzi and Tompkins [38] used parallel K-means clustering
based on the Spark platform. They implemented Word Count
and Sorting applications. The steps of the operation in the K-
means Clustering implementation are: preparation of dataset
to be parsed as text dataset, transformation parsed dataset into
3-dimensional floating points and parallelization of the iterative
process of updating the centroids on the GPU. The study
concluded that the K-means clustering is a good fit for GPU
acceleration.

In another study of Jain and K Jain [39] applied parallel K-
means and FCM algorithm on twitter dataset based on Mahout
Platform. In order to manipulate the data, the authors converted
the twitter dataset from text to vectors. The dataset was extracted
from twitter. They collected tweets from different users. The
dataset consisted of 30.000 tweets, and it clustered by K-means
and FCM algorithms. The authors compared two algorithms
according to the number of iterations and executing time. They
reported that the FCM converges in less iteration, although
it takes more time because of the more calculations when it
compared with K-means. In conclusion, FCM is slower than
the K-means algorithm in execution.

In summary, Spark, Mahout, and Flink are the file system
libraries for processing large-scale data. Since Spark processes
the data in memory, it is faster than other frameworks. Mahout
is built based on Hadoop MapReduce and stores the data
on HDFS. Due to its restriction by disk accesses, it is slow
and does not handle iterative jobs very well. Since machine
learning algorithms generally perform many iterations, this
makes Mahout run slowly for this kind of applications. Flink,
which is designed for processing streaming data, has a different
approach to memory management. Flink transfers the pages to
the disk when the memory is full. Therefore, it is faster than
Mahout. There is a lack of studies on Spark, Mahout, and Flink
file systems. More studies should be performed on these file
systems, especially clustering streaming data on Flink.

4.2 Studies of Parallelization K-Means and
FCM Using Software Libraries

In this section, a survey of studies based on software libraries is
presented such as OpenMP, CUDA, and MPI based on multicore
processors. We presented each field as an independent subsec-
tion. The processor manufacturers produce microprocessors
with separate execution units. By this development, it has
become easy to use multiple computers to work as clusters.

The clustering in multicore architecture starts with portioning
the dataset and distributing each partition among cores. Each
core computes its process according to a given algorithm, and
then the outputs requested result.

4.2.1 Studies With Multicore CPUs Using Open MP
Library

Open Multi-Processing (OpenMP) is an application program-
ming interface (API) for parallel programming that supports
multi-core computers shared memory multiprocessing program-
ming in C, C++ and FORTRAN on much architecture including
UNIX and Microsoft Windows platforms. It consists of a set of
compiler directories, library routines.

Baydoun et al. [40] implemented parallel K-means algorithm
by using several databases with different classes and features
and RGB images by using CPU and GPU. In CPU they used
both Cilk Plus (a library used for parallelization developed
by Intel) and OpenMP. They concluded that there are effects
of different clustering parameters on the performance of the
parallel K-means algorithm. These effects based on properties
of input data such as the number of clusters, number of samples,
and number of features. In fact, not always depend on these
factors but also depends on computer properties (e.g., CPU
cores, memory capacity, parallel environment, and architecture).
Finally, they found that OpenMP is more suitable than Cilk Plus
for parallelization task.

Naik et al. [41] accomplished parallel K-means algorithm by
using OpenMP. This work optimized and enhanced the execution
time without affecting the accuracy. The outliers of datasets
cause less efficiency of the clustering algorithm. In this study,
before starting parallel implementation, the outlier analysis was
performed by preprocessing data to be sorted out as an ascending
order, and after that, the sorted data was divided into partitions
to start clustering analysis process in a multi-core system for
massive datasets. After experiments were performed on three
datasets, the accuracy and execution time was reported. The
CPU time partitioning method is improved when it compared
with the sequential K-means method.

Honggang et al. [42] implemented a parallel K-means and
shift mean algorithms on two datasets. In this study, parallel
K-means consist of five steps: 1) randomly choosing k cluster
centroids and broadcast to threads. 2) each thread computes
cluster membership. 3) each thread calculates the partial sum and
weight for every cluster centroid. 4) According to the partial sum
and weights from each thread and computes the revised centroid.
5) repeat these steps until convergence. They concluded that a
linear speed-up could be achieved in up to four threads with
various parallelization techniques.

Chu et al. [43] presented various machine learning algorithms
on a multi-core system. The tested algorithms were, K-means,
logistic regression (LR), naive Bayes (NB), back propagation
(NN), ICA, PCA, Locally Weighted Linear Regression (LWLR),
Gaussian Discriminant Analysis (GDA), EM, and SVM. They
proved that the speedup factor of parallel implementation of the
algorithms is linear with an increasing number of processors
and showed that the multi-core machines are generally faster
than multi-processor machines because of the communication
internal to the chip is much less costly.

Hadian and Shahrivari [44] designed a method for clustering
large datasets based on 12-core CPU. The method splits the
dataset into small blocks. Each of these chunks is clustered,
and then the chunk clustering is aggregated to perform the final
clustering. The maximum calculations capability of a multi-
core machine was used to cluster the dataset in parallel. The
method used K-means algorithm for finding cluster centroid
and K-means++, which was helped the K-means algorithm
to find and select an optimal cluster center quickly. When
the proposed algorithm performed a single pass over the
dataset, it worked appropriately for massive datasets; hence,
the proposed method is suitable for systems with limited
memory.

In summary, OpenMP library is used for parallelization data
on multicore CPU, and it uses a scalable model that gives

266 computer systems science & engineering

A. M. JAMEL AND B. AKAY

programmers a simple and flexible interface for developing
parallel applications for platforms. The reviewed approaches
focus on the parallelization of K-means and FCM algorithms
on multicore CPU. We investigated that the main idea of
the studies is distributing the implementation task on CPU
cores to manipulate the data divided into chunks and work
simultaneously. Therefore, the authors tried to evaluate the
speed and performance by using more cores. More researches
should be performed to compare parallelization between using
the multicore approaches and the file system libraries such as
Hadoop and Spark. The evaluation of performance should be
compared according to the increasing number of clusters in the
file systems and the increasing cores in the multicore approach.

4.2.2 Studies With Multicore CPUs and Using MPI
Library

MPI is the most widely used library for exchanging messages
between computers or nodes on a distributed memory environ-
ment, and it works with many programming languages such as
C, FORTRAN, and Visual Net++. Besides, it can be used in a
cluster, local network, or many other applications.

Rahimi et al. [13] improved a parallel FCM algorithm on
(Open Source Cluster Application Resource) OSCAR software
package and on nine nodes based on the MPI library. Parallel
FCM algorithm divided the pixels of the image among the pro-
cessors in which each processor handled and manipulated with
n/p data points. The fuzzy membership function is distributed
among the processors and then used for the computation of the
membership. They reported that the parallel FCM algorithm
could even obtain good liner speed up.

Zhang et al. [45] proposed a parallel K-means clustering
algorithm based on MPI called MK-means. Data objects are
divided into N objects among processes in which each process
has N data objects. Randomly K data points are selected as
initial cluster centroids. Each object is assigned to the closest
centroid. The new centroids are calculated for each cluster. A
final centroid is generated by a merge function and the produced
result. A comparison is carried out between sequential K-
means and MK-means according to the processing time. They
concluded that MK-means is efficient in the clustering on large
datasets, and it is relatively portable and stable.

Kwok et al. [46] presented a parallel FCM algorithm based on
the Single Program Multiple Data (SPMD) model type with MPI.
After performing experiments, they compared parallel FCM
with parallel K-means algorithm and concluded that the FCM
algorithm has ideal speed-up for large datasets. According to
scale-up, the performance of parallel FCM experimentally is
proved to be excellent.

Savvas and Sofianidou [47] accomplished a parallelization
method of K-means algorithms for analyzing 1D data based
on MPI. They explored the possibility of using the MPI to
accomplish a popular clustering technique in a parallel manner.
The worker node, which works on a parallel environment on
different datasets produced the local centroids, and a number
of data points are assigned to each one. After this information
collected by the master node, the weighted arithmetic mean is
applied on the centroid list and the global centroids are found by
Equation 11.

Ci =
∑y

x=1 cxnx∑y
x=1 nx

(11)

Ramesh et al. [48] designed a parallel K-means for analyzing
agriculture dataset. They used Java programming as an MPI
to cluster the dataset according to the structure of the soil.
The topology consists of one master and five slaves. The
parallelization process starts with the master node. It reads the
data and divides it into N chunks and sends one of them to each
slave node, randomly initializes cluster centroids, sends all of the
centroids to all slaves and calculates the new cluster centroids
by taking the average. Slave nodes receive a chunk of dataset
and centroids from the master node and compute the cluster
membership of the data points assigned to it, and then send the
results back to the master node. They proved that the parallel K-
means algorithm has a better performance and time complexity
when compared with a traditional sequential K-means algorithm.

Kerdprasop and Kerdprasop [49] implemented parallel K-
means and parallel Approximate K-means algorithms based on
multicore processors by using MPI in the Erlang language.
Experiments were performed on a personal computer with
processor speed 1 GHz and 1 GB of memory. Each process
handled n/p of data points,n indicated to data points to be divided
into p parts which are the approximate size for the portion of data
that will be processed by the p independent nodes. The centroid
was updated by the master node, and the distance calculation is
the responsibility of the slave nodes. The experimental results
showed that the speedup is very high in parallel K-means of size
between 50,000 to 200,000 points with more than 30% at the
dataset.

In another study, Kerdprasop and Kerdprasop [50] carried out
a parallel clustering K-means (PKM) and Approximate parallel
K-means APKM algorithms by Erlang language based on the
MPI scheme on multi-core processors. The experiments were
performed by a desktop computer with AMD Athlon 64 X2 Dual-
Cores CPU and processor speed with 2.2 GHz and 1 GB of
memory. They concluded that the parallel K-means algorithm
method speedups the computation time when tested with a multi-
core processor. The approximation method produced excellent
results in a short period of run time.

Sanpawat and Couch [51] designed the parallelization of the
K-means algorithm based on MPI. They designed a master-slave
technique with SPMD approach on a network of workstations.
The master node process consists of choosing cluster centroids
randomly and partitioning the data into subsets, sending each
subset to each slave and receiving centroids broadcasted from
slaves. Each slave node is responsible for receiving a vector of
subset p from the master node. Each slave node calculates its
local centroids and broadcasts the mean to every other slave node.
The method computes the distance and choses new centroids, and
sends them to master node. They used dataset consists of random
numbers. They found that the time complexity of sequential K-
means is reduced after parallel implementation. Additionally,
the speedup of parallel K-means is obtained when N increases
and reaches 600,000.

Othman et al. [52] presented a parallel K-means algorithm on
DNA dataset based on MPI. They partitioned the RNA dataset on
1, 2,3,4,6 processors and artificial dataset on 1, 2, 4, 6 processors
respectively. Each p node deals with n/p data points. Each
p node performs distance calculation and centroid update in

vol 34 no 5 September 2019 267

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

parallel. The higher speedup was obtained on ribosomal RNA
dataset compared to an artificial dataset. They reported that the
parallel K-means algorithm performs well when it deals with
large datasets.

Joshi [53] proposed a parallel K-means algorithm based on
multiprocessor by assuming the SPMD model using MPI. Each
processor is manipulated with n/p dataset and the distance
calculation between point and centroid is performed in a
parallel manner. For initial centroid computation, they used the
extension of the Bisecting K-means algorithm. In the study, an
optimal level of speedup was not achieved, while the benefits of
parallelization were observed.

In summary, the reviewed studies implemented parallel K-
means and FCM algorithms based on MPI. In most of the studies,
the authors used Master-Slave architecture in which the master
divides the task among slaves. Generally, the master node is
responsible for initializing, and it calculates new centroids while
the slave node performs data point assignment process. They
used both real and artificial datasets and used a different number
of nodes in each study. The main difference between MPI and
OpenMP is that MPI is a programming platform that provides the
ability to parallelizing data over a distributed system in which an
entire program can be parallelized over a network of computers
or nodes over the same network while OpenMP provides the
ability to parallelize data over shared memory system such
as multicore processors. In MPI, since the nodes are mostly
computers, they have their memory layout and their own set of
cores while in OpenMP, the cores share memory between each
other. The advantage of OpenMP is the communication among
nodes is easy and relatively cheap.

4.2.3 Studies with GPU and CUDA

GPUs are programmable logic chips (processor) specialized
for rendering images more quickly than a CPU because of its
ability to perform parallel processing, which allows it to perform
multiple calculations at the same time. Each block of GPU has
local and shared memory, and three main memories are texture,
constant, and global.

There are three major existing GPU-based K-means algo-
rithms named UVk-means, GPU-minor, and HPk-means. UVk-
means copies all the data points to the texture memory, which
uses a cache mechanism; this way is useful to avoid the long-time
latency of the global memory. GPU-Minor stores all input data
in the global memory and load k number of cluster centers to
the shared memory. HP-k-means uses shared memory for data
that will be read multiple times and uses texture and constant
memory to utilize the cache mechanism.

Compute Unified Device Architecture (CUDA) is a program-
ming model and parallel computing platform developed by
NVIDIA for GPUs. By the programming with CUDA language,
developers can speed up computing applications. In the GPU,
the processing of applications performs in synchronal with
CPU. It runs the sequential part and GPU computes intensive
piece of the application runs of thousands of GPU cores in
parallel. Developers can use popular languages such as C++,
FORTRAN, C++, MATLAB, and Python.

Al-Ayyoub et al. [14] presented a study of the implementation
of a version of parallel FCM named brFCM on knee magnetic
resonance imaging (MRI) and lung Computer Tomography

(CT) images based on GPU. The brFCM aims to speed up
the clustering operation. It consists of two main steps: data
reduction and data clustering using the FCM algorithm. The
parallelization process using GPU consists of four steps. First,
initializing the algorithm variables and centers vector. Second,
reducing the dataset. Third, updating the centroid vector, and
finally updating the membership matrix. The authors compared
the parallel and sequential implementations of brFCM with
sequential and parallel implementations of the original FCM.
The study concluded that the parallel brFCM on GPU is 2.24
times faster than its CPU implementation and 23.43 times faster
than the parallel implementation of the traditional original FCM
on GPU.

Sirotkovi et al. [54] presented a parallel image segmentation
clustering by K-means algorithm by using CUDA on GPU.
The proposed implementation was applied on two different
CUDA and GPU new and old generation — image frames with
a resolution of 512 × 512 pixels were used as input for the
segmentation. The results were compared with the sequential
version of the algorithm implemented on the CPU. They showed
an improvement of the execution time of GPU compared with
the sequential version of the algorithm implemented on CPU.

Baker and Balhaf [55] implemented a segmentation of white
blood cell images (microscope images) by CPU, GPU, and then
by the integration of CPU and GPU. Three types of color space
are used HSI (Hue, Saturation, and Intensity), Lab, and RGB.
These are a specific range of colors that can be sensed by the
human eyes. K-means algorithm was applied on the images
based on CPU and GPU with CUDA. The process of color space
conversion from RGB to HIS and K-means implementation was
performed by GPU in parallel, and the color extraction was
performed on CPU. They concluded that the proposed hybrid
approach has a more efficient performance on CPU and GPU,
and the execution time is similar when the image size is small.
However, GPU showed its efficiency when compared with CPU
according to the increasing the size of the image. The study
reported that the execution time and accuracy is improved based
on the expression given by Equation 12.

Improvement = CPUTime/GPUTime (12)

Fakhi et al. [56] developed a new version of parallel K-
means algorithm to large-image segmentation based on a new
generation of GPU with CUDA based on (MIMD) architecture.
The role of the K-means algorithm in the clustering problem
is dividing the problem into independent sub-problems. The
process was performed on independent GPU computing units.
The initialization of cluster centroids is applied on CPU, and the
data assignment process is distributed on GPU’s. They made
a comparison according to total execution time between CPU
based K-means algorithm indicated and GPU-based K-means.
They showed that the performance of the GPU is better than the
CPU.

Cuomo et al. [57] clustered a large dataset by the K-means
algorithm based on GPU. They developed three implementations
on GPU: first, they used only one data structure to store
the data points and labels. Second, they used two different
data structures, and then they modified the way to calculate
the distance in the kernel. The study concluded that the
parallelization approach gives improvement and excellent results
in terms of execution time and speed-up.

268 computer systems science & engineering

A. M. JAMEL AND B. AKAY

Kakooei and Shahhoseini [58] designed an algorithm to find
the initial centroids and dynamic center correction method
based on GPU. Dynamic center correction is a mechanism to
dynamically change the centroid of a cluster in case the current
centers are not suitable for standard processing implementation.
The speedup and accuracy were evaluated and compared with
the previous researches results. They obtained better results than
previous algorithms.

Li et al. [59] developed two different strategies for high
and low dimensional datasets by using GPU. The first strategy
for low dimensional datasets is that the GPU on-chip registers
are utilized to minimize the memory access latency. The
second strategy for high dimensional datasets is making use
of GPU on-chip shared memory with on-chip registers. For
low dimensional datasets, an algorithm is designed to exploit
GPU on-chip registers to decrease the delay of data access.
The authors also made a comparison and presented results
of accelerated K-means and other parallel popular K-means
implementation such as HPk-means, UVk-means, and GPU-
Miner. The experimental results showed that the proposed GPU-
based K-means algorithms are three to eight times faster than the
best reported GPU-based algorithms.

Bai et al. [60] implemented the K-means algorithm on CPU
and GPU based on CUDA and SIMD architecture. The data
points assignment and k centroids re-calculation process of
traditional K-means were performed in parallel on the GPU.
The execution time of clustering processing was evaluated. They
concluded that the speed of GPU based K-means is better than
CPU based K-means.

Sharma et al. [61] proposed K-means, K-Nearest Neighbors
(knn) and Back propagation algorithms separately in parallel on
GPUs by using CUDA. They tested timing information. The
parallel implementation achieves 75x speed-up in K-means and
146x speed-up in knn algorithms, but in the backpropagation
algorithm, it does not hold useful results.

Bhavsar [62] designed a system using parallel K-means
clustering algorithm on GPU using CUDA. Two cluster numbers
10 and 20 is used. He proved that when the number of clusters
and data points increased, it provided better performance.

Zechner and Granitzer [63] accomplished a parallel K-means
clustering algorithm that runs on a hybrid architecture of CPU
and GPU. The calculation of the distance from data point to
centroids is performed on GPU in parallel, and centroids updates
are performed on CPU sequentially based on the results obtained
from GPU. The first step is preparing data points and uploading
them to the GPU. These data points are transferred only once.
Then the role of CPU is labeling the data points and updating
cluster centroids. The experimental study on synthetic data was
given, and a maximum 14x speed increase was observed.

Farivar et al. [64] carried out three distinct stages operations
for CUDA accelerated K-means algorithm. In the first stage: The
CUDA hardware is initialized by specifying the suitable host and
device memory storage area, and the initial set of centroids are
evaluated and loaded the dataset into graphic card memory. In
the second stage, each thread of the core is processed a single
data point and calculated the distance between the points. Each
centroid is computed to assign each data point to the nearest
centroid. The data points are re-assigned to the closest centroid
and computed the next centroid specification. In the third stage,

the data points are relabeled to the nearest centroid and computed
the next centroid estimation; this process is executed sequentially
in the host. After the implementation of the K-means algorithm
by CUDA programming language on an NVIDIA 8600 GT, it
concluded that a 13x speed was achieved compared with baseline
3 GHz Intel Pentium.

Bhimani et al. [65] focused on implementing the K-
means algorithm in three parallel frameworks (shared memory
OpenMP, distributed memory MPI, and CUDA-c). They
evaluated the results on small images with (300×300) pixels and
large images with (1164 × 1200) pixels. The study concluded
that the shared memory platform with OpenMP performs the
best for smaller images while a GPU with CUDA-C performs
the rest for larger images.

Kohlhoff et al. [66] designed an efficient version of K-means
algorithm. The authors mentioned the apparent limitation of
previously published highly performing high-occupancy code to
relatively low dimensions is too restrictive for some applications
and makes these implementations less useful. Hence, they
applied the K-means algorithm without putting limits on the
number of dimensions and data points and the number of clusters
based on GPU. The feature and genes datasets were employed
in the experiments. They witnessed how parallel sorting as
an intermediate step helped to balance the speed-up over wide
ranges of dimensionality, clusters, and data points. This
approach achieved high performance by applying fast parallel
sorting dataset based on parallel-prefix-sum with updating step
in a subsequent iteration. Finally, the proposed approach on
two types of GPU was compared with the implementation of
CPU. They concluded that the proposed work on GPUs obtains
a speedup of up to 200-fold over CPU reference code.

Gao et al. [67] introduced a parallel hybrid Harmony search
(HS) with the K-means algorithm named HKA for documents
clustering based on GPU with CUDA. In HKA, the fitness value
of each solution vector is specified by the Average Distance
of Documents to the Cluster centroid (ADDC). The difference
between HS and HKA is adding the K-means algorithm to its
steps for performing localized searching. The new solution
vector is generated according to the result of the K-means
algorithm. The results showed that when the cluster number
is large, the implementation of the proposed hybrid algorithm
with CUDA is 20 times faster than CPU.

Hooda and Nandal [68] presented parallel K-means algorithm
both on CPU Intel Pentium D2.0 GHz and GPU NVidia GeForce
8800. In order to use a smaller number of threads and memory
access, the two methods Forgy and Random Partition is used to
initialize and random selection of k. The study showed that GPU
is 6x faster than the CPU.

Wu and Hong [69] designed an efficient CUDA based
reinforced algorithm for K-means clustering algorithm using
triangle inequalities. This technique explored the trade-off
between memory access coalescing and load balance. Due to
the K-means algorithm performing more distance calculations,
it may lead to increasing iteration, which can remove from the
triangle inequalities method. This technique involved computing
and sorting the inter-centroid distance steps before labeling
step. In the technique, there are two matrixes ICD and RID.
The distance between every two centroids is sorted by a k*k
matrix called ICD. RID is k*k matrix representing the nearness

vol 34 no 5 September 2019 269

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

of the distances. In the labeling points process, unnecessary
calculations can be avoided by looking up the ICD and RID.
For general input dataset, they designed a hybrid K-means
algorithm. The experimental results proved that the presented
hybrid algorithm could enhance the CPU based single threaded
traditional K-means algorithm by up to 75x. They concluded
that the hybrid CUDA algorithm is scalable.

Nistane and Shende [70] introduced parallel K-means and
K-medoids algorithms based on GPU. K-Medoids centroids or
medoids is calculated by minimizing the sum of dissimilarities
between points labeled to be in a cluster and points determined
as the centroids, rather than minimizing the square distance.
The sequential and parallel performance of K-means and K-
medoids clustering algorithms was compared according to the
time elapsed. Speedup for K-means clustering is 1.55 and
for K-medoids clustering is 0.91 when the cluster size of both
is 10.

Kucukyilmaz [71] presented the parallel K-means algorithm
based on shared memory architecture. The centroid calculation
was divided into two parts. First, each processor is tried to
find partial average square errors for all centroids in a parallel
manner; the second step, the partial average results are gathered
where the processors synchronize. The experimental results
showed that the execution time increases when the size of dataset
increases. When the total number of instances is higher than
40.000, the execution time also increases linearly. Due to the
overall cost, the performance of the parallel processing cannot
obtain the accomplishment of the sequential processing if the
number of clusters is less than 10. The study concluded that
the parallel implementation performed better than the sequential
implementation did in case the total number of attributes is 90
attributes.

Wu et al. [72] implemented an acceleration of performance
of GPU for analyzing billions of data points based on the K-
means algorithm. They reported that the clustering problem
with one billion 2-dimensional data points could be processed
in less than 30 seconds per iteration compared with highly
optimized CPU version on eight processed about 6 minutes per
iteration. Furthermore, GPU-based implementation completed
the 50 iterations in 26 minutes.

Shalom et al. [73] accelerated the execution time of FCM on
large datasets based on GPU. They used multidimensional yeast
gene expression dataset — the initial steps of the algorithm are
performed by CPU. The distance calculation and new centroids
assignments are performed by GPU. The authors performed the
experiments on two different GPU cards, GeForce 8500GT and
GeForce 8800GTX. The authors made a comparison between
sequential and parallel enforcement. The experimental results
showed an up to 140X speed-up on 8800GTX GPU card
compared with the CPU enforcement, and the GPU enforcement
showed up to 73X speed-up on 8500 GT GPU card.

In summary, according to the reviewed studies, the integration
between CPU and GPU gives efficient results. In general, CPU
performs centroid updates and data labeling sequentially, while
GPU performs distance calculations in parallel. GPU based
parallelization is better than CPU based parallelization. Since
GPU is generally used for processing graphics and games, it is
recommended for image segmentation. Furthermore, CPU with
OpenMP performs best for smaller images while a GPU with
CUDA performs well for larger images.

5. ENHANCEMENTS AND IMPROVEMENTS
ON PARALLEL K-MEANS AND FCM
CLUSTERING ALGORITHMS

Due to the sensitivity of the K-means algorithm to the selection
of the initial centroids and it performs many iterations to cluster
the data, many studies published to improve the mechanism of
choosing optimal initial centroids and decreasing the number of
iterations of the K-means and FCM clustering algorithms.

5.1 Enhancements of K-Means and FCM With
Traditional Methods

Some studies suggest combining algorithms with K-means as a
hybrid algorithm such as Canopy, K-means++ algorithms and
Slope One, and others resolve the problems by parallelizing it in
parallel frameworks such as Hadoop, MapReduce and GPU to
increase efficiency.

Rathore and Shukla [74] presented an enhancement of the K-
means algorithm by performing a small amount of modification
on dataset processing technique. The approach improves the
data quality by eliminating the outlier points in datasets using
standard division method defined by Equation 13.

Threshold = x ± 2SD (13)

where x is the mean and SD is the standard deviation. They used
five different datasets. The clustering process was performed by
Hadoop and MapReduce framework. The proposed approach
was compared with the classical K-means algorithm according
to accuracy, error rate, and memory usage. The obtained
results showed that the proposed method increases the clustering
performance, and it is suitable for large data analysis.

Jinlan et al. [75] proposed refining initial centroids method to
decrease the number of iterative procedure and the parallelism
of cluster algorithms. The idea behind the refinement process is
that the K-means algorithm selected the initial cluster centroids
and then chose a small number of random samples of dataset.
The selected samples are then being clustered via K-means
to re-assign the cluster centers, and then the samples will be
re-clustered. The new centroids then considered as the refined
initial centroids. After these steps, the complexity analysis was
performed. Hence, they reported that the iteration time of the
K-means algorithm decreases, and the clustering performance is
more efficient.

Swamy et al. [76] improved the K-means algorithm by using
the initialization method originated by binary search technique
to speedup the execution time of K-means. OpenMP was used as
the parallel processing environment. The study concluded that
the proposed approach takes less processing time as compared to
other methods, and implementing parallel processing decreases
the time taken for clustering the dataset.

Liangyu et al. [77] enhanced the random selection of the
initial clustering center of K-means algorithm by carrying out
Canopy algorithm based on Hadoop and MapReduce framework.
The Canopy clustering algorithm is an unsupervised pre-
clustering algorithm implemented before the K-means clustering
algorithm. It is performed to speed up the clustering in case of
studying with large-scale datasets. The study concluded that

270 computer systems science & engineering

A. M. JAMEL AND B. AKAY

the data communication time is reduced, therefore the speed-up
ratio is increased and the efficiency is enhanced. They concluded
that the hybrid Canopy-K-means algorithm enhances clustering
accuracy of about 8%.

Xiaojing and Yuanbo [78] proposed an approach to solve
the initial centers of the K-means algorithm. Two centroids
are selected by the convex hull and the solution of the heel
point techniques. The Reuters news dataset was used as the
data source. The parallelization of the enhanced algorithm was
implemented using MapReduce for parallel processing.

Purohit and Shettar [79] developed a new enhanced K-means
algorithm method to find optimal cluster centroids. This method
took the average of all data and considered as the first centroid
and a point with maximum distance from selected centroid con-
sidered as the second centroid — the method was implemented
in MapReduce. The performance was evaluated by Silhouette
Coefficient metric in Equation 10. The study concluded that the
enhanced K-means algorithm achieved better accuracy in cluster
formation than the traditional K-means algorithm.

Akthar et al. [80] accomplished a method modification of
K-means clustering algorithm by improving the initial center.
This method was applied by selecting optimum k data points in
highly dense areas as initial cluster centers by implementing
two techniques. The experiment was performed by using
MapReduce and Hadoop framework. They compared proposed
techniques by performance measurements including Precision,
Recall, Macro Average Precision (MaAP) and Macro Average
Recall (MaAR), Micro Average Precision (MiAP) and Micro
Average Recall (MiAR), F-measure and execution time given in
Equations 14–18, respectively.

Precision = # of relevant records reterived in a cluster

Total # of records reterived in that same a cluster
(14)

Recall = # of relevant records reterived in a cluster

Total # of relevant records in the database
(15)

M i A P =
∑k

i=1 Correctly reterived documments in cluster Ci∑k
i=1 Total # of reterived documments in cluster Ci

(16)

MiAR =
∑k

i=1 Correctly reterived documments in cluster Ci∑k
i=1 Total # of correct documments of cluster Ci in the database

(17)

f measure = 2 ∗ P ∗ R
P + R

(18)

The experimental test was applied on a single system and then
on three systems. They concluded that enhanced methods have
better precision, average precision/recall, recall, micro/macro,
less execution time, and higher f-measure count.

Zhang and Xia [81] implemented a new method to improve
the K-means algorithm in choosing initial centroids to avoid
the randomness of the K-means algorithm in choosing initial
centroid. They set the initial clustering number as

√
N . The

experiments were performed on artificial datasets. It showed
that the enhanced K-means algorithm is excellent compared with
random based K-means algorithm.

Saini et al. [82] carried out an algorithm named DisK-
means in parallel based on the MapReduce model and
Hadoop. They tried to reduce the number of iterations and
selecting initial cluster centroids. The proposed algorithm
was compared with the traditional K-means algorithm. The
experiments were validated according to the cluster quality
and execution time. In the cluster quality, the within-cluster
sum of square metric was tested to show the efficiency
of the outcomes. The study concluded that the proposed
algorithm was reduced time execution when it compared to
traditional K-means, and when the k is increases execution time
decreases.

Lin et al. [83] introduced a hybrid parallel algorithm by
combining K-means and Slope One on Hadoop and MapReduce
framework. The goal of this study is to improve efficiency and
consume less time in recommendation systems. The clustering
users process was established on ratings of users by using Slope
One algorithm to estimate the ratings of the target user’s items.
The authors compared a typical sequential hybrid and proposed
parallel hybrid recommendation algorithm in terms of time
consumption of different clusters. They reported that when the
number of Hadoop nodes increases, the time consumption of the
parallel algorithm decreases.

Thangarasu and Inbarani [84] proposed a modification of the
K-means algorithm named Parallel Rough K-means (MPRK).
This algorithm used to cluster large text document dataset. They
concluded that the proposed algorithm provides better results
and a proper method of clustering with less computational
steps.

Dai [85] presented an implementation of the hybrid canopy
and FCM algorithm based on Hadoop MapReduce named
canopy-FCM algorithm. Due to the time-consuming of FCM
in choosing an optimal initial center, the author utilized canopy
algorithm to avoid this problem. The Canopy algorithm was
used as the initialization of the FCM algorithm. The author
parallelized two datasets for the experiment. The precision,
recall, and speedup metrics were used to evaluate the quality
of the clustering results. A comparison was carried out between
canopy-FCM and FCM. They reported that when the number of
the nodes in the Hadoop cloud platform is the same, the execution
efficiency of the canopy-FCM algorithm is higher than FCM
algorithm.

Yu and Ding [86] carried out an enhancement of hybrid
FCM and Canopy algorithm to overcome the sensitivity of
FCM in choosing initial clustering center. The Canopy
algorithm was used to choose centroids. They improved
Canopy-FCM algorithm by using max-min principle based on
MapReduce to avoid the blindness of the Canopy algorithm.
The authors reported that the improved Canopy-FCM algorithm
based on MapReduce has better clustering quality and run
more quickly than Canopy-FCM. Additionally, FCM algorithm
based on MapReduce and also has better speed-up ratio
than the Canopy-FCM based on the standalone (one) Hadoop
node.

In summary, the reviewed studies focused on enhancing K-
means and FCM algorithms. Because of K-means and FCM
algorithms has difficulty in finding initial centroids, in order to
avoid this problem, the clustering algorithms are integrated with
other algorithms as a hybrid approach.

vol 34 no 5 September 2019 271

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

5.2 Enhancements of K-Means and FCM
Algorithms With Metaheuristic Algorithms

Most of the studies introduce hybrid algorithms by combining
clustering algorithms with metaheuristic algorithms such as
Artificial Bee Colony (ABC), Particle Swarm Optimization
(PSO), ant colony optimization (ACO), Firefly and genetic
algorithms (GE). These hybrid algorithms are generally used
for finding optimal centroids to improve the efficiency and
scalability of the clustering algorithms.

Mathew and Vijayakumar [87] enhanced the K-means algo-
rithm by utilizing the ability of the Firefly algorithm in finding
initial centroids. The algorithm assigns each data point to
clusters by using standard cluster validation techniques. They
focused on finding optimal cluster centroids using the global
optimum found by Firefly algorithm. They compared the
modified parallel K-means algorithm (MPKM) with parallel
K-means (PKM) and concluded that MPKM performance is
better than PKM. The performance of MPKM was evaluated by
classification error percentage (CEP) metric, which is defined
by Equation 19.

CEP = m

n
∗ 100 (19)

The effectiveness of the proposed algorithm was evaluated
by metrics and evaluation Indexes by Accuracy, Davies-Bouldin
(DB), Between Sum Squares (BSS) and WCSS Equations 20–23,
respectively.

Accuracy = Number of Correct predictions

Total od all cases to be predicted
(20)

DB = 1

n

n∑
i=1

max

{
Sn (Qi) + Sn

(
Q j
)

Sn
(
Qi , Q j

}
(21)

BSS =
k∑

i=1

|Ci | (m − mi)
2 (22)

WC SS =
k∑

j=1

n∑
i=1

∥∥∥x j
i − Ci

∥∥∥2
(23)

Wang et al. [88] proposed a combination of PSO and parallel
K-means algorithm named K-PSO implemented on Hadoop
and MapReduce. The K-means algorithm utilized the PSO to
improve its global search capability and increase its ability to
process large amounts of data. They compared K-PSO with
parallel and sequential K-means. The parallel K-PSO and
parallel K-means efficiency are close to the performance of
the sequential K-means, which is incompatible with what they
initially expected. A possible reason is that the datasets have not
divided into multiple splits.

Chaturbhuj and Chaudhary [89] implemented a combination
of PSO with the K-means algorithm as a hybrid method to make
K-means efficient and effective by solving its problem in select-
ing optimal initial centroids. The approach was implemented on
Hadoop and MapReduce framework. In the PSO algorithm,
the position of each particle represents k centroids. When
PSO algorithm reached the maximum number of iterations,
the current global best position chosen as the optimal initial
centroids. They reported that the proposed algorithm is efficient
and effective in clustering large scale of data.

M A and Abdul Nazeer [90] presented a combination of
PSO with parallel K-means algorithm as a hybrid method to
analyze large scale datasets by using Hadoop and MapReduce
framework. The proposed method found the initial centroids of
K-means and removed outliers from datasets using the convex
hull approach. The authors evaluated the performance of their
study according to the Sum of Square ratio (SS) Equation 24.

SS = BSS/TSS (24)

where TSS is defined by Equation 25:

TSS = BSS + WCSS (Constant) (25)

They concluded that when the iteration number reduced, the
performance of the proposed hybrid method increased compared
with the enhanced parallel K-means clustering algorithm with
MapReduce model (IPKCA).

In another study of Mathew and Vijayakumar [91] proposed
a hyper method based on K-means and firefly algorithms.
They used Firefly to choose initial centroids of parallel K-
means algorithm and applied the proposed method on four
datasets. They evaluated the proposed hybrid method with the
metrics:accuracy defined by Equation 20, Davies-Bould in index
defined by Equation 21, BSS defined by Equation 22, WCSS
defined by Equation 23, Dunn index (DI) defined by Equation
26, and Silhouette Coefficient metrics defined by Equation 13.
The authors compared the modified parallel algorithm MPKM
with parallel K-means PKA and calculated the speedup as given
in Equation (1).

DI = min1≤i≥n

{
min1≤ j≤n,i= j

{
d (ci , ci)

max (d ′ (ck))1≤k≤n

}}
(26)

Niknam and Amiri [92] accomplished an effective hybrid
algorithm established on K-means PSO and ACO algorithm
to cluster analysis named FAPSO-ACO-K. The PSO and
ACO algorithms were utilized to determine K-means’s optimal
centroids. The algorithm was carried out and tested on several
datasets. From the experimental results, the study concluded
that the performance of the presented algorithm is better than
the other stochastic algorithms such as ACO, GA, PSO, SA, and
ABC.

Bhavani et al. [93] introduced a hybrid algorithm combining
ACO and DE with the K-means algorithm named parallel K-
means-DE-ACO and DE-K-means. The proposed approach
aims to cluster genome sequence on Hadoop and MapReduce
framework. The approach consists of three steps: storage
of DNA sequences of genomes, feature signifier extraction
for all genomes using MapReduce and clustering genome
sequences by hybrid DE-K-means and DE-ACO-K-means
algorithms. The study concluded that according to the speed of
convergenceand accuracy results, DE-ACO-K-means clustering
algorithm converges faster and more accurate than DE-K-means
algorithm.

Xiufeng and Changzheng [94] proposed a hybrid method
by combining K-means and a pseudo-parallel GA algorithm
(PPGA). Multiple populations can run by parallel GA algorithm
on a single processor so that the method divided the initial
population into several subpopulations. The subpopulations
were improved independently according to the traditional

272 computer systems science & engineering

A. M. JAMEL AND B. AKAY

process of GA and using of chromosome retreading. The
proposed approach was examined in the analysis of big data.
The study concluded that the proposed algorithm has higher
convergence, accuracy, and speed. They proved that it is a
feasible and efficient clustering algorithm.

Al-Shboul and Myaeng [95] carried out a hybrid algorithm
combining K-means with GA algorithm to solve the K-means
problem in selecting optimal initial centroids and to avoid its
convergence to local minima. They proposed two approaches,
GA initializes KM (GAIK), and KM initializes GA algorithm
(KIGA). A comparative research study was carried out among
the GA-based Clustering Algorithm (GCA), GAIK, KIGA,
and FCM algorithms. In GKIK approach, GA algorithm was
executed to start initial value of K-means algorithm to minimize
the iteration numbers of K-means. In the KIGA approach, K-
means was utilized to initialize the GA algorithm. The study
concluded that KIGA is better and achieves high clustering
accuracy than other algorithms.

Ahmadyfard and Modares [96] offered a hybrid algorithm
combining PSO with the K-means algorithm named PSO-KM
to solve K-means initialization problem by utilizing the ability
of PSO’s convergence to global minima. The study concluded
that the proposed algorithm achieved good results than K-means
and PSO algorithms.

Armano and Farmani [97] implemented a combination of
K-means and ABC algorithms as a hybrid approach named
k-ABC. The approach tried to improve the ability of the K-
means algorithm in finding global optimum clusters by taking
advantages of the ABC algorithm. The study concluded
that the presented algorithm could find a global optimum
cluster.

Karol and Mangat [98] proposed a hybrid algorithm combin-
ing PSO with K-means and FCM named KPSO and FCPSO,
respectively. The proposed approach was tested on two real
datasets. In general, the combined method starts with initializing
the clusters and centroids generated by clustering algorithms,
and then PSO runs on the clusters to obtain globally optimum
clusters. The authors compared the proposed approaches and
with traditional K-means and FCM. By using the F-measure
metric, they reported that KPSO and FCPSO give more valid
results as compared to all other tested algorithms on both datasets
and also reported that FCPSO algorithm gives even better results
than KPSO algorithm.

Izakian and Abraham [99] presented a hybrid approach by
combining FCM and fuzzy PSO named FCM-FPSO. They
utilized PSO to avoid the sensitivity of initial centroids of FCM
algorithm. The authors applied the proposed technique on
five real datasets. They reported that the hybrid FCM–FPSO
algorithm obtained better results compared to FPSO and FCM
algorithms in all of the datasets and showed that it could avoid
getting stuck in local optima.

In this section, we reviewed combined approaches with
metaheuristic algorithms and clustering algorithms. More study
may be performed on the Spark environment. Because it
has the ability to perform processes faster than Hadoop since
spark processes the data in the memory, rather than a hard
drive. The reviewed works showed that heuristic algorithms
could help clustering algorithms in the initialization of the
centroids.

6. APPLICATIONS BASED ON PARALLEL
K-MEANS AND FCM CLUSTERING
ALGORITHMS

Aitali et al. [15] proposed a parallel FCM algorithm with
bias field correction named PBC-FCM for MRI brain image
segmentation. The approach was implemented on GPU cards
GT740m, gtx760, and gtx580, respectively. The MRI images
were partitioned into pixels over the GPU, and each one is
processed by one thread. The proposed algorithm starts by
initializing the variables and centroids vector and transferring
the data from CPU to GPU. One of two kernels calculates the
membership function while the second kernel one calculates the
conjectural bias field. The membership function calculation and
centroid supdating are performed in GPU. The vector of cluster
centers is calculated in CPU, and then transferred to GPU. The
study reported that the GPU-based hardware is suitable for image
segmentation, and GTX580 architecture provides high speedup
compared to the others.

Zhang et al. [100] accomplished a parallel K-means
clustering algorithm based on master and slave model. The
computing environment is built by network stations and PVM
for communication between nodes. The master node distributes
dataset and produces new centroids, and the slave node allocates
the data and performs a message transfer routine of PVM that is
used to realize the relocation of the data among processors. The
study concluded that the real acceleration ratio was produced
and computing time was larger than communication time.

Rashmi et al. [101] carried out a parallel block approach based
on parallel K-means algorithm to boost in computational time
for processing the remote sensing images with more than 1000×
1000 pixel dimension. The parallel block operation divided the
input image into sub-images as two, four, eight blocks. Block
processing approach was applied in parallel by distributing the
task among the cores. The study concluded that when the number
of cores increases, the proposed work gets more efficient and also
the speed up increases with a rise in the size of an image pixel
dimension.

Jian et al. [102] implemented a parallel K-means algorithm on
MapReduce in Hadoop framework to analyze big data produced
from customers’ responses. WebCrawler was used to gather
information from the internet, and then Hadoop was equipped
with cloud computing servers for distributed computing. A
neural network was employed to command the server to read
the reviews and words like “Awesome”, “Nice”, and “Great”.
K-means algorithm was used to sort and group similar words
and updates the database. Finally, the result was visualized as
a Graphical User Interface (GUI) to customers. The study’s
outcomes do reading and understanding the reviews easy, and
the intelligent learning system allows the user to understand and
realize the goodness of the service easily.

Kraj et al. [103] presented a parallel K-means clustering
algorithm in a high-performance multi threaded application
(ParaKMeans). This software consists of the GUI, the appli-
cation programming interface (API), and the Parallel Cluster
web service. The software is designed for clustering genes
in a laboratory in a modular way to provide both deployment
flexibility in the user interface as well as it works as a client-
server model. The experimental results showed that the speed of

vol 34 no 5 September 2019 273

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

Figure 7 Distribution of publication with respect to study fields.

execution ParaKMeans increases when multiple computer nodes
used.

Michopoulou et al. [104] accomplished a segmentation
method of both normal and unfastened lumbar intervertebral
discs of the spine from MRI images by FCM. In order to
perform semi-automatic atlas-based disk segmentation, they
used three different versions of the FCM algorithm. These
versions were (atlas-fact, atlas-robust-fcm, (atlas-RFCM) and
elastic-atlas-RFCM). For quantification and characterization of
disc unfastened severity, mentioned approaches are used for
utilizing the computer-aided diagnosis system and could be
helped in computer-assisted spine surgery. The steps of the
proposed approach are the registration of the image by the rigid
landmark-based technique and the integration with the FCM
algorithm. For each pixel of the disc image, the tissue class
membership values are calculated. RFCM is an extension of
FCM that forces the membership values to be like neighboring
values. The RFCM produced spatially smooth membership
functions. The proposed approach assumed a locally related
and globally smooth transformation. The authors reported that
better time efficiency and segmentation accuracy was provided
by the atlas-RFCM approach.

In summary, K-means and FCM algorithms are commonly
used in various applications. As we reviewed in this section, they
are used in remote sensing, hotel management, and customer
recommendation systems, gens clustering, and medical applica-
tions. Since K-means and FCM algorithms are easy to apply
and implement, they still have potential in many research fields
related to data analysis.

7. CONCLUSION

Due to the inefficiency and time consumption of sequential
algorithms in analyzing large-scale datasets, it is essential to
use parallel implementations of clustering algorithms in which
the data is divided into smaller blocks, and each is assigned
to a computing node. In the literature, some parallelization

studies have been performed on K-means and FCM algorithms
to improve their efficiency. In this study, we carried out a
systematic and detailed review to obtain relevant literature on
the implementations of parallel K-means and FCM algorithms.
The number of reviewed papers is approximately 92, which are
published between 2000 and 2018. As shown in Figure 7, among
92 papers reviewed; 23 papers are on the implementation of
parallel K-means, and FCM algorithms on Hadoop,MapReduce,
Spark, Mahout, and Flink frameworks. 20, 10, and 6 papers are
implemented on GPU, MPI, and CPU, respectively.

There are 27 papers are about enhancing and improving
parallel K-means and FCM algorithms. Among them, 13 papers
are related to the enhancements by metaheuristic algorithms, and
14 of them are about improvements by traditional techniques,
and the last 6 papers are about applications of parallel K-
means and FCM algorithms. The distribution of publications
concerning years is shown in Figure 8. The number of papers
tends to increase year by year. Additionally, we summarized and
classified the reviewed studies according to utilized algorithms
and its purpose and application, as is shown in Table 1.

It was observed that the implementation of parallel K-means
and FCM clustering algorithm in various frameworks achieves
excellent performance in analyzing large-scale datasets. From
Figure 7, it can be stated that the most popular research
field in parallel K-means and FCM clustering algorithms are
parallelizations on CPU, GPU-based hardware, and using MPI
library. Since Spark is a new platform, the number of studies on
this platform is limited. Additionally, it is seen that since the K-
means algorithm cannot find optimal initial value, most studies
have attempted to enhance and improve the K-means algorithm
by combining it with different techniques and other algorithms
to improve the optimal value and global search capability. It
should be noted that there are several shortcomings which are
open and can be studied in this field. Among them is that there is
a limited number of researches regarding the Spark and Mahout
parallel platforms which have high efficiency in solving machine
learning problems. Enhancing the efficiency of the K-means and
FCM algorithms regarding their execution times are not at the
level of expected. Hence, new and more powerful techniques

274 computer systems science & engineering

A. M. JAMEL AND B. AKAY

Figure 8 Distribution of publications with respect to years.

Table 1 Categorical view of the algorithms and their applications.

Algorithm Purpose and Application Publication

Parallel K-means based on MapReduce Enhancement parallel K-means algorithm
performance.

Moertini & Venica (2016) [19]

Analyze big data. Zhao et al. (2009) [20]
Solve the traffic problem of subarea roads
in Beijing caused by large scale taxi
movements.

Xia et al. (2015) [21]

Improvement of parallel K-means
algorithm.

Liao et al. (2013) [22]

Implement parallel K-means algorithm on
cloud computing.

Liu & Cheng (2012) [23]

The parallel K-means algorithm
implemented on a distributed network
with one master node and seven slave
nodes.

Anchalia (2013) [26]

Implement a sequential and parallel
K-means algorithm on image file.

Lv et al. (2010) [11]

Cluster large-scale Chinese commodity
information web.

Yushui & Lishuo (2015) [27]

Implementing parallel K-means on spatial
data.

Zhong & Liu (2016) [28]

Cluster Moroccan users in the social
network Twitter.

Abdouli et al. (2017) [29]

Implement parallel K-means algorithm on
cloud computing.

Hao & Ying (2011) [30]

Implement a parallel representation of
K-means.

Bandyopadhyay et al. (2017)
[31]

Test the performance of parallel K-means
algorithm.

Kang & PARK (2015) [32]

Parallel K-Medoids algorithm based on
MapReduce

Acceleration of K-Medoids algorithm. Jiang & Zhang (2014) [24]

Parallel K-means + FCM algorithms
based on MapReduce

Implementing Parallel K-means and FCM
algorithms on land price dataset in
Taichung City.

Lin et al. (2017) [25]

vol 34 no 5 September 2019 275

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

Table 1 continued

Algorithm Application Publication

Implement the parallel FCM algorithm on
five different datasets with different sizes
based on multi-node Hadoop cluster and
MapReduce using Amazon Elastic Cloud
Computing (Amazon EC2).

Garg & Trivedi (2014) [17]

Parallel Canopy, K-means and
FCM algorithm based on
MapReduce

Implementing Canopy, FCM, and
K-means algorithms on Mahout and
Hadoop framework.

Hai (2017) [8]

Parallel K-means based on Spark Implementing a parallel representation of
K-means.

Wang et al. (2016) [34]

Intelligent K-means algorithm. Kusuma et al. (2016) [35]
Implement versions of Word Count and
Sort applications.

Manzi & Tompkins (2016) [38]

Parallel K-means and FCM based
on Mahout over Hadoop Platform

Categorization of twitter users. Jain & S K Jain (2014a) [39]

Clustering similar Twitter Users. Jain & S K Jain (2014b) [36]
Parallel K-means based on Flink
platform

Clustering context of E-commerce
datasets.

Li et al. (2017) [37]

Parallel K-means based on
Multicore CPU

Clustering several databases with different
classes and featured and an RGB image of
peppers.

Baydoun et al. (2016) [40]

Enhancement parallel K-means algorithm
performance.

Naik et al. (2013) [41]

Analyze billions of data points. Wu et al. (2009) [72]
Testing the speedup factor. Chu et al. (2007) [43]

Parallel K-means + shift mean
algorithms based multicore CPU

Clustering Two datasets. Wang et al. (2008) [42]

Parallel K-means, k-mean++
based multicore CPU

Clustering large datasets. Hadian & Shahrivari (2014) [44]

Parallel K-means based on MPI Implementing parallel and sequential
versions on dataset.

Zhang et al. (2011) [45]

Analyzing 1D data. Savvas & Sofianido (2014) [47]
Analyzing agriculture dataset. Ramesh et al. (2010) [48]
Design parallel clustering K-means PKM
and Approximate parallel K-means
APKM algorithms by Erlang language.

Kerdprasop & Kerdprasop
(2010,a) [49]

Designi parallel clustering K-means PKM
and Approximate parallel K-means
APKM algorithms by Erlang language.

Kerdprasop & Kerdprasop
(2010,b) [50]

Improving time complexity speedup of
parallel K-means is increase when N
increases.

Kantabutra & Couch (2000) [51]

Implementing parallel K-means algorithm
on DNA dataset.

Othman et al. (2004) [52]

Implementing on three datasets. Joshi (2013) [53]
Parallel FCM based on MPI Implementing on large-scale dataset. Kwok et al. (2002) [46]

Improved a parallel FCM algorithm on
OSCAR (Open Source Cluster
Application Resource) software package.

Rahimi et al. (2004) [13]

Parallel K-means based on GPU Image segmentation. Sirotkovic et al. (2012) [54]
White blood cell image segmentation. Baker & Balhaf (2016) [55]
Segmentation large-image. Fakhi et al. (2017) [56]
Clustering large dataset. Cuomo et al. (2017) [57]
Finding initial centroid and dynamic
center correction.

Kakooei & Shahhoseini (2014)
[58]

276 computer systems science & engineering

A. M. JAMEL AND B. AKAY

Table 1 continued

Algorithm Application Publication

Speeding up of parallel K-means
algorithm.

Li & et al. (2013) [59]

Implementing K-means algorithm in CPU
and GPUs.

Hong-tao et al. (2009) [60]

Implementing with CUDA programming
language and evaluating K-means
performance.

Bhavsar (2017) [62]

Parallel K-means in hybrid based on CPU
and GPU.

Zechner &Granitzer (2009) [63]

Acceleration of the K-means algorithm. Farivar et al. (2008) [64]
Implementing the K-means algorithm in
three parallel frameworks (shared memory
Open-MP, distributed memory MPI, and
CUDA-c).

Bhimani et al. (2015) [65]

Designed an efficient version of K-means
algorithm without putting limits on the
dimensions number, data points and a
number of clusters.

Kohlhoff et al. (2013) [66]

Document clustering. Gao et al. (2012) [67]
The implementation of the proposed
hybrid algorithm with CUDA is 20 times
faster than CPU.

Hooda1 & Nandal (2014) [68]

Designing an efficient CUDA-based
reinforced algorithm for K-means
clustering using triangle inequalities.

Wu and Hong (2011) [69]

Implementing a K-means algorithm in
parallel based on shared memory
architecture.

Kucukyilmaz (2014) [71]

Parallel FCM Version of FCM named brFCM on lung
CT and knee MRI images based on GPU
in parallel.

Al-Ayyoub et al. (2015) [14]

Multidimensional yeast gene expression
dataset.

Shalom et al. (2008) [73]

MRI brain image segmentation. Kraj et al. (2008) [103]
FCM Lumbar intervertebral discs image

segmentation.
Michopoulou et al. (2009) [104]

Parallel K-means + knn + Back-
propagation algorithms

Implementing with CUDA programming
language.

Sharma et al. (2016) [61]

Parallel K-means + k-mediods
based on GPU

Implementing parallel K-means and
k-mediods.

Nistane & S. Shende (2013) [70]

Parallel K-means + Firefly Enhancing Parallel K-means. Mathew & Vijayakumar (2014)
[91]

Clustering data, Improving clustering
accuracy by optimization of centroid.

Mathew & Vijayakumar (2015)
[87]

Parallel K-means + PSO Improve initial centroid of K-means. Wang et al. (2012) [88]
Solving K-means algorithm’s problem in
selecting optimal initial centroids.

Chaturbhuj & Chaudhary (2016)
[89]

Improve initial centroid of K-means and
evaluate the result by Sum of Square SS
measurement.

M A & K. Abdul Nazeer (2017)
[90]

Solving K-means initialization problem. Ahmadyfard & Modares (2008)
[96]

K-means + FCM + PSO Clustering text document. Karol & Magnat (2013) [98]
FCM + PSO Solving FCM initialization problem. Izakian & Abraham (2011) [99]

vol 34 no 5 September 2019 277

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

Table 1 continued

Algorithm Application Publication

K-means + ACO + PSO Solving choosing optimal centroid
problem.

Niknam &Amiri (2010) [92]

Parallel K-means + ACO + DE Clustering DNA genome sequence. Bhavani et al. (2010) [93]
K-means + GE algorithm Solving the inefficiency of K-means

algorithm in choosing optimal initial
centroid.

Xiufeng & Changzheng (2010)
[94]

Solving K-means problem in selecting
optimal initial centroids.

Al-Shboul, & Myaeng (2009) [95]

K-means + Artificial Bee Colony Improve the ability of K-means algorithm
in finding global optimum.

Armano & Farmani (2014) [97]

Parallel K-means algorithm Enhancement of the K-means algorithm
performance by performing a small
amount of modification on dataset.

Rathore & Shukla (2015) [74]

Refining of K-means algorithm and
parallelize it.

Jinlan et al. (2005) [75]

Improving K-means algorithm by using
initialization method originated by using
binary search technique and to speedup
execution time of K-means.

Swamy et al. (2015) [76]

Modification of K-means clustering
algorithm by improving initial center.

Akthar et al. (2016) [80]

Clustering large text document dataset. Thangarasu & Inbarani (2016)
[84]

Parallel K-means algorithm and compare
the efficiency with sequential version.

Zhang et al. (2006) [100]

Implemented parallel block approach to
solve problem according to increasing in
computational time for processing the
remote sensing images for pixel
dimension more than 1000 × 1000.

Rashmi et al (2016) [101]

Big data analysis in hotel customer
response.

Jian et al. (2017) [102]

Implementation of Parallel K-means
algorithm suitable for general laboratory
use.

Aitali et al. (2016) [15]

Parallel K-means + Canopy algo-
rithm

Improve the random selection of initial
clustering center K-means algorithm by
Canopy algorithm.

Liangyu et al. (2015) [77]

Parallel FCM + Canopy Utilize canopy algorithm to generate
cluster center of FCM.

Dai (2016) [85]

Used Canopy algorithm’s ability in
choosing cluster center.

Yu & Ding (2015) [86]

Parallel K-means + Slope One
algorithms

Improving the efficiency and process less
time consuming in recommendation
system algorithm.

Lin et al. (2014) [83]

K-means algorithm Solving initial centers of K-means
algorithm.

Xiaojing & Yuanbo (2017) [78]

Finding optimal cluster centroid. V. Purohit & Shettar (2017) [79]
Enhancement of parallel K-means
algorithm for clustering very large
datasets.

Boukhdhir et al. (2016) [33]

Improving initial canter of K-means
algorithm.

Chen & Shixiong (2009) [81]

Reducing the number of iterations and
selecting initial cluster centroids

Saini et al. (2016) [82]

278 computer systems science & engineering

A. M. JAMEL AND B. AKAY

and tools to increase efficiency and decrease the execution time
are required in this field.

Furthermore, regarding the datasets, clustering non-linearly
separated datasets are not stated in the reviewed papers.
Therefore, there is a gap on clustering non-linearly big datasets
by K-means or kernel K-means, which is our future work.
Additionally, a survey on the other clustering algorithms can
be future work as well.

REFERENCES

1. Zaki MJ (2000). Parallel and Distributed Data Mining: An Intro-
duction. Springer-Verlag Berlin Heidelb 1–23. doi: 10.1007/3-
540-46502-2_1.

2. Setiawan A, Budhi GS, Setiabudi DH, Djunaidy R (2017).
Data Mining Applications for Sales Information System Using
Market Basket Analysis on Stationery Company. In: 2017
International Conference on Soft Computing, Intelligent System
and Information Technology (ICSIIT). pp 337–340.

3. Paul S (2011). Parallel and Distributed Data Mining. InTech.
4. Xiao H (2010). Towards parallel and distributed computing in

large-scale data mining: A survey. Parallel Comput 1–30.
5. Paul S (2010). An Optimized Distributed Association Rule

Mining Algorithm in Parallel and Distributed Data Mining with
XML Data for Improved Response Time. Int J Comput Sci Inf
Technol. doi: 10.5121/ijcsit.2010.2208.

6. Çelik A, Özmen A (2009). A Comparative Study On Distributed
Parallel Systems: Pvm And Mpi. In: 5. Uluslararası Ýleri
Teknolojiler Sempozyumu. pp 13–15.

7. Zamanifar K, Nematbakhsh N, Sadjady RS (2010). A new
load balancing algorithm in parallel computing. 2nd Int
Conf Commun Softw Networks, ICCSN 2010 449–453. doi:
10.1109/ICCSN.2010.27.

8. Hai M (2017). A Performance Comparison Study of Parallel
Clustering Algorithms in Cluster Environments. In: IEEE 2nd
International Conference on Big Data Analysis. pp 307–311.

9. Flynn MJ (1966). Very High-Speed Computing Systems. In:
Proceedings of the IEEE. pp 1901–1909.

10. Anantathanavit M, Munlin M (2015). Using K-means radius
particle swarm optimization for the travelling salesman problem.
IETE Tech Rev (Institution Electron Telecommun Eng India)
33:172–180. doi: 101080/02564602.2015.1057770.

11. Lv Z, Hu Y, Zhong H, Wu J (2010). Parallel K-Means Clustering
of Remote Sensing Images Based on MapReduce. WISM 2010,
LNCS 6318 162–170.

12. Golghate AA, Shende SW (2014). Parallel K-Means Clustering
Based on Hadoop and Hama. IJCAT Int J Comput Technol 1:33–
37.

13. Rahimi S, Zargham M, Thakre A, Chhillar D (2004). A Parallel
Fuzzy C-Mean algorithm for Image Segmentation. IEEE Annu
Meet Fuzzy Information, NAFIPS 04 234–237.

14. Al-Ayyoub M, Abu-Dalo AM, Jararweh Y, et al (2015). A GPU-
based implementations of the fuzzy C-means algorithms for
medical image segmentation. J Supercomput 71:3149–3162. doi:
10.1007/s11227-015-1431-y.

15. Aitali N, Cherradi B, El Abbassi A, et al (2016). Parallel Imple-
mentation of Bias Field Correction Fuzzy C-Means Algorithm
for Image Segmentation. Int J Adv Comput Sci Appl 7:375–383.

16. Choudhry MS, Kapoor R (2016). Performance Analysis of Fuzzy
C-Means Clustering Methods for MRI Image Segmentation. Pro-
cedia Comput Sci 89:749–758. doi: 101016/j.procs.2016.06.052.

17. Garg D, Trivedi K (2014). Fuzzy K-mean clustering in MapRe-
duce on cloud based hadoop. Proc 2014 IEEE Int Conf Adv
Commun Control Comput Technol ICACCCT 2014 1607–1610.
doi: 10.1109/ICACCCT.2014.7019379.

18. Hurwitz J, Nugent A, Halper F, Kaufman M (2013). Big data for
dummies.

19. Moertini V, Venica L (2016). Enhancing Parallel k-Means Using
Map Reduce for Discovering Knowledge from Big Data. IEEE
Int Conf Cloud Compuing Big Data Anal 81–87.

20. Zhao W, Ma H, He Q (2009). Parallel K -Means Clustering Based
on MapReduce. CloudCom 674–679.

21. Xia D, Wang B, Li Y, et al (2015). An Efficient MapReduce-Based
Parallel Clustering Algorithm for Distributed Traffic Subarea
Division. Hindawi Publ Corp Discret Dyn Nat Soc.

22. Liao Q, Yang F, Zhao J (2013). An Improved parallel K-means
Clustering Algorithm with MapReduce. In: ICCT. pp 764–768.

23. Liu S, Cheng Y (2012). Research on K-Means Algorithm Based
on Cloud Computing. In: International Conference on Computer
Science and Service System. pp 1762–1765.

24. Jiang Y, Zhang J (2014). Parallel K-Medoids Clustering Algo-
rithm Based on Hadoop. In: IEEE 5th International Conference
on Software Engineering and Service Science.

25. Lin C, Liu J, Peng T (2017). Performance Evaluation of Cluster
Algorithms for Big Data Analysis on Cloud. In: 2017 IEEE
International Conference on Applied System Innovation IEEE-
ICASI. pp 1434–1437.

26. Anchalia PP, K Koundinya A, Srinath NK (2013). MapReduce
Design of K-Means Clustering Algorithm. In: International
Conference on Information Science and Applications (ICISA).

27. Yushui G, Lishou Z (2015). K-means Clustering Algorithm
for Large-scale Chinese Commodity Information Web Based
on Hadoop. In: 14th International Symposium on Distributed
Computing and Applications for Business Engineering and
Science. pp 256–259.

28. Zhong Y, Liu D (2016). The Application of K-Means Clustering
Algorithm Based on Hadoop. In: IEEE International Conference
on Cloud Computing and Big Data Analysis. pp 88–92.

29. Abdouli AEL, Hassouni L, Anoun H (2017). Mining Tweets
of Moroccan Users using the Framework Hadoop, NLP, K-
means and Basemap. In: Intelligent Systems and Computer Vision
(ISCV).

30. Hao C, Ying Q (2011). Research of Cloud Computing based
on the Hadoop platform. In: International Conference on
Computational and Information Sciences. pp 181–184.

31. Bandyopadhyay SS, Halder AK, Chatterjee P, et al (2017). HdK-
means: Hadoop based parallel K-means clustering for big data.
In: 2017 IEEE Calcutta Conference (CALCON). pp 452–456.

32. Kang Y, Park YB (2015). The performance evaluation of k-
means by two MapReduce frameworks, Hadoop vs. Twister. In:
International Conference on Information Networking (ICOIN).
pp 405–406.

33. Boukhdhir A, Lachiheb O, Salah Gouider M (2015). An improved
MapReduce Design of Kmeans for clustering very large datasets.
In: IEEE/ACS 12th International Conference of Computer
Systems and Applications (AICCSA).

34. Wang B, Yin J, Hua Q, et al (2016). Parallelizing K-Means-Based
Clustering on Spark. In: International Conference on Advanced
Cloud and Big Data. pp 31–36.

35. Kusuma I, Ma’Sum MA, Habibie N, et al (2016). Design of
intelligent k-means based on spark for big data clustering.
2016 Int Work Big Data Inf Secur IWBIS 2016 89–95. doi:
101109/IWBIS.2016.7872895.

36. Jain E, K Jain S (2014). Using Mahout for clustering similar
Twitter Users Performance Evaluation of K-Means and its

vol 34 no 5 September 2019 279

A SURVEY AND SYSTEMATIC CATEGORIZATION OF PARALLEL K-MEANS AND FUZZY-C-MEANS ALGORITHMS

comparison with Fuzzy K-Means. In: 2014 5th International Con-
ference on Computer and Communication Technology (ICCCT).
pp 29–33.

37. Li C, Tian G, Cai K (2017). Improved K-means based on flink plat-
form and its application in e-commerce big data. 2017 Chinese
Autom Congr 7261–7264. doi: 101109/CAC.2017.8244089.

38. Manzi D, Tompkins D (2016). Exploring GPU acceleration
of apache spark. In: Proceedings - 2016 IEEE International
Conference on Cloud Engineering. pp 222–223.

39. Jain E, K Jain S (2014). Categorizing twitter users on the
basis of their interests using hadoop/mahout platform. In: 9th
International Conference on Industrial and Information Systems,
ICIIS. pp 1–5.

40. Baydoun M, Dawi M, Ghaziri H (2016). Enhanced Parallel
Implementation of the K-Means Clustering Algorithm. 3rd Int
Conf Adv Comput Tools Eng Appl 7–11.

41. Naik DSB, Kumar SD, Ramakrishna S V (2013). Parallel
Processing Of Enhanced K-Means Using OpenMP. In: 2013
IEEE International Conference on Computational Intelligence
and Computing Research. pp 1–4.

42. Honggang W, Jide Z, Hongguang L, Jianguo W (2008). Parallel
clustering algorithms for image processing on multi-core CPUs.
In: International Conference on Computer Science and Software
Engineering, ICSSE. pp 450–453.

43. Chu C-T, Kim SK, Lin Y-A, et al (2007). MapReduce for Machine
Learning on Multicore. Adv Neural Inf Process Syst 19 281–288.
doi: 10.1234/12345678.

44. Hadian A, Shahrivari S (2014). High performance parallel k-
means clustering for disk-resident datasets on multi-core CPUs.
J Supercomput 69:845–863. doi: 10.1007/s11227-014-1185-y.

45. Zhang J, Wu G, Hu X, et al (2011). A parallel K-means clustering
algorithm with MPI. In: 2011 4th International Symposium
on Parallel Architectures, Algorithms and Programming, PAAP
2011. pp 60–64.

46. Kwok T, Smith K, Lozano S, Taniar D (2002). Parallel Fuzzy c-
Means Clustering for Large Data Sets. In: European Conference
on Parallel Processing. Springer, Berlin, Heidelberg, pp 365–
374.

47. Savvas IK, Sofianidou GN (2014). Parallelizing K-means algo-
rithm for 1-D data using MPI. Proc Work Enabling Technol
Infrastruct Collab Enterp WETICE 179–184. doi: 10.1109/WET-
ICE.2014.13.

48. Ramesh V, Ramar K, Babu S (2013). Parallel K-Means Algorithm
on Agricultural Databases. Int J Comput Sci 10:710–713.

49. Kerdprasop K, Kerdprasop N (2010). A lightweight method to
parallel k-means clustering. Int J Math Comput Simul 4.

50. Kerdprasop K, Kerdprasop N (2010). Parallelization of K-Means
Clustering on Multi-core Processors. ACS’10 Proc 10th WSEAS
Int Conf Appl Comput Sci 472–477.

51. Sanpawat K, Couch AL (2000). Parallel K-means Clustering
Algorithm on NOWs. Tech J 1:243–248.

52. Othman F, Abdullah R, Nur’Aini AR, Abdul Salam R (2004).
Parallel k-means clustering algorithm on DNA dataset. In:
International Conference on Parallel and Distributed Computing:
Applications and Technologies. Springer, Berlin, Heidelberg, pp
248–251.

53. Joshi MN (2003). Parallel K- Means Algorithm on Distributed
Memory Multiprocessors. Comput 9.

54. Sirotkovi J, Dujmi H, Papi V (2012). K-means image segmenta-
tion on massively parallel GPU architecture. MIPRO, 2012 Proc
35th Int Conv 489–494.

55. Bani Baker QB, Balhaf K (2017). Exploiting GPUs to accelerate
white blood cells segmentation in microscopic blood images.
In: 2017 8th International Conference on Information and
Communication Systems, ICICS 2017. pp 136–140.

56. Fakhi H, Bouattane O, Youssfi M, Hassan O (2017). New
optimized GPU version of the k-means algorithm for large-sized
image segmentation. Intell Syst Comput Vision, ISCV 2017. doi:
101109/ISACV.2017.8054924.

57. Cuomo S, De Angelis V, Farina G, et al (2017). A GPU-
accelerated parallel K-means algorithm. Comput Electr Eng 1–
13. doi: 10.1016/j.compeleceng.2017.12.002.

58. Kakooei M, Shahhoseini HS (2014). A parallel k-means clus-
tering initial center selection and dynamic center correction on
GPU. In: 22nd Iranian Conference on Electrical Engineering,
ICEE 2014.

59. Li Y, Zhao K, Chu X, Liu J (2013). Speeding up k-Means
algorithm by GPUs. J Comput Syst Sci 79:216–229. doi:
10.1016/j.jcss.2012.05.004.

60. Hong Tao B, Li Li H, Dan Tong O, et al (2009). K-means on
commodity GPUs with CUDA. 2009 WRI World Congr Comput
Sci Inf Eng CSIE 3:651–655. doi: 10.1109/CSIE.2009.491.

61. Sharma R, Vinutha M, Moharir M (2016). Revolutionizing
Machine Learning Algorithms using GPUs. In: International
Conference on Computational Systems and Information Systems
for Sustainable Solutions. pp 318–323.

62. Bhavsar HA (2017). Parallelizing K-Means Clustering Using
GPU. IJARIIE 3:1451–1457.

63. Zechner M, Granitzer M (2009). Accelerating k-means on
the graphics processor via CUDA. In: The 1st International
Conference on Intensive Applications and Services, INTENSIVE
2009. pp 7–15.

64. Farivar R, Rebolledo D, Chan E, Campbell R (2008). A parallel
implementation of k-means clustering on GPUs. Pdpta 13:212–
312.

65. Bhimani J, Leeser M, Mi N (2015). Accelerating K-Means
clustering with parallel implementations and GPU computing. In:
2015 IEEE High Performance Extreme Computing Conference,
HPEC. pp 1–6.

66. Kohlhoff KJ, Pande VS, Altman RB (2013). K -means for parallel
architectures using all-prefix-sum sorting and updating steps.
IEEE Trans Parallel Distrib Syst 24:1602–1612.

67. Gao Z, Li E, Jiang Y (2012). A Gpu-Based Harmony K-Means
Algorithm For Document Clustering. In: IET International
Conference on Information Science and Control Engineering.
Shenzhen, pp 2–5.

68. Hooda H, Nandal R (2014). Implementation of k-Means Cluster-
ing Algorithm in CUDA. Int J Enhanc Res Manag Comput Appl
3:829–833.

69. Wu J, Hong B (2011). An efficient k-means algorithm on CUDA.
In: IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum. pp 1740–1749.

70. Nistane KD, Shende SW (2013). GPU Accelerated Clustering
Techniques. Int J Sci Res.

71. Kucukyilmaz T (2014). Parallel K-Means Algorithm for Shared
Memory Multiprocessors. J Comput Commun 2:15–23.

72. Wu R, Zhang B, Hsu M (2009). Clustering billions of data points
using GPUs. In: the combined workshops on UnConventional
high performance computing workshop plus memory access
workshop, ACM. pp 1–5.

73. Shalom S, Dash M, Tue M (2008). Graphics hardware based
efficient and scalable fuzzy c-means clustering. In: Proceedings
of the 7th Australasian Data. pp 179–186.

74. Rathore P, Shukla D (2015). Analysis and performance improve-
ment of K-means clustering in big data environment. In: 2015
International Conference on Communication Networks (ICCN).
pp 43–46.

75. Jinlan T, Lin ZHU, Suqin Z, Lu L (2005). Improvement and
Parallelism of k-Means Clustering Algorithm. Tsinghua Sci
Technol 10:277–281.

280 computer systems science & engineering

A. M. JAMEL AND B. AKAY

76. Swamy P, Raghuwanshi MM, Gholghate A (2015). An Improved
Approach for k-Means Using Parallel Processing. In: 2015
International Conference on Computing Communication Control
and Automation. pp 358–361.

77. Liangyu D, Dongping X, Zhenzhen L (2015). The Improvement
and Implementation of Clustering Algorithm Based on Multi-
core Computing. In: IEEE 14 International conf. on Cognitive
Informatics & Cognitive Computing. pp 405–411.

78. Xiaojing W, Yuanbo L (2017). Research on Improved K-Means
Algorithm Based on Hadoop. In: 4th International Conference
on Information Science and Control Engineering. pp 593–598.

79. V. Purohit B, Shettar R (2015). A MapReduce framework to
implement Enhanced K- means algorithm. In: International
Conference on Applied and Theoretical Computing and Com-
munication Technology (iCATccT). pp 361–363.

80. Akthar N, Ahamad MV, Ahmad S (2016). MapReduce Model of
Improved K-Means Clustering Algorithm Using Hadoop MapRe-
duce. In: Second International Conference on Computational
Intelligence & Communication Technology. pp 192–198.

81. Chen Z, Shixiong X (2009). K-means clustering algorithm with
improved initial center. In: 2nd International Workshop on
Knowledge Discovery and Data Mining. pp 790–792.

82. Saini A, Minocha J, Ubriani J, Sharma D (2016). New Approach
for Clustering of Big Data: DisK-Means. In: International
Conference on Computing, Communication and Automation
(ICCCA2016). pp 122–126.

83. Lin K, Wang J, Wang M (2014). A Hybrid Recommendation Al-
gorithm Based on Hadoop. In: The 9th International Conference
on Computer Science & Education (ICCSE 2014).

84. Thangarasu M, Inbarani HH (2016). MPRK algorithm for
clustering the large text datasets. In: IEEE International
Conference on Advances in Computer Applications, ICACA. pp
224–229.

85. Dai W (2016). An Improved Hybrid Canopy-Fuzzy C-Means
Clustering Algorithm Based on MapReduce Model. J Comput
Sci Eng 10:1–8.

86. Yu Q, Ding Z (2015). An improved parallel Fuzzy C-Means
algorithm based on MapReduce. In: 8th International Conference
on BioMedical Engineering and Informatics. pp 634–638.

87. Mathew J, Vijayakumar R (2015). Enhancement of Parallel
K-Means Algorithm. In: IEEE Sponsored 2nd International
Conference on Innovations in Information, Embedded and
Communication systems (ICJJECS).

88. Wang J, Yuan D, Jiang M (2012). Parallel K-PSO Based
on MapReduce. In: IEEE 14th International Conference on
Communication Technology. pp 1203–1208.

89. Chaturbhuj KS, Chaudhary G (2016). Parallel Clustering of large
data set on Hadoop using Data mining techniques. In: World
Conference on Futuristic Trends in Research and Innovation for
Social Welfare (WCFTR16).

90. M A A, Abdul Nazeer KA (2017). Improved Parallel Clustering
with Optimal Initial Centroids. In: International Conference on

Recent Advances in Electronics and Communication Technology.
pp 114–120.

91. Mathew J, Vijayakumar R (2014). Scalable Parallel Clustering
Approach for Large Data Using Parallel K Means and Firefly
Algorithms. In: International Conference on High Performance
Computing and Applications (ICHPCA). pp 1–8.

92. Niknam T, Amiri B (2010). An efficient hybrid approach based on
PSO, ACO and k -means for cluster analysis. Appl Soft Comput
10:183–197. doi: 101016/j.asoc.2009.07.001.

93. Bhavani R, Sudha Sadasivam G, Kumaran R (2011). A Novel
Parallel Hybrid K-means-DE-ACO Clustering Approach for Ge-
nomic Clustering using MapReduce. World Congr Inf Commun
Technol 132–137.

94. Xiufeng G, Changzheng X (2010). K-means Multiple Clustering
Research Based on Pseudo Parallel Genetic Algorithm. In: In-
ternational Forum on Information Technology and Applications.
pp 30–33.

95. Al-Shboul B, Myaeng S-H (2009). Initializing K-means using ge-
netic algorithms. In: International Conference on Computational
Intelligence and Cognitive Informatics (ICCICI 09). pp 114–118.

96. Ahmadyfard A, Modares H (2008). Combining PSO and k-means
to enhance data clustering. 2008 Int Symp Telecommun 688–
691. doi: 10.1109/ISTEL.2008.4651388.

97. Armano G, Farmani MR (2014). Clustering Analysis with
Combination of Artificial Bee Colony Algorithm and k-
Means Technique. Int J Comput Theory Eng 6:141–145. doi:
107763/ijcte.2014.v6.852.

98. Karol S, Mangat V (2013). Evaluation of text document clustering
approach based on particle swarm optimization. Open Comput Sci
3:69–90. doi: 102478/s13537-013-0104-2.

99. Izakian H, Abraham A (2011). Fuzzy C-means and fuzzy swarm
for fuzzy clustering problem. Expert Syst Appl 38:1835–1838.
doi: 10.1016/j.eswa.2010.07.112.

100. Zhang Y, Xiong Z, Mao J, Ou L (2006). The study of parallel
k-means algorithm. In: 6th World Congress on. Dalian, China,
pp 5868–5871.

101. Rashmi C, Chaluvaiah S, Kumar GH (2016). An Efficient Parallel
Block Processing Approach for K -Means Algorithm for High
Resolution Orthoimagery Satellite Images. Procedia Comput Sci
89:623–631. doi: 10.1016/j.procs.2016.06.025.

102. Jian M-S, Fang Y-C, Wang Y-K, Cheng C (2017). Big data
analysis in hotel customer response and evaluation based
on cloud. In: 19th International Conference on Advanced
Communication Technology (ICACT). pp 791–795.

103. Kraj P, Sharma A, Garge N, et al (2008). ParaKMeans:
Implementation of a parallelized K-means algorithm suitable
for general laboratory use. BMC Bioinformatics 9:1–13. doi:
10.1186/1471-2105-9-200.

104. Michopoulou SK, Costaridou L, Panagiotopoulos E, et al (2009).
Atlas-based segmentation of degenerated lumbar intervertebral
discs from MR images of the spine. IEEE Trans Biomed Eng
56:2225–2231. doi: 10.1109/TBME.2009.2019765.

vol 34 no 5 September 2019 281

