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Optimal task allocation in Large-Scale Computing Systems (LSCSs) that endeavors to balance the load across limited computing resources is considered an
NP-hard problem. MinMin algorithm is one of the most widely used heuristic for scheduling tasks on limited computing resources. The MinMin minimizes
makespan compared to other algorithms, such as Heterogeneous Earliest Finish Time (HEFT), duplication based algorithms, and clustering algorithms.
However, MinMin results in unbalanced utilization of resources especially when majority of tasks have lower computational requirements. In this work
we consider a computational model where each machine has certain bounded capacity to execute a predefined number of tasks simultaneously. Based
on aforementioned model, a task scheduling heuristic Extended High to Low Load (ExH2LL) is proposed that attempts to balance the workload across
the available computing resources while improving the resource utilization and reducing the makespan. ExH2LL dynamically identifies task-to-machine
assignment considering the existing load on all machines. We compare ExH2LL with MinMin, H2LL, Improved MinMin Task Scheduling (IMMTS), Load
Balanced MaxMin (LBM), and M-Level Suffrage-Based Scheduling Algorithm (MSSA). Simulation results show that ExH2LL outperforms the compared
heuristics with respect to makespan and resource utilization. Moreover, we formally model and verify the working of ExH2LL using High Level Petri Nets,
Satisfiability Modulo Theories Library, and Z3 Solver.
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1. INTRODUCTION

Large-scale computing encompasses variety of concepts and sys-
tems, such as supercomputers, cluster computing, grid comput-
ing, cloud computing, and multicore systems. Large-Scale Com-
puting Systems (LSCSs) support wide range of services, such as
file storage, computational services, and resource provisioning
[1-2]. Some of the application areas where LSCSs have been
extensively utilized include: processing of huge data produced
in the high-energy nuclear physics experiments, astronomical
computations, bioinformatics, geophysics, 3D Modeling, neural
sciences, e-health, medical image processing, large-scale recom-

∗Corresponding Author: dr@attaurrehman.com

mender systems [3-5]. The LSCSs architectures include simple
and low-power multi-core systems, application-specific proces-
sors, and heterogeneous computing systems.

Even with the disparity of system architectures, all variants
of LSCSs face issues concerning workload scalability, applica-
tion throughput, reliability, energy consumption, resource uti-
lization and availability, data storage, and heat dissipation [6].
Efficient task scheduling can help in addressing majority of the
aforementioned issues [6]. However, optimal task scheduling on
limited computing resources is an NP-hard problem [7]. More-
over, heterogeneity of computing resources and tasks introduce
interesting tradeoffs among the scheduling performance metrics
[8]. Parameters that are used to evaluate the performance of task
scheduling heuristics include, but are not limited to makespan,
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energy consumption, and resource utilization [9]. Makespan
optimization is considered as one of the primary objectives that
indicates the overall efficiency of task scheduling heuristics [6].
Further, majority of the LSCSs are housed in large data centers
[10]. However, data centers rarely operate at their maximum
rated load, i.e., 10% to 50% of the servers are fully utilized at
any given time [10]. Therefore, improving resource utilization
is another important parameter that needs to be considered by
scheduling heuristics. Similarly, due to increased energy costs
and demand, efficient utilization of available electrical power is
of paramount importance [11]. For instance, according to a re-
cent study, an idle server consumes nearly 60-70% of the power
consumed while operating at full capacity [12]. Therefore, it
is desirable to effectively utilize the idle servers to enhance the
resource utilization and reduce makespan. However, optimiza-
tion of the aforesaid performance parameters, i.e., makespan and
resource utilization, leads to an increase in power consumption
and higher task missing rates which is not acceptable in large
scale computing systems such as clouds [10, 13]. In this work,
we have conducted an in-depth study to analyze the tradeoffs
among the multiple optimization criteria that include makespan
optimization, resource utilization, and energy consumption with
different task scheduling heuristics.

Being an NP-hard problem, task scheduling has attracted sig-
nificant attention in the field of large scale computing. The ef-
ficiency of task scheduling algorithm in LSCSs, directly affects
the overall makespan and implicitly affects power consumption
and resource utilization of the system [6, 14]. In literature, ma-
jority of the research concerning performance parameters dis-
cussed earlier, is reported for batch mode approaches based
on the MinMin algorithm because of its well-founded perfor-
mance, minimum makespan, and simplicity [15, 16]. The Min-
Min heuristic schedules tasks having minimum expected time
to complete on the fastest machine. However, it results in un-
even load distribution and poor resource utilization by schedul-
ing more tasks on certain faster machines while keeping others
idle or lightly loaded. Uneven load distribution among comput-
ing nodes leads to poor resource utilization as well as energy
wastage [15, 17]. The High to Low Load (H2LL) heuristic is an
extension of MinMin that promises to generate lower makespan
[18]. However, considering the proposed system model,wherein
each machine has a specified computing capacity to accommo-
date limited number of tasks, H2LL is unable to schedule some
of the tasks because of infeasible task to machine mapping due to
limited available computing capacity or memory of the selected
machine. To this end, we propose an extension of H2LL, named
as ExH2LL, which tackles the problem by dynamically selecting
the appropriate alternate machine with lowest utilization for the
assignment of incoming task.

1.1 Motivation

The problem tackled in this study is twofold. First, we detail
the uneven load distribution and higher makespan when smaller
tasks are in majority, concerning MinMin algorithm. Second,
the task missing phenomenon is highlighted with respect to the
H2LL algorithm.

The MinMin algorithm schedules the task based on Estimated

Figure 1 Makespan of MinMin (Task distribution wise).

Figure 2 Resource Utilization of MinMin (Task distribution wise).

Time to Completion (ETC). The ETC refers to the execution time
of a task plus the ready time. The MinMin algorithm first sched-
ules the smaller tasks and then the larger tasks are scheduled.
The task with overall minimum ETC is scheduled on the fastest
machine [33]. The sizes of task and their distribution are given
higher consideration. Therefore, the task distribution comprises
three cases: (a) majority of the tasks are large, (b) majority of the
tasks are small, and (c) random proportion of smaller and larger
tasks. Here larger tasks refer to the tasks having higher compu-
tational requirements in terms of Millions of Instructions (MIs)
and smaller tasks refer to the tasks with lower MIs requirements.
In the case where the smaller tasks are more, MinMin produces
comparatively higher makespan and results in lower resource
utilization than the case where the majority of tasks are large
[34], as shown in figure 1, 2. The H2LL endeavors to solve the
problem associated with MinMin and optimizes the makespan.
H2LL achieves this by introducing a two-phase heuristic de-
scribed in Section 5, but at the cost of task misses. The H2LL
algorithm can miss the tasks in case where we have machines
with limited computing capacity and memory, i.e., there is a limit
on the number of tasks that can be scheduled on each machine
simultaneously within the specific time interval.

Particularly, after the task and machine selection, a state may
occur due to the capacity constraint that prevents the selected
task to be scheduled at the selected machine that reported the
minimum completion time. In such cases, a task reassignment
strategy is required that will not only map the tasks consider-
ing the makespan optimization but also attempts to evenly bal-
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ance the resource utilization. Therefore, in this work, we pro-
pose ExH2LL task scheduling heuristic that jointly optimizes
the makespan and resource utilization.

1.2 Contribution

The main contributions of this paper are summarized as fol-
lows: We propose an improved heuristic named ExH2LL that
optimizes the makespan, improves the resource utilization, and
eliminates the task misses by evenly distributing the workload
among the available machines. The proposed ExH2LL algo-
rithm identifies the resource or machine with least utilization
rate for the assignment of incoming task. Moreover, we perform
the formal modeling and verification of the ExH2LL by using
High Level Petri Nets (HLPN), Satisfiability Modulo Theories
Library (SMT-Lib), and Z3 solver.

The remainder of the paper is organized as follows. We sum-
marize the existing work in Section 2. Section 3 details the sys-
tem and application model, Expected Time to Compute (ETC)
model, and power estimation model used in the proposed work.
The proposed heuristic (ExH2LL) is introduced in Section 4 fol-
lowed by formal analysis and verification in Section 5. Section 6
provides the simulation results and the comparisons of ExH2LL
with the state-of-the-art heuristics. Finally, Section 7 concludes
the paper with some directions for future work.

2. EXISTING WORK

During the past decade, research on the task scheduling has fo-
cused on finding the best, among the available suboptimal so-
lutions. The solutions are considered suboptimal, because they
always have some limitations in terms of performance, energy
consumption, and resource utilization [19]. The task schedul-
ing heuristics are divided into two major classes namely heuristic
based and meta heuristic based or Guided Random Search Based
(GRSB) approaches. The heuristic based and GRSB approaches
are also referred as deterministic and non-deterministic methods,
respectively [15]. The heuristic-based algorithms provide the so-
lutions with polynomial time complexity [6, 19]. The solutions
provided by the heuristics-based algorithms are approximate,but
a sub set of these may result in better solutions with low com-
plexity and minimum makespan. The GRSB algorithms also
generate approximate and good solutions. However, the quality
of those solutions may be enhanced by performing more iter-
ations at the expense of higher computational cost [20]. The
Heuristic-based scheduling is further divided into three subcat-
egories: (a) clustering based, (b) duplication based, and (c) list-
based scheduling [6, 19]. The clustering-based heuristics form
clusters of tasks which are to be allocated to multiple processors.
Some examples in this category include Clustering for Hetero-
geneous Processors (CHP), Clustering And Scheduling System
(CASS), and Triplet [21]. The clustering heuristics have lower
communication overhead, but at the cost of higher makespan and
increased complexity. Moreover, each cluster needs dedicated
processor for its tasks’ execution. Furthermore, these schemes
form clusters of the similar tasks which, makes it suitable for ho-
mogeneous systems. The duplication heuristics offer the shorter

makespan and communication overhead, but they have higher
time complexity and execution of the task is duplicated [22].
Some of the duplication algorithms are Heterogeneous Limited
Duplication (HLD), Heterogeneous Critical Parents with Fast
Duplicator (HCPFD), and Heterogeneous Earliest Finish-time
with Duplication (HEFD) [22]. To decrease the communica-
tion cost of a large number of dependent tasks, the dependent
tasks are recognized and executed redundantly. The aforesaid
duplications provide the fault tolerance and reliability, but re-
sults in significant wasting of processing capacity and energy
[22]. The List scheduling heuristics produce the schedules that
do not compromise the makespan and possess lower complex-
ity than GRSB and clustering-based heuristics [19]. Therefore,
these heuristics are widely used for scheduling in LSCSs. The
list-based heuristics are further categorized into batch mode and
dependency mode approaches. The batch mode approaches or-
ganize the tasks according to their execution time, while the
dependency mode schemes, such as Heterogeneous Earliest Fin-
ish Time (HEFT) [23], Predict Earliest Finish Time (PEFT) [6],
and Mapping Heuristic (MH) [23] sort the tasks according to
the length of their critical path. The critical path is defined as
the maximum, sum of communication time and average execu-
tion time, beginning from that task to the exit task [19]. The
feature which makes dependency mode heuristics more feasi-
ble is that the larger tasks are completed prior to the smaller
ones, reducing the overall execution time. However, the com-
plexity of dependency mode approaches is higher than the batch
mode heuristics, as it must compute the critical path of all the
tasks. Although HEFT and PEFT both are highly valued among
heuristic algorithms for the scheduling problem, yet in complex
scenarios these schemes cannot succeed to produce the optimal
scheduling. The reason is that both are essentially the greedy
algorithms [20]. Therefore, in literature most of the research is
reported for batch mode approaches and more specifically the
variants of MinMin algorithm because of its well-founded per-
formance, minimum makespan, and simplicity.

The conventional batch mode algorithms such as, First in First
out (FiFo) and Round Robin (RR) suffer from convoy effect
and increased complexity while calculating suitable time quan-
tum [24]. Some other schemes that are based on batch mode
are: MinMin, MaxMin, and Suffrage Heuristics [7, 18], Energy
Aware Fast Scheduling Heuristics (EAFSH) [15], energy aware
MinMin algorithm [16], QoS guided MinMin [25], Segmented
MinMin [26], and Opportunistic Load Balancing (OLB). The
OLB does not use the execution or completion time, of the tasks
to map them to available resources. The OLB maps the tasks
randomly. The QoS Guided MinMin focuses to provide quality
of service by specifying network parameters like bandwidth for
each task and then assign them to machines based on the QoS pa-
rameter. Some studies regarding load balancing techniques have
also been reported like Load Balanced MinMin (LBMM) [27],
Hierarchical Load Balancing Algorithm (HLBA) [24], Resource
Aware Scheduling Algorithm (RASA) [28], and Dynamic Load
Balancing Algorithm (DLBA) [29]. However, these approaches
also have various shortcomings. For instance, LBMM does not
consider high machine heterogeneity. In RASA, task arrival
time, execution cost on each resource, and communication costs
have not been addressed. In DLBA threshold value for load
balancing level is fixed and static. The threshold value is made

vol 34 no 2 March 2019 81



A LOAD BALANCED TASK SCHEDULING HEURISTIC FOR LARGE-SCALE COMPUTING SYSTEMS

dynamic in further extension named HLBA, but the length of ex-
ecution time of incoming tasks has not been considered in both
DLBA and HLBA, which results in uneven distribution of tasks,
as done in the MinMin. Moreover, some recent efforts promis-
ing the minimum makespan include; Improved MinMin Task
Scheduling (IMMTS) [30], H2LL [18], Load Balanced MaxMin
(LBM) [31] and M-Level Suffrage-Based Scheduling Algorithm
(MSSA) [32]. IMMTS defines a statistical selection criterion for
each task. Then the machine, on which selected-task produces
the minimum completion time, is nominated for task-to-machine
mapping in the next phase. This scheme involves the inefficient
resource utilization and higher makespan in some cases. The
higher makespan and inefficient resource utilization in IMMTS
is caused due to its statistical task selection criterion, which ei-
ther executes the smaller tasks or larger tasks first, thus makes
the heuristic unfeasible for heterogeneous systems.

The working of classical MinMin algorithm involves two
phases. In the first phase it finds the fastest machine m among
available resources which gives the minimum ETC. In the sec-
ond phase the task t having minimum ETC on the machine m,
is identified and scheduled on machine m. Some of the recent
variants of MinMin, such as H2LL [18] and LBMM heuris-
tics claim to optimize the makespan, but sometimes they miss
several tasks needed to be executed, as detailed in section 5.1.
The H2LL, being a two-phase heuristic, first finds the best-score
(lowest makespan) of the system. Then, it finds the task tkwith
maximum completion time against the machine mkreporting the
lowest makespan in each iteration. In the next phase, H2LL
finds the minimum completion time (new-score) of previously
selected task tk against all the machines. Based on the compar-
isons of best-score and new-score, H2LL assigns the incoming
tasks to the machine reporting lowest score. At this point, H2LL
fails to assign some of the tasks in case the machine selected for
task placement, having lowest score, does not have the required
capacity to accommodate the task.

In this work we propose an extension of the H2LL heuris-
tic that not only optimizes the makespan but also reduces the
task missing rate while improving the resource utilization. We
compare the ExH2LL heuristic with MinMin, IMMTS, H2LL,
LBM, and MSSA heuristics. The ExH2LL dynamically iden-
tifies the resource or machine with least utilization rate for the
assignment of incoming task. Moreover, our results show that
the ExH2LL outperformed the compared heuristics with respect
to makespan and resource utilization, but at the cost of slightly
increased power consumption.

3. SYSTEM MODELS

3.1 Computational Model

The system model used in this paper resembles the classical bin
packing model presented in [35], wherein the tasks are sched-
uled on the machines as they arrive. T represents the set of
tasks {t1, t2, . . . . . . , tn}. Each task ti ∈ T has computational
requirements reqi in MIs. Similarly, M represents the set of ma-
chines {m1, m2, . . . ..., mx} and processing speed of each ma-
chine m j ∈ M is defined by s j . In this work we consider a
model where each machine has a certain capacity cap j to ac-

commodate a predefined number of tasks. The capacity cap j

of a machine defines the maximum number of tasks that can be
processed by the given machine simultaneously [36]. This is
true for the computational platforms, such as cloud computing
and multicore processor architectures. For instance, in cloud
environment each physical machine can host several virtual ma-
chines. In turn, each virtual machine can execute the assigned
tasks independently. Similarly, multicore architectures comprise
of multiple processing cores that can execute multiple tasks in
parallel. The number of tasks supported by each physical ma-
chine depends on the number of virtual machines created or the
number of available processing cores. We assume that process-
ing speed s j assigned to each virtual machine or processing core
of a given physical machine is same.

3.2 Expected Time to Compute Model

We use the ETC model defined by [37], where in ETC matrix
of size T × M is computed, as shown in Figure 3. Each posi-
tion ETC[i][j] in the ETC matrix specifies the expected time to
compute a certain task ti on machine m j . The ETC matrix is
generally assumed to be predetermined [15]. However, mostly
in the previous works [38-43] the degree of the heterogeneity to
produce the ETC matrix, exploits two methods.

• First one is the range of execution times of tasks

• Second is their coefficient-of-variance (CoV)

Nevertheless, these methods lack to represent the variation in
heterogeneity completely [39]. In the proposed model with het-
erogeneous machines and tasks in the workflow, ETC for a task
is calculated by first, adding ready time of the task, represented
by readyi , to the computational requirements reqi of ti and then
dividing the summed workload by the processing speed of re-
source m j , as described in [37]. ETC matrix is calculated using
the Equation 1.

t∑
i=1

m∑
j=1

ET Ci j = reqi + readyi

s j
(1)

Moreover, the problem tackled in this study is to assign the re-
sources to reduce the makespan in heterogeneous computing
environment. The makespan of a schedule S is the time when
all the tasks are executed and can be calculated using Equation
2.

makespan = Cmax (S) (2)

Where schedule S is a function, which maps a task to the ma-
chine that executes it and Cmax(S) indicates the maximum value
among completion times of all machines [44]. More elaborately,
it is the time when the last task Texit in the system is completed
[44].

3.3 Power Model

In most of the data centers, energy consumption by the pro-
cessing machines is calculated by investigating each of the IT
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Figure 3 An example expected time to compute (ETC) matrix.

equipment‘s individual contribution, i.e., CPU (80%), storage
media (10%), and network devices (10%) [45-46]. The CPU
devours the major portion of electricity as compared to other
resources in the system. Moreover, idle CPUs also consume
70% of, the total power used when fully operational, leading
to the wastage of processing capacity. Therefore, in the present
study we propose a strategy, to use the wasted electrical power of
computing machines, which will reduce the makespan, as well
as improve the resource utilization. The aforesaid reduction and
improvement is achieved by shifting the work load to idle or
lightly loaded machines. The power model proposed in [10] has
been implemented and illustrated in Equation 3.

P (u) = k × Pm + (1− k)× Pm × u (3)

Here maximum power consumed by a machine at full utilization
is denoted by “Pm”. The fraction of power consumed by an idle
machine is denoted by “k”. The fraction of CPU utilization of
a particular machine is denoted by “u′′. In this implementation
“Pm” is fixed to 250 watts, since many modern servers use this
value as mentioned in recent studies [10, 18]. Moreover, accord-
ing to Standard Performance Evaluation Corporation (SPEC)
power benchmark 2010 report, the average power consumption
by fully functional machines was reported to be 259 Watts [47].

4. PROPOSED HEURISTIC

To tackle the scheduling problem discussed above, we propose
a task scheduling heuristic named Extended High to Low Load
(ExH2LL). The ExH2LL is a two-phase algorithm that attempts
to optimize the makespan, improve the resource utilization, and
eliminate task misses by evenly distributing the workload among
the available computing resources.

4.1 ExH2LL Operations

In the first phase, the ExH2LL algorithm finds the machine m j

that has the highest makespan (line-1 in Table 1). The highest
maekspan is determined after mapping all tasks on each ma-
chine using MinMin heuristic. The MinMin heuristic schedules
the task based on ETC. The MinMin heuristic first schedules the

smaller tasks and then the larger. The task with overall minimum
ETC is scheduled on the fastest machine and the slowest machine
delivers the reference makespan for ExH2LL algorithm. In the
second phase of ExH2LL, the task tk having maximum comple-
tion time at the machine m j (lines 2-4) is selected. In next step,
the ExH2LL finds the minimum completion time minCT of task
tk on each of the machines and the machine mk that produces the
minCT (line-5). The working of H2LL and ExH2LL is similar to
a certain extent that, in the case of H2LL only the minCT is com-
pared with makespan. Further, if the aforesaid condition is not
satisfied, then the mechanism to select the alternate resource is
not specified in the H2LL algorithm which results in task misses.
However, as proposed in ExH2LL, along the makespan compar-
ison, the capacity of corresponding machine is also verified as
per task requirements. More elaborately, if minCT is less than
the makespan, and machine mk has the capacity to accommodate
tk then the task tk is scheduled on resource mk (lines 6-7). But,
if minCT is greater than the makespan, and the machine m j that
produced the initial makespan can accommodate tk , then the task
tk is scheduled on the resource m j (lines 8-9).

Table 1 Working of ExH2LL heuristic.

Algorithm 1: ExH2LL heuristic
Inputs: a valid schedule from phase 1, set of machines M, set of tasks T
1. m j = machine reporting makespan during 1st phase
2. do
3. for eachm j ∈ M
4. Find the task tk with maximum CT on machine m j ,
5. Find the minCT of task tkand the machine mk
6. if minCT < makespan AND mk can accommodate tk
7. Assign tk to machine mk
8. Else if minCT > makespan AND m j can accommodate tk
9. Assign tk to m j
10. Else find the resource utilization rate RU ∀m
11. Find the resource ml with minimum RU having capacity to accom-
modate tk
12. Assign tk to resource ml
13. Delete tk from T
14. Update machines used and remaining capacity
15. End for
16. while (T �= ϕ )

However, if none of the aforementioned conditions are sat-
isfied then a mechanism to select the alternate resource is also
proposed in ExH2LL. The proposed mechanism dynamically
identifies the resource or machine with least utilization rate hav-
ing required capacity for the assignment of task tk(lines 10-12).
Conclusively, two distinguishing features of ExH2LL play crit-
ical role to accommodate all the tasks and makespan reduction
are: (a) task to machine mapping and (b) resource identifica-
tion for load balancing. Task to machine mapping, verifies that
which machine best fits the particular task, i.e., the machine that
reported makespan in first phase or the machine having minCT.
Moreover, it is also ensured that the selected machine has the
required capacity to accommodate the selected task. In case of
failure when there is no suitable machine found according to the
above criteria, a mechanism is proposed for alternate resource
identification for load balancing. The resource identification
mechanism dynamically determines the current resource utiliza-
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tion rate of each machine in the system and enables ExH2LL
heuristic to evenly distribute the load among the available com-
puting resources. The resource utilization rate is calculated using
the Equation 4. Moreover, the provided solution also ensures that
each task in the system is assigned to a machine, thus preventing
task misses. Finally, once a resource has been allocated to a task,
then the mapped task is deleted from the task list and capacities
of machines are updated. The process is repeated until all the
tasks are mapped (lines 13-15).

Rum = Exm

Capm
× 100 (4)

Where Rum denotes the resource utilization and Capm denotes
the total capacity of a machine m, respectively. Further, Exm

denotes the total execution time of machine m, which can be
calculated by adding the computational requirements reqi of all
the tasks (starting from first to last task) mapped on that machine,
as shown in Equation 5. In Equation 5, n represents the total
number of tasks scheduled on machine.

Exm =
n∑

i=0

reqi (5)

5. FORMAL VERIFICATION AND ANALY-
SIS OF EXH2LL

We provide the basic introduction to HLPN, SMT-Lib, and Z3
solver for a clear understanding of the reader, as follows.

5.1 High Level Petri Nets

In wide variety of systems, the Petri Nets are extensively applied
for their mathematical and graphical modeling [48]. In this wok
HLPN, is used for the formal verification of ExH2LL heuristic.

5.2 SMT-Lib and Z3 Solver

To check the satisfiability of formula over theories under consid-
eration, SMT is used [49] which offers a collective input platform
and benchmarking framework. Being developed at a Microsoft
Research, SMT-Lib with Z3 solver is used to prove the theo-
rems. To verify whether the set of formulas are satisfiable in
the built-in theories of SMT-Lib, Z3 solver being an automated
satisfiability checker is used. The correctness of the system is
checked during the verification process. In this work, bounded
model checking is used to verify the ExH2LL heuristic. The
HLPN model regarding ExH2LL heuristic is shown in Figure 4.
The development of petri nets model involves identification of
data types and places, and the mappings of data types to places.
Table 2 and 3 show the Data types and their mappings, respec-
tively. The rectangular black boxes show the transitions and
belong to set T , whereas the circles represent the places and be-
long to set P in HLPN model. The working of proposed model
is discussed in Section 5. In this section we define formulas to
map on transitions. Initially we place unassigned tasks, avail-
able machines, execution times, and ready times for machines

at a place mt for model checking purposes. Following Formula
maps to the transition task-machine.

R(task_machine) = ∀x1 ∈ X1,∀x2 ∈ X2|
x21 = x11 ∧ x22 = x12 ∧ x23 = x13 ∧ x24 = x14∧
X ′2 = X2 ∪ {x21, x22, x23, x24} (6)

Table 2 Data types for HLPN model.

Data Type Description
PmList A list containing the ids of the machines in

the system.
PtList A list containing LID of the tasks to be

executed in the system.
PetList A list containing execution times of the

tasks.
PrList A list containing ready time of the ma-

chines.
ms A number representing makespan of the

system.
m_ms The id of the machine reporting the ms.
ct An array containing completion times of

the tasks against machines.
tmCT The task with maximum completion time.
PreqList A list storing computational requirements

of the tasks.
PccList A list storing computational capacity of the

machines.
mk The id of the machine producing minimum

completion time.
m j The id of the machine producing mk .
mct The minimum completion time of a task.

Table 3 Places and mappings used in HLPN model.

Place Mapping
ϕ (Node) P(PmList×PtList×PetList×PrList× ct×ms×

tmCT×m j×mk× mct ×PreqList×PccList )
φ (mt) P(PmList×PtList×PetList×PrList ×

m_ms×PreqList× PccList)

The MinMin computes the completion time for the whole
system through the reporting system. The following equation is
mapped at the transition CT.

R(CT ) = ∀x3 ∈ X3,∀x7 ∈ X7|
x34 = reportingserver()∧
x35 = cal_exec_time(x73, x74)∧
X ′3 = X3 ∪ {x34, x35} (7)

The maximum completion time of any task is selected as the
makespan and the task and machine producing makespan. The
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Figure 4 HLPN model for ExH2LL.

following transition and equation represents the aforesaid pro-
cess.

R(max _CT ) = ∀x4 ∈ X4|
x46 = max CT (x45) ∧ x47 = task_ max CT (x45)∧ x48

= mac_ max CT (x45)∧ (8)

X ′4 = X4 ∪ {x46, x47, x48}
(9)

Afterwards, the machine that produces minimum completion
time for the task selected in the previous rule. The rule is mapped
at the transition minCT.

R(min _CT ) = ∀x5 ∈ X5|
x59 = mac_ min CT (x57) ∧ x510 = min CT (x57)∧
X ′5 = X5 ∪ {x59, x510} (10)

Finally, the tasks are assigned to the machines according to the
criteria detailed in the proposed methodology.

R(assign_task) = ∀x6 ∈ X6,∀x8 ∈ X8|
x610 < x66&&req(x86) < comp(x87)∧

x69← x67∧
X ′6 = X6 ∪ {x69, x67}

x610 > x66&&req(x86) < comp(x87)∧
x68← x67∧
X ′6 = X6 ∪ {x68, x67} (11)

5.3 Verification Property

We have verified the proposed heuristic to ensure that it works
in accordance with the specifications and generate the correct
results. The verified property is described as following:

• The proposed model correctly calculates the makespan and
identifies the machine producing the makespan.

• The proposed methodology assigns the tasks according to
the specifications detailed in the proposed methodology.

The model of proposed heuristic given above has been trans-
lated to SMT-Lib and verified with the help of Z3 solver. The
Z3 solver indicated that the proposed model is workable and ex-
ecutes itself in line with the specified properties. Z3 solver took
0.028 seconds to execute the working of proposed heuristic.

6. EXPERIMENTAL EVALUATION

To evaluate and compare the ExH2LL with MinMin, IMMTS,
H2LL, LBM, and MSSA algorithms, a series of simulation ex-
periments were performed. Similar to the settings presented in
[12, 18, 50], the number of tasks per WF varies from 100 to
500 and the numbers of instructions for each task are selected
randomly from 100 to 5000 million instructions to create hetero-
geneous WFs. Moreover, the number of hosted servers ranges
from 15 to 50 with different computational capacities. The afore-
mentioned settings provide wide range cases to extensively eval-
uate and compare performance of the scheduling algorithms.
Furthermore, WFs were randomly generated according to three
different distributions, i.e., uniform random distribution, 70%
smaller tasks, and 70% larger tasks. The details of simulation
parameters are summarized in Table 4.

Simulations have been conducted with different DAG based
workflows for each of the implemented case. For each case,
average readings have been taken over multiple DAGs to extend
the validity of simulation scenarios. For each scenario based on
server count, we have used three types of task distribution as
shown in Table 4. The aforesaid task distributions are based on
our problem formulation which states that the MinMin algorithm
performs well when larger tasks are more than the smaller tasks in
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Table 4 Parameters needed for WFs

Parameters Value
Size of WF (No. of Tasks/WF) {100, 200, 300,400,500}

Size of Task (No. of Instruc-
tions/Task )

{100 - 5000} MIs

No. of Servers for each WF Case 1: 15 servers with 100
tasks
Case 2: 20 servers with 200
tasks
Case 3: 30 servers with 300
tasks
Case 4: 35 servers with 400
tasks
Case 5: 50 servers with 500
tasks

Distribution used to create
WFs

Uniform random tasks distri-
bution

70% Tasks with lower require-
ment (smaller tasks are more)

70% Tasks with higher re-
quirement
(larger tasks are more)

the workflow but, when the smaller tasks are more than the larger
tasks, the quality of schedule decreases. In addition, we have
also evaluated all the heuristics under uniform task distribution
to produce fine grained results. Results of our experiments are
in line with the results of [18] under higher task and machine
heterogeneity instances, thereby validating our framework. To
compare the results across different scenarios, results have been
normalized on the values of MinMin algorithm for each scenario
because MinMin exhibited higher values in most cases. In figure
5, the comparison of makespan over varying number of servers
under uniform task distributions has been shown.

Figure 5 Makespan (Uniform Task Distribution).

The proposed heuristic outperforms the other algorithms in
all cases except in the case of 50-servers where H2LL and LBM
report lower makespans due to higher task missing rates. More-
over, we have also conducted the analysis to observe the task
missing rate of H2LL and LBM heuristics on all of task distribu-
tions for each server case individually, as shown in figure 6. The
results of figure 6 reveal that H2LL has 16% task missing rate

Figure 6 Average task missing rates of H2LL and LBM.

Figure 7 Makespan (70% Smaller Tasks).

while the LBM has 4.6% task missing rate. In Figure 7, where
smaller tasks are more than the larger tasks, the results show that
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Figure 8 Makespan (70% Larger Tasks).

ExH2LL produced lowest makespan as compared to the other
heuristics except the H2LL and LBM algorithms in all cases.
The reason for H2LL and LBM having lower makespan is the
higher task missing rate. In this case H2LL and LBM miss on
average 10.6 % and 9.32 % tasks, respectively. MinMin heuris-
tic degrades the systems performance by increasing makespan
when number of smaller tasks are more than the larger tasks.
Consequently, the overall makespan of MinMin and its variant
MSSA, is also on a higher side as depicted in Figure 7.

Alternatively, the difference between, the overall makespan
values for MinMin and MSSA heuristics, and other four heuris-
tics, has reduced when majority of the tasks are large, i.e., 70%
larger tasks. Majority of larger tasks is the ideal task distribu-
tion for MinMin, and its variants to produce lower makespan, as
shown in Figure 8. Furthermore, Figure 8 shows that, IMMTS
outperformed the MinMin because of its statistical task selection,
superseded by H2LL, LBM, and ExH2LL. Moreover, ExH2LL
outperformed in all the cases except 35-servers case, because in
this case H2LL and LBM have 6.9% and 6.4% task missing rates
on average, respectively.

The makespan and power consumption have tradeoff or con-
flict with each other, as explained in Section 1. Therefore, op-
timizing the makespan may increase the power consumption.
The results in Figure 9, 10, and 11 show the power consumption
for each of the task distribution scenarios along y-axis. Figure
9 reveals that in the worst case (35-servers) power consump-
tion of ExH2LL heuristic has increased by 6watts as compared
to MinMin algorithm. This increase in power consumption is
amortized to achieve 84% makespan reduction as compared to
MinMin heuristic. Moreover, the ExH2LL‘s power consump-
tion in the worst case (35-servers) of 70% smaller tasks and
70% larger tasks distributions raises by 28watts and 11watts re-
spectively, at the cost of higher makespan reduction. Moreover,
in case of 70% smaller tasks distribution, H2LL heuristic has
lower power consumption than the other heuristics even with
lower makespan, because of higher task missing rates as shown
in Figure 6. Similar behavior has been observed in the 70%
larger tasks distribution, but with comparatively lesser ratios, as
shown in Figure 11, because MinMin and its variants perform
best in such cases.

The results in Figure 12, 13, and 14 show the normalized
resource utilization. The results have been normalized on the
values of ExH2LL because in this case it has the higher values

Figure 9 Power consumption (uniform task distribution).

Figure 10 Power consumption (70 % smaller tasks).

Figure 11 Power consumption (70% larger tasks).

in almost all cases. The resource utilization has increased for all
the heuristics, because a uniform task distribution has been used,
as shown in figure 12. On the other hand, under the 70% smaller
task distribution the higher makespan and uneven load distribu-
tion leads to reduction in resource utilization rate regarding all
the heuristics, except the proposed heuristic ExH2LL, because
the 70% smaller tasks distribution is the worst most task distri-
bution setting for the MinMin heuristic and its variants, as shown
in Figure 13. Similar to uniform task distribution, under 70%
larger tasks distribution almost all the heuristics showed signifi-
cant increase in the utilization of resources with reference to the
proposed algorithm. On the other hand, a common observation
in figure 12, 13, and 14, portrays that the resource utilization in
all the heuristics except the ExH2LL, starts to decrease when the
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Figure 12 Resource Utilization (uniform task distribution).

Figure 13 Resource Utilization (70% smaller tasks).

number of servers increases, due to unbalanced task distribution.

Figure 14 Resource Utilization (70% larger tasks).

7. CONCLUSIONS

Efficient resource utilization and makespan optimization play an
important role in the design of modern LSCSs. There have been
many proposals, such as Min-Min, IMMTS, H2LL, LBM and
MSSA that attempt to optimize the makespan along with bal-
ancing the workload of the system. However, these proposals
either fail to reduce the makespan in certain cases or do not re-

sult in efficient resource utilization. In this paper, we proposed
an improved task scheduling heuristic for LSCSs that jointly
optimizes two objective functions, i.e., makespan and power
consumption. The proposed heuristic (ExH2LL) not only re-
duced the makespan and task missing rate, but also increased
the resource utilization by evenly distributing the load among
the available computing resources. The reduction of makespan
caused slight increase in power consumption. However, the in-
crease in power consumption is amortized by the significant de-
crease in makespan that leads to improved response time and
reduced task missing rate. Moreover, another significant feature
of the proposed heuristic is improved load distribution among
the available resources.

Currently, none of the presented heuristics focused on com-
munication cost, therefore, in our future work we intend to
investigate the impact of reducing the communication cost on
makespan, resource utilization, and power consumption. In this
regard, literature review revealed that the schedules produced by
duplication based heuristics have lower communication cost and
makespan, but with higher resource wastage. Therefore, in our
future work we aim to develop an energy efficient and resource-
aware scheduling heuristic that not only optimizes the makespan
but also reduces the communication cost.
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