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The tremendous growth of data being generated today is making storage and computing a mammoth task. With its distributed processing capability Hadoop
gives an efficient solution for such large data. Hadoop’s default data placement strategy places the data blocks randomly across the nodes without considering
the execution parameters resulting in several lacunas such as increased execution time, query latency etc., Also, most of the data required for a task execution
may not be locally available which creates data-locality problem. Hence we propose an innovative data placement strategy based on dependency of data
blocks across the nodes. Our strategy dynamically analyses the history log and establishes relationship between various tasks and blocks required for each
task through Block Dependency Graph (BDG). Then Our CORE-Algorithm re-organizes the HDFS layout by redistributing the data blocks to give an optimal
data placement, resulting in improved performance for Big Data sets in distributed environment. This strategy is tested in 20-node cluster with different
real-world MR applications. The results conclude that proposed strategy reduces the query execution time by 23%, improves the data locality by 50.7%,
compared to default.
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1. INTRODUCTION

In this data era, massive volumes of data are being generated
every second in a variety of domains such as Geoscience, Social
Web, Finance, e-Commerce, Health Care, Climate modelling,
Physics, Astronomy, Government sectors etc. Big Data is the
term applied to such large volume of data sets whose size is be-
yond the ability of the commonly used software tools to capture,
manage, and process within a tolerable elapsed time [1]. Further
Big data management possess many challenges due to big data
diversity, big data reduction, big data integration and cleaning,
big data indexing and query, and big data analysis and mining
[2]. This situation has led to a rapidly increasing use of parallel
and distributed environment framework like Hadoop, to analyze
and gain insights from the data. The distributed processing of
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large data sets across clusters of computers using simple pro-
gramming models has been facilitated through Apache Hadoop
software library [3][4]. The inherent parallelization, synchro-
nization and fault-tolerance offered by the model, makes it ideal
for highly-parallel data-intensive applications [5]. Local compu-
tation and storage is achieved through the two major components
of Hadoop namely Map Reduce (MR) and Hadoop Distributed
File System (HDFS). The fundamental concept of HDFS and
MR is to distribute data among many nodes and process in par-
allel.

HDFS [6][7] is a distributed file system designed to run on
commodity hardware capable of storing large files across multi-
ple machines. HDFS follows master slave architecture, consist-
ing of one Name-Node and multiple Data-Nodes. Name-Node
is the coordinator of HDFS which maintains the metadata i.e.,
size, location and replicas of the data blocks. Data-Nodes hold
the actual storage of data. When you dump a file into the HDFS,
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the files are broken into fixed size blocks, and blocks are stored
on the various Data-Nodes in the Hadoop cluster. HDFS cre-
ates several replications of the data blocks and distributes them
accordingly in the cluster in a way that will be reliable and can
be retrieved faster. Data-Node reports the blocks stored in it, to
Name-Node periodically thereby updating metadata. When you
execute a query from a client, it will reach out to the Name-Node
to get the file metadata information, and then it will reach out to
the Data-Nodes to get the real data blocks. The most important
aspect of Hadoop is that both HDFS and MR are designed with
each other in mind and each are co-deployed such that there is
a single cluster and thus it provides the ability to move compu-
tation to the data and not the other way around [8]. Thus, the
storage system is not physically separate from the processing
system, due to which the placement of data in Data-Nodes is
crucial for efficient processing. Hence there is a huge need for
optimal data placement in a HDFS as shown as in Fig. 1.

Data placement strategies mainly focus on two areas. 1.Plac-
ing data across the data centers for increasing the parallel execu-
tion [9][10][11] resulting in improved performance viz. reduced
query latency, reduced query execution time, improved data lo-
cality and improved read write performance, throughput. 2.Plac-
ing Co-related data together for reducing the resource utilization
[12][13][14] viz. reduced energy requirements for powering the
computing equipment, minimizing the average query span, re-
duced network bandwidth, reduced carbon foot print, reduced
operational cost. The type of strategy to be adopted depends on
the nature of requirements as to whether the solution to the query
is time dependent or cost dependent. We focus on data placement
strategy for finding solution to queries which are required to be
solved at the earliest possible time to enable quick decision mak-
ing as well as deriving maximum utilization of resources. The
real value of analyzing the Big Data is accelerating the time-to-
answer, especially in case of streaming data where immediate
response for taking better decision is very much desired.

Hadoop’s default data placement strategy randomly places the
data across the Data-Nodes without considering the storage ca-
pacity [15], but this can be overcome by executing the Load
balancer utility. Load balancer [16] redistributes the data based
on the storage capacity, but there is no guarantee that the data
required for execution of any task is evenly distributed across
the nodes to ensure Local map task execution. During paral-
lel processing in a distributed environment, if the data required
for a node to process is not available locally, then the Map task
of that node will be idle or it will access the needed data re-
motely from some other node where the data is available, this
will severely reduce the MR performance [17]. Hence the focus
is on achieving maximum parallel execution through innovative
data placement strategy. Several works have been done in the
field of data placement in HDFS considering various metrics. In
this paper, we focus on the inter and intra-dependency of data
blocks in a node for a task. Existence of non-dependent data
blocks in a node does not contribute towards the efficiency of
map task, since they are not involved in any execution. So, we
aim at evenly spreading out the dependent data blocks across
the nodes which will result in maximum parallel execution. We
term the concentration of such dependent data blocks in a node
for a task as the Relation cohesion of the node for that task.

In our approach, Historical query workload logs are traced
over a period of time and represented as a Block Dependency

Graph, where nodes are data blocks and tasks are represented as
edges incident on nodes. Cohesive Matrix is constructed from
the graph for estimation of Relation and weighted Relation cohe-
sion, which is used as input for the CORE algorithm as proposed.
Our algorithm reorganizes the HDFS layout by redistributing the
data blocks to give an optimal data placement, which has higher
parallel execution resulting in improved performance. The result
shows that CORE algorithm has efficiently reduced the query ex-
ecution time and has improved local map task execution. Also
a significant improvement over the read write performance is
achieved. The rest of this paper is organized as follows: Sec-
tion 2 describes the need and necessity of a new data placement
algorithm, along with related works and problem definition. A
motivating example is also explained in detail in this section.
Our proposed CORE-Algorithm is explained in detail in section
3. Section 4 presents the experimental results and analysis; Fi-
nally, Section 5 concludes the paper with possible future research
directions.

2. MOTIVATION AND PROBLEM DEFINI-
TION

2.1 Cohesion and Coupling measurement

In our context, the term cohesion refers the tightness with which
“related” data blocks are “grouped together” in a Data-Node.
Coupling represents the amount of relationship, between the el-
ements, belonging to different Data-Nodes illustrated in Fig.2.
Let us consider a modular system S consisting of different mod-
ules M. Let Rc(S) be the number of internal relations of system,
Ri (S) be the number of input relations, R0(S) be the number of
output relations and R(S) be the total number of relations in the
system.

Then, Cohesion of the System [C H (S)] is expressed as a
ratio between the number of internal relations Rc(S) and the
total relations R(S) by the formula.

C H (S) = #Rc(S)

#R(S)
= #Rc(S)

#Rc(S) + #Ri (S) + #R0(S)

Coupling of the System [C P(S)] is the ratio between the number
of external relations Ri (S)+ R0(S) and the total relations of the
system R(S)

C H (S) = #Ri (S) + #R0(S)

#R(S)
= #Ri (S) + #R0(S)

#Rc(S) + #Ri (S) + #R0(S)

It is normally assumed that the better the designer is able to
encapsulate related program features together, the more reliable
and maintainable is the system [20]. For a good software design
“High Cohesion and Low Coupling” is required. But our work
focuses on reducing the cohesion in order to achieve maximum
parallel execution for improving the system performance. Co-
hesion as defined in this paper can be termed as the density of
related data blocks, located in a node that are required for ex-
ecution of a particular task. Since we are focusing mainly on
reducing the concentration of dependent data blocks from the
highly dense Data-Nodes, it is suffice that the cohesion alone
is taken into account since Intra-dependency. This can also be
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Figure 1 Need and necessity of an optimal data placement.

Figure 2 Inter and Intra dependency of data blocks across data nodes.

proved to satisfy the above four important properties as defined
in above Table 1. The estimation of cohesion measurements is
explained in detail in section 3.

2.2 Related Works

Several works have been done in the field of data placement
for larger data in a distributed environment. Yuan et al. [21]
give a matrix based k-means clustering strategy to address the
issues in data placement in scientific cloud workflows. Accord-
ingly the related datasets are placed in appropriate data centers
based on dependencies during the runtime. Dependency ma-
trix is constructed based on the access pattern on the datasets
for the set of tasks. The datasets are partitioned by transfer-
ring the Dependency Matrix into Clustered Dependency Matrix
using Bond Energy Algorithm (BEA). This strategy guarantees
balanced distribution of data and reduced data movements. The

drawback of this approach is the use of Bond Energy Algorithm
to cluster the Dependency Matrix, since the time complexity of
finding permutations of all rows every time for BEA is high. Jun
Wang et al. (2014) [9] have proposed an optimal data placement
strategy based on grouping semantics. This proposed strategy
reduces the query execution time and improves the data local-
ity compared to default strategy. It improves parallel execution
of data sets having interest locality. But most of the real world
applications are without interest locality and in such cases this
strategy proves to be ineffective. Chia-Wei Lee et al. (2014)
[10] proposed a strategy, that distributes the data blocks based
on computing capacity of a Data-Node instead of storage capac-
ity so that faster nodes are provided with more data blocks and
can solve HPC application with reduced execution time. How-
ever there is no mechanism to ensure that the required data for
execution are present in the faster (higher computing) nodes,
thereby defeating the purpose of data placement.
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Table 1 Properties of Cohesion of a Module and Modular System [18][19].

Cohension of a [Module | Modular System]
The cohension of a %[module m = <Em, Rm> of a mod-
ular system MS|modular system MS] is a function
[Cohension(m)|Cohension(MS)] characterized by the fol-
lowing properties.
S. No. Property Definition

1 Non-negativity
& Normalization

Cohension of a module and modular system belongs
to a specified interval
[Cohension(m) ∈ [0,Max]|Cohension(MS) ∈
[0,Max]]
Cohension to be normalized so that the measure is
independent of the size.

2 Null Value Cohension of a modular system is null if its set of
intramodule edges is empty.
[Rm = ∅ ⇒ Cohension(m) = 0 | IR = ∅ ⇒ Cohen-
sion(MS) = 0]
IR is the set of intra-module relationships.

3 Monotonicity Adding intra-module relationships does not de-
crease [module|modular system] cohension.

4 Cohensive Mod-
ules

The cohension of a [module|modular system] ob-
tained by putting together two unrelated modules
is not greater than the [maximum cohension of the
two original modules|the cohension of the original
modular system].

An optimal data placement, by co-locating co-related data
items together in order to reduce resource consumption, query
span (minimum number of machines required to process query)
is suggested by Ashwin Kumar et al.(2013) [14]. Their work
mainly focuses on reducing cost, but keeping the available re-
sources without utilization is not a viable solution, since the
real value of analyzing the Big Data is accelerating the time-to-
answer, for taking better decision. Lili Sun et al. (2013) [22]
suggested a strategy, by taking into account the disk space uti-
lization and computing capacity of each node, to give an efficient
load balancing. Though efficient load balancing is achieved with
minimum movement of data across the nodes, it does not ensure
data locality, which in turn may reduce local map execution.

Also several research papers are available in the literature
to identify the metrics to measure inter and intra dependency
through software measurements such as cohesion and coupling.
Lionel Briand et al. [18] have suggested a mathematical model
which defines several measurement concepts (size, length, co-
hesion, and coupling) which can be used for software design
abstractions. However, specific measurement frameworks for
particular product abstractions e.g., Control Flow Graphs, Data
Dependency Graphs are not defined. Edward B. Allen et al.
[19] give a new approach for measuring the Inter and Intra mod-
ular relations which exhibits finer discrimination than counting
based measurement. But the usefulness of cohesion is not vali-
dated. Mirjana et al. (2014) [23] present a method to establish a
set of relationship between particular software metrics and corre-
sponding measures from complex networks theory. Accordingly
a complex network measure and its related software metrics mea-
sure are considered for defining a relation. The defined relation
is tested for establishing formalized metrics.

2.3 Motivating example

In order to prove the proposed work mathematically, the principle
was experimented with several miniature examples. One of the
motivating examples satisfying the requirements is explained in
Fig. 3. Accordingly it comprises of a cluster with four nodes
(DN1, DN2, DN3, and DN4) wherein three different tasks (T1,
T2, and T3) over 24 data blocks (B1 – B24) are executed.

2.4 Problem definition

For a given set of data blocks B to be processed in a cluster
having N number of Data-Nodes, as per default, the blocks will
be randomly distributed among the N nodes. Let the blocks
required for the execution of a particular task T’ be B′ where
B′ ⊆ B. Even if B is evenly distributed across the cluster, it
does not guarantee that blocks required for any particular task
is evenly distributed, resulting in reduced system performance.
Further ensuring even distribution of B′ alone will not be an
optimal solution since the task being executed in a system will not
be unique. Hence there is a need for an Optimal Data Placement
Strategy.

3. CORE-OPTIMAL DATA PLACEMENT
STRATEGY

3.1 Proposed Strategy

In this paper, CORE, an optimal data placement strategy is pro-
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Figure 3 Example showcasing the effectiveness of CORE algorithm.

posed by ensuring even distribution of related data blocks across
the nodes to improve the efficiency of the system in a distrib-
uted environment. Accordingly, data blocks are placed in such
a way that, the concentration of dependent data blocks in a node
is balanced so as to improve the degree of parallel execution.
The proposed strategy is elaborated in detail. The flow diagram
of the entire work is shown in Fig. 4. This section consists
of five parts, First part, User History Log exploits the system
log files and Name-Node meta information to construct Task
frequency table and network topology; Second part, Block De-
pendency graph (BDG) depicts the relationship among the de-
pendent blocks; In third part, Cohesive Matrix is constructed to
learn about the internal cohesion in the Data-Nodes; The estima-
tion of cohesion strength for a Data-Node and modular system
is done in the fourth part; The CORE which proposes an optimal
data placement algorithm is done in the final part.

3.2 User History Log

Log files are typically large in size and contain lot of resources
about data, which have to be processed to get useful information.
Analyzing the characteristics of cluster for various workloads is
the key for making optimal placement decisions. Usually Log
files are semi structured. All Map reduce applications executed
in cluster, save the task execution details as a log file, which
consists of two files

(i) Job Configuration XML file: it contains the job configura-
tion as specified when the job is launched,

(ii) Job Status file which contains task ID, status, start and end
up time etc. for each job executed in the machine. Us-
ing this as input, the log files are processed to construct
Task frequency table containing the list of different task
executed Ti, frequency of occurrence Tf and the required
blocks Br for each of the task is shown in Fig. 3(c). Name-
Node contains meta data from which the network topol-
ogy is constructed to identify the different Data-Nodes
present in the cluster and the data blocks present in each
of the Data-Node (Fig.3(a)). Meta data can be traced in
dfs.namenode.name.dir configuration property located in
hdfs-site.xml. From the above information, the Block De-
pendency Graph is constructed.

3.3 Block Dependency Graph

The computations of parallel processing can be solved efficiently
when the dependency of task on the blocks are mapped through
a Block Dependency Graph (BDG). It is an undirected graph
which depicts inter and intra dependency of data blocks for each
task executed.

BDG of a system S can be constructed as a 3-tuple BDG =<B,
R, N> where B represents the set of Blocks,R is a binary relation
on B (R ⊆ B × B) representing the relationships between Set
of blocks and N is a collection of Nodes of S such that ∀ b ∈ B
( 	 ∃ n ∈ N (n = <Bn, Rn> and e ∈ Bn)) and ∀ n1, n2 ∈ N (n1 =
<Bn1, Rn1> and n2 = <Bn2, Rn2> and Bn1 ∩ Bn2 = ∅)

Fig. 5 is BDG in which three tasks t1, t2 and t3 are executed;
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Figure 4 Detailed flow diagram for the proposed work.

Figure 5 Block Dependency Graph.

t1 requires blocks B1, B5, B9, B13, B6, B18, B23 and B4. t2
requires blocks B1, B13, B17, B14, B22, B15, B19, and B12.
t3 requires blocks B1, B5, B9, B2, B18, B8, B16, B20 and B3.
From the graph, the edges within a Data-Node connecting the
blocks exhibit the degree of intra-dependency of blocks for a
task. The edge (task) connecting blocks located in two different
nodes is a measure of inter-dependency of blocks for a task.
Since this paper focusses on improving the parallel execution by
reducing the internal cohesion, the intra-dependency among the

blocks of a node alone is taken into consideration.

3.4 Cohesive Matrix

From the Block Dependency Graph (BDG) and the information
available from Task Frequency (Tf) table, a Cohesive Matrix
(CM) is constructed. CM is a matrix which is used to define
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the relation between two objects. The Cohesive Matrix A=[aij]
of BDG is the Incidence matrix [24] of size m × n where m is
the tasks being executed and n is the data blocks represented as
a subset of node in which they are located, such that Cohesive
Matrix A = [aij] 1 ≤ i ≤ m, 1 ≤ j ≤ n with

ai j =
{

1 if the i th edge mi is incident on j th node n j

0 otherwise.

}

It is a binary matrix or a (0, 1)-matrix as it contains only two
types of elements 0 or 1. From the Matrix following properties
are inferred.

1. The number of ones in each column (block) equals the de-
gree (i.e. the number of varying edges incident on the node)
of the corresponding node.

2. A column with all zeros represents an isolated node (unuti-
lized block).

3. The sum of entries in a row Tm indicates the number of
blocks required for that task.

4. The sum of entries in a column Bn indicates the number of
tasks for which the block is required.

The incidence structure will be space efficient if there are
many more nodes than edges. Fig. 3(d) depicts the presence of
a data block in the node relating to a task in binary form. If a
task requires a particular data present in the Data-Node for its
execution, then its corresponding value will be one else zero.
This will be an indicative of the total concentration of the blocks
required for a particular task in every Data-Node.

3.5 Estimating cohesive strength for Data-Node
and Modular system

The concentration of data blocks in a node Ni that is required
for particular task Ti execution with reference to the total blocks
required for that task is termed as Relation cohesion of that node
Rc<Ti,Ni>

Rc < Ti,Ni >=
No. of blocks executed in
Node Ni for Task Ti

Total no. of blocks required
Br for that task Ti

This Relation cohesion for each task in a particular node is
standardized with reference to the frequency of each task and
the weighted Relation cohesion Rcwa is calculated for every

Data-Node.

Rcwa =

n∑
i=1

(Rc<Ti,Ni> ∗ Tfi)

n∑
i=1

Tfi

For ideal parallel execution, the data blocks required for the
task have to be evenly distributed across the cluster of Data-
Nodes. Hence, the optimal Relation cohesion Rcop desired for
a cluster for every node can be estimated from the Cluster con-
figuration.

Rcop = 1

n
Where n is the number of nodes in the cluster.

An Ideal situation may not be practically possible while redis-
tributing the data blocks and hence in order to have an inbuilt flex-
ible redistribution, a configurable threshold limit (default 10%)
is fixed and allowable Relation cohesion Rcal for each node is
designed as

Rcal = Rcop ± Threshold

Rcal will be the parameter used for categorizing the nodes as
over-cohesive or under-cohesive which requires to be balanced.
For balancing, the blocks have to be migrated from over cohesive
to under cohesive nodes. Every addition or deletion of a related
data block in a node (Block involved in any of the task execution)
will result in a change in the Rcwa of that node. This change
in Rcwa will be the Block cohesive value Bcvwhich is used to
estimate the number of blocks that has to be moved out from an
over cohesive node and the number of blocks that can be received
by an under cohesive node in order to be balanced (Fig. 3(e)).

3.6 CORE- Proposed Data Placement Algo-
rithm:

Our work focuses on balancing the cohesive strength of the
nodes by moving the dependent data blocks from higher cohesive
strength nodes to lower cohesive strength nodes. It ensures even
distribution of required data blocks across available Data-Nodes.

Input: Cohesive Matrix (Default data layout), Rc, Rcwa,
Rcop, Bcv.

Output: Optimal data layout

• Task Frequency be Tf ,

• Blocks Required for the Task be Br,

• Optimal Relation Cohesion estimated from the Cluster con-
figuration be Rcop

• Relation cohesion of each data node for each task be Rcn

• Allowable Relation Cohesion be Rcal

• Weighted average of Relation Cohesion for each node Rcwa

• Block cohesive value Bcv = Change in Rcwa for every ad-
dition or deletion of a block.

Begin
For every Data Node DNi Compare Rcwa with Rcal
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Begin 

For every Data Node DNi Compare Rcwa with Rcal  
          If (Rcop – Threshold) ≤ RCwa ≤ (Rcop + Threshold) 
                    DNi is balanced,                                                      //Put this value in Bal-set with Rcwa 
                    Bal-set [ ] = [DNi, Rcwa(i)]  
                    Else If (Rcwa > (Rcop + Threshold)) 
                             DNi is Over Cohesive,  
                             Calculate the number of blocks that can be moved  from Over cohesive Node (NBi) 

                            Bcv
RcopiRcwaNBi )(

   
                             OC-set [ ] = [DNi, Rcwa(i), NBi]         // Put these values in OC-set with Rcwa and NBi 
             Else 
                     DNi is Under Cohesive, 
                     Calculate the number of blocks that can received by the Under cohesive node (NBi) 

                    Bcv
iRcwaRcopNBi )(

 
                             UC-set [ ] = [ DNi, Rcwa(i), NBi]         //Put these values in UC-set with Rcwa and NBi 
           End If 
           Do until (UC-set [ ] and OC-set [ ] empty)                          // Until cluster cohesively balanced  
                     Source Node SN      = Max Rcwa (OC-set [ ])  
                     Receiving Node RN = Min Rcwa (UC-set [ ]) 
                     Number of Data blocks to be moved is Bi = Min (NBi(SN),NBi(RN)) 
                     From the Table1 relating to Source Node (SN)                        //Choose the Victim Block 
                For each Row M[n][n] from OC-set [ ] do 
               Find Row having Max Sum,  
   Victim blocks list [ ] = Blocks corresponding to Row having Max Sum 
                           For each Victim blocks list [ ]  
                                          Do until Bi choose the Victim Blocks 
              Find difference in RC of SN and RN corresponding to each Task  
                                              Delete blocks relate to task having Min diff. from Victim blocks list [ ] 
                      End Until. 
                                   End For 
                                   Victim block Vb = Remaining blocks in Victim blocks list [ ] 
    End For 
    Move the Vb from SN to RN          // Repeat the iteration, cluster cohesively balanced 
           End Until                                     // Repeat the iteration, until UC-set [ ] and OC-set [ ] empty 
End For 

According to our optimal data placement algorithm,the higher
cohesive strength of a Data-Node exhibits the existence of more
number of Inter dependent blocks in the Data-Node for a par-
ticular task. The algorithm starts with the initial estimation of
Relation cohesion Rc for each task in a Data-Node and weighted
Relation cohesion Rcwa of each Data-Node based on the fre-
quency of task. Each Data-Node is categorized into over cohe-
sive, under cohesive, and balanced based on Rcwa and Rcal. For
our example Rcop is 0.25 and hence Rcal will be 0.225 to 0.275.
From Fig. 3(d), according to default data block placement DN1
is over cohesive, DN2 is balanced and DN3, DN4 are under co-
hesive. The default block value BCV (change in Rc for addition
or deletion of any data block in the cluster) is estimated as 0.062
as shown in Fig. 3(e).

For the first iteration DN1 will be the Source Node [SN], DN4
will be the Receiving Node [RN]. Since DN1 has the highest
Rcwa in the list of over cohesive nodes and DN4 has the least
Rcwa in the list of under cohesive nodes. The number of blocks
that can be moved out from Data-Node1 to balance it will be 2;
the number of blocks that DN4 can receive for balancing is 1
(refer Fig. 3). Hence the number of blocks that can be moved
in this iteration be 1 (Min (2, 1)). The victim block to be moved
out is to be identified from the Source Node DN1. From Fig.
3(d) relating to SN i.e. DN1, The row having maximum sum
(indicates the task having maximum cohesion) is identified. In
our example row 1 relating to task 1 has maximum sum of 4.
Then the victim block list [ ] that contains all blocks associated
with the task corresponding to max sum of the row i.e. B1, B5,
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B9, B13 is created. Then the difference in Rc between the SN
and RN for each of the task is found. Tabulate the values as
<Ti,Rcdiff >. The task which has the lowest difference will be
identified (T3) and the blocks associated with that task (T3) in
DN1 are deleted from the victim block list (B1,B5, B9). Remove
the task and difference from the table. The iterations have to
be continued until the required number of blocks to be moved
NBi is only available in the victim block list. In our example
B13 is victim block for the first iteration. Victim block [B13]
is moved from SN [DN1] to RN [DN4]. After the movement
of data blocks from SN to RN, there will be a change in Rc
and Rcwa in the Cohesive Matrix. The algorithm continues the
process of categorizing the nodes and follows all the above steps.
The process is continued until over-cohesive set (OC-Set[ ]) and
under-cohesive set (UC-Set[ ]) become empty. This will end up
with all nodes becoming cohesively balanced with reference to
Relation cohesion (Rc) as in Fig. 3(f).

The maximum number of simultaneous map tasks on each
node is limited by the hardware capacity; currently it is ≤2 in
most of the clusters. Considering simultaneous map task each
Data-Node is 2, the utilization % of local map task at each Data-
Node for every task is calculated. The average utilization % for
every task is calculated as UTi.

U Ti =

n∑
i=1

(utilization % at each node for the task)

Total no. of nodes

Then average utilization for the cluster is also calculated by giv-
ing weightage to frequency of each task.

Average utilization of map task %

=

n∑
i=1

(U Ti ∗ T fi )

n∑
i=1

T fi

= ((75 ∗ 8) + (87.5 ∗ 7) + (87.5 ∗ 1))

16
= 81.25

CORE algorithm iteratively changes the default block place-
ment in each Data-Node to an optimized location which in turn
is proved to be more effective in local task execution. Fig. 6 and
Fig. 7 are local map task for initial and final data layout. The
results tabulated in Fig. 7 which shows that local task execution
percentage is increased by 18.75%. CORE algorithm does not
guarantee 100% local map task execution every time since there
is possibility of variation depending on the size of dataset, data
block size, satisfying the load balancing and rack awareness but
CORE will always produce an improved result over the default
data placement strategy which is tested with several examples.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

Our proposed CORE algorithm is tested in 20 node cluster placed
in a single rack with Hadoop-1.2.1 installed in every node. One
node is configured as the Name-Node and the remaining 19 nodes

are Data-Nodes. The Data-Nodes are provided with different
configuration so as to have a heterogeneous environment. The
detailed cluster configuration is shown in Table 2. The imple-
mentation of CORE algorithm will dynamically reorganize the
HDFS data layout to present an optimal placement for execution;
the program is launched as a utility to be executed manually as
and when required.

The dataset used in our experiments is a collection of daily
weather measurements collected by National Climatic Data Cen-
tre (NCDC) and it is a public data set available for download from
Amazon s3 [25]. The data are collected every hour for about 18
metrological elements (e.g. Temperature, Wind speed, Humid-
ity etc.) from over 9000 weather stations located globally for
the period from 1929 to 2009. The data is strictly ASCII, with a
mixture of character data, real values, and integer values. Data
files are organized according to date and location of weather sta-
tion. The records for every year is present in a directory in which
there will separate gzipped file (.gz) for the data relating to each
weather station. The size of the dataset is about 20 GB, distrib-
uted as blocks across the 19 Data-Nodes for our experiment.

The dataset required for analysis will be uploaded in a bulk
at an instance. The default strategy will randomly distribute the
dataset as even sized blocks across the available Data-Nodes.
This strategy does not consider the nature of queries likely to be
executed in the system. Even though the dataset that is available
is unique, the nature of queries executed will exhibit some inter-
est localities which cover only a part of big data. The interest lo-
cality may be different for different domain analyst based on the
Geographical location, Metrological element, etc. For example,
Metrological scientists belonging to a country will be interested
in the data relating to their country alone and in such case the
queries executed will have a common dependency among the
data related to that country. Similarly specific domain analyst
working on forecasting of rainfall will have an interest domain
with reference to rainfall particulars which sweeps only a small
part in this huge dataset. Since such interest locality are not
taken into consideration, there is a likelihood of required de-
pendent blocks for execution of any interest based query to be
concentrated within a few nodes alone thereby initiating non lo-
cal map task, resulting in poor performance. CORE measures
density of such dependent blocks within a node and aim at evenly
distributing related data blocks for queries across nodes.

The experiment was conducted by executing various tasks on
weather dataset. The tasks T1 to T6 were chosen in such a way
that it has specific dependent blocks over the entire 320 blocks
(20GB). For example, finding the minimum temperature during
a particular period of years, finding the maximum rainfall in a
certain region, finding the day of maximum temperature for a
particular station etc. The results are listed in Table 3, 4 and
5 which shows percentage improvement of local map execution
for data placement based on CORE algorithm against the default
random placement strategy.

The improvement in reducing the total execution time is also
listed. From Table 3 out of the 328 maps required for execu-
tion, default random placement strategy has 130 maps executed
locally (i.e. 39.6%) whereas as per CORE the local maps ex-
ecuted is 196 (i.e. 59.8%). Hence the overall improvement in
local map task execution will be 50.7% ((196–130)/130). The
CORE algorithm was tested with various tasks and it has always
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Figure 6 Local map task execution for default data placement.

 

Figure 7 Local map task execution for proposed data placement.

Table 2 Cluster Configuration.

20 Node Cluster
Property Name Node-1 Data Node-19

NN-1 DN-10 DN-9
vCPU 8 4 2
RAM 8 GB 8 GB 4 GB

Hard Disk 300 Gb 300 GB 150 GB
Processor Intel(R) Core i7-3770 CPU @ 3.40 GHZ

OS Ubuntu Server 14.04 LTS
Hadoop Hadoop 2.7.2 (Stable Version)

Table 3 Performance improvement in Local map task and Execution time - For varying tasks size.

Default CORE (Proposed) Improvement over default
Dataset Size Blocks Task Total Local Exe. time Local Exe. time Local Exe. time

maps maps (%) (secs) maps (%) (secs) maps (%) (secs)
T1 32 50 1036 87.5 677 37.5 359
T2 80 35 2851 42.5 2421 7.5 430

Weather 20 GB 320 T3 66 30.3 2419 54.5 1773 24.4 646
dataset T4 50 52 1598 72 1182 21 416

(NCDC) T5 40 45 1339 65 1066 19 273
T6 60 36.7 2116 60 1614 24.5 502

The results are taken after executing Load balancer utility, a Hadoop daemon

shown an improvement over the default data placement. The re-
sults for only 6 sample cases have been listed in Table 3. When
tested in worst case where any interest locality does not exist or
all data blocks are required to be accessed for execution of the
task, CORE has shown the same efficiency as default.

To strengthen the effectiveness of CORE algorithm, and to
make a study of its behavior at various cluster size, the exper-
iment was conducted for a sample task by varying the number
of nodes. The task was executed on the same dataset and re-
sults are tabulated in Table 4. With the increase in Data-Nodes,
the availability of maximum number of simultaneous map task

will increase, which will naturally increase the degree of paral-
lel execution. Our experiment gives an interesting result, that
CORE algorithm is more efficient for bigger clusters. i.e., the
incremental improvement of efficiency is high when the number
of nodes in cluster is more. The results shown in graph (Fig.
8.) prove that the efficiency of the CORE algorithm increases
with the increase in size of cluster. Our proposed algorithm also
significantly reduces the Map and Reduce completion time as
shown as in Fig. 11.
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Figure 8 Graph showing the performance improvement in local map task for default and CORE.

 

Figure 9 Graph showing the performance improvement in execution time for default and CORE.

Table 4 Overall comparison of default and CORE data placement strategy.

Total maps (nos) Local maps (nos) Local maps (%) Exe. time (secs)
Default 328 130 39.6 11359

CORE (Proposed) 328 196 59.8 8733

Figure 10 Performance improvement in local map for default and CORE âŁ“ For varying cluster size.

5. CONCLUSIONS AND FUTURE WORK

Hadoop’s default data placement strategy places the data blocks
evenly across the Data-Nodes. Even though, blocks are evenly

distributed across the cluster, it does not guarantee that blocks
required for execution is evenly distributed, which severely drag
down the system performance during Map reduce task. So, we
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Figure 11 Map and Reduce completion % for default and CORE while executing task T2.

have proposed an innovative data placement strategy which will
distribute the related data blocks i.e. blocks required for execu-
tion, evenly across the Data-Nodes to ensure maximum parallel
execution. This has been experimentally tested in a 20 node
cluster using different map reduce applications. The result has
strengthened our proposed algorithm and has proved to be more
efficient for massive datasets by reducing query execution time
by 23% and significantly improves the data locality by 50.7%
compared to Hadoop’s default data placement strategy.

Even though the results are most optimistic, our experiment
has been conducted in a single rack topology without any repli-
cas. We know that further data copies (replicas) will certainly
improve the performance and reduce the overheads, but its be-
havior in cross rack environment has to be further studied for
improved performance. Also due to migration of data blocks,
ultimately cluster may become imbalance. Hence a new and
efficient load balancing with optimal data placement is being
focused considering the dependency of data bocks.
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