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In Open Source Software (OSS), users report different issues on issues tracking systems. Due to time constraint, it is not possible for developers to resolve
all the issues in the current release. The leftover issues which are not addressed in the current release are added in the next release issue content. Fixing of
issues result in code changes that can be quantified with a measure known as complexity of code changes or entropy. We have developed a 2-dimensional
entropy based mathematical model to determine the leftover issues of different releases of five Apache open source products. A model for release time
prediction using entropy is also proposed. This model maximizes the satisfaction level of user’s in terms of number of issues addressed.
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Acronyms

OSS Open Source Software

NHPP Non-Homogeneous Poisson Process

NFs New Features

IMPs Feature Improvements

SPSS Statistical Package for Social Sciences

MSE Mean Squared Error

RMSPE Root Mean Squared Prediction Error

VAR Variation

GA Genetic Algorithm

1. INTRODUCTION

Release engineering focuses on qualitative and quantitative ap-
proach for developing a roadmap, which can shape the product
that’s ready for release. A systematic review for understanding
the different approaches for release planning has been conducted
by reviewing the research papers published in various academic
journals and conferences [50]. In the OSS development model,
users are categorized into various categories depending upon
their skills and involvement in software development. In many
cases, users also act as developers [48]. The contributors located
at different geographical locations request for addressing NFs,
IMPs and fixing the bugs through a centralized software platform
[1 and 51]. In order to address the different issues reported by
users and to fix the bugs the source code of the software need to
be changed and these code changes are updated in source code
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repositories. These source code changes have been quantified
using Shannon entropy [2, 3 and 12].

In every organization, the software development team always
desires to produce a software release of high quality with a low
fault content. To meet the enormous requirements, they also
want to produce a software with frequent releases [14]. In lit-
erature, the release time problem for proprietary software has
been discussed widely by considering one factor, the bugs which
have been fixed in different releases. A release planning study
has been conducted by interviewing the persons involved in re-
lease planning of the OSS and found that release planning based
on the implementation of features requested by users faces vari-
ous challenges and prefer for release planning based on a given
interval of time [25].

In feature implementation based release planning, the practi-
tioners observed that all the features are not taking uniform time
in their implementation but some features take enormous time.
In OSS development and even in closed source development the
developers/ release managers mainly prefer time based release
as the feature based release planning has not been addressed
adequately.

The OSS development has been carried by the volunteer con-
tributors (active users) and has not taken into account the cost
criteria [42, 43].

To release the next version of the software one need to consider
the number of addressed issues requested by the users. In OSS,
active user’s satisfaction can be measured in terms of number of
the issues fixed. Different issues are characterized by different
severity levels where severity of an issue shows the extent of
its impact [44 and 52]. By considering the severity levels of
different issues, we have calculated active user’s satisfaction as
number of issues fixed multiplied by severity levels. In order to
increase the active user’s satisfaction level, we have maximized
this quantity.

In this paper, we propose models for a multi-release software
product. We determine the release time by considering the fixing
of NFs, IMPs, bugs and code changes. The models have been
validated by using datasets of various products of Apache soft-
ware project. We have taken into consideration the two existing
software reliability growth models [37 and 38] for comparison.
We observed that our models give highest cases of maximum
performance.

We have used “ga-Genetic Algorithm” in MATLAB software
[28]. Genetic Algorithm has been used in various reliability
applications [29-31and 45-47].

Remaining part of the paper has seven sections. In section
2, we have summarized the related work. Data collection and
model construction have been discussed in section 3. The exper-
imental setup has been given in section 4. Section 5 documents
the results and discussion. The optimal release planning has
been discussed in section 6. Threats to validity have been given
in section 7 and the conclusion of the paper has been given in
section 8.

2. RELATED WORK

The monolithical software development offers a way for multi-
ple releases as a result of functionality enhancements [21]. A

better understanding of release process assists developers to de-
sign frequent and fault free software releases [14]. “A timely
introduction of a clunker and a delayed entry of a masterpiece
can destroy a product’s chance of success” [27].

The uncertainty analysis has been carried out in different dis-
ciplines in order to measure the uncertainty arises due to internal
or external factors. In software development too, the uncertainty
analysis has been used by applying Shannon information theory
in order to quantify frequent source code changes [2]. A study
based on the quantified code changes has been conducted [3].
In this study, the authors also estimated the rate at which source
code changes are taking place.

The quantified approach in understanding the different activi-
ties relating to software development and maintenance activities
has been proven to be very useful. In literature, the search based
software engineering approach has been used in discussing the
next release problem [8 and 9]. The release time of a software
can be affected by many factors like complexity, bugs, software
architecture, software domains and tools [22, 23 and 24].

During the past three decades, various mathematical models
have been proposed to quantify the quality of the software. Vari-
ous release time planning approaches have been discussed in lit-
erature for commercial/proprietary software. These approaches
have considered the fixing of bugs of current and just previous
release [7]. In case of OSS, the release time strategy is different
from the proprietary/closed source software in the sense that it
considers not only the number of bugs fixed but the number of
NFs and IMPs implemented. “When using a feature-based strat-
egy, an open source project might make a release even if not all
planned features have been implemented” [25].

For a single release problem in closed source software the
authors proposed to determine the optimal release time by mini-
mizing the development cost that include testing cost, debugging
cost and fixing cost or maximizing the reliability level subject
to predefined budget [4]. When the addons are included and the
faults are removed a proportion of faults are generated, a release
time problem by considering this phenomenon has been devel-
oped in [36]. An attempt has been made to develop multiple
release time problem [7]. The approach determined the optimal
time and the optimal amount of resources. But, again the next re-
lease has been decided on the basis of number of bugs removed
in testing phase and operational phase. The Dempster-Shafer
theory and differential evolution based multi software reliability
allocation for a multimedia system has been proposed in [32].
An optimal software release time planning by considering delay
incurred cost has been proposed in [33]. Multi-criteria based
model has been proposed for the software reliability prediction
[34]. In a study [35], the failure processes of testing have been
investigated by considering the delay effect in fault fixing. Re-
cently, a mathematical model for optimal time determination in
multi-release software has been proposed in [53]. The authors
considered different types of users, namely innovators and imi-
tators in predicting the release time.

In this paper, next release planning has been proposed based
on the predefined addressed features and bugs.

An economy outlook is presented by Cobb-Douglas function
[6, 7 and 13].

In our work, we have used the Cobb-Douglas function to
model the growth of fixing of different issues.
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3. DATA COLLECTION AND MODEL
BUILDING

3.1 Data collection

We have taken data from five products, namely Avro, jUDDI,
Hive, Pig and Whirr of Apache open source project [10 and 42]
where bugs, NFs and IMPs have been presented with different
signs as shown in Figure 1.

 

Figure 1 Different issue types for Apache products.

The fault tracking data of Mozilla project for three
successive versions Firefox 3.0, 3.5, and 3.6 (https:
//bugzilla.mozilla.org/) [39] and for the product of gnome-
control-center (https://bugzilla.gnome.org/) [40], for 4 succes-
sive versions from 2.0 to 2.3 have been selected [35]. The his-
torical code change data has been extracted using GitHub tool
[11]. Figure 2 shows the sample of different issue reports of
Avro product.

Figure 3 shows the screen shot to download code change his-
tory for Avro product from the GitHub repository.

The process of data collection for Apache project and Entropy
calculation has been carried out using the methods and formulas
as discussed and proposed in [2, 12 and 53].

3.2 Modeling for Multi-Release Software Prod-
uct

In OSS, once the issues are reported, the triaging takes place
and different issues are assigned to developers. The source code
of different files gets changed during fixing of these issues and
the product goes for next release. But, there are some issues
which are still left in the current release, which get fixed in the
next release. A mathematical model is necessary here, which
will predict the leftover issues of a release to be fixed in the next
releases.

The class of time-domain software reliability models as-
sumes that software failures display the behavior of a Non-
Homogeneous Poisson Process (NHPP) [16-20, 26].

Let Poisson probability mass function of a random variable,
N(t), with parameter X (t) is defined as

p{N(t) = n} = [X (t)]n ∗ e−X (t)

n! , n = 0, 1, 2, .....,∞ (1)

Various time domain models have appeared in the literature
which describe the stochastic failure process by an NHPP [26].

‘a’ : potential number of issues. Issues can have 1)
bugs/NFs/IMPs, 2) NFs+IMPs and 3) bugs+NFs+IMPs. These
issues in infiite time with finite failure NHPP can be written as

with the following differential equation (2) as follows in [7 and
53].

d

dt
X (t) = f (t)

1 − F (t)
[a − X (t)] (2)

Here, F(t) is a distribution function and f (t) = d
dt F (t) is a

density function. The quantity [a − X (t)] denotes the expected
number of issues remaining in the software at time t .

Solving above equation at t = 0, X (0) = 0 we get the fol-
lowing

X (t) = a F (t) (3)

Here, X (t) is the cumulative value of fixed bugs/new fea-
tures/feature improvements / (new features + feature improve-
ments) at any given time t .

During data collection, we observe that in the beginning, the
cumulative number of issues fixed is slow and after that it in-
creases and then stabilizes in subsequent releases. To model
such behaviour of issue fixing, we proposed a model based on
logistic function, i.e.

F (t) =
[

1

1 + γ exp (−ϕt))

]
(4)

By using equation (4) in (3), we get

X (t) = a

[
1

1 + γ exp (−ϕt))

]
(5)

Here, γ is a constant and depending upon its value, models can
capture different types of issue fixing growth curves. The ϕ

denotes an issue fixing rate per remaining issue.
Here, we consider that in equation (4), if t = 0 then F (0) =

1
1+γ

, in case of open source development environment where
contributors are located at different geographical locations, dur-
ing the initial time period (t = 0) issue fixing is very slow and
γ takes a very large value. In this scenario, F (0) = 0. If we
take t = ∞, F (∞) = 1. It means, the value of F (t) given in
(4) satisfies the condition to be a distribution function strictly in
the case of open source development environment.

The model given in equation (5) is used to predict the potential
number of bugs, new features, feature improvements, and (new
features + feature improvements) at any given time for Release
1 data.

Now, we consider that source code is changed to fix bugs, new
features and feature improvements. The changes in the source
code of the software can be quantified using entropy based mea-
sure [2, 3 and 12] To incorporate and consider the source code
changes for fixing the issues, we extend the Cobb-Douglas type
function [13]. We considered time and entropy both simultane-
ously instead of only time. In (6), s and u represent the time and
entropy (the complexity of code changes) respectively. β is the
code change elasticity to issues fixing time.

t ≡ sβu1−β(0 ≤ β ≤ 1) (6)

We can develop 2-dimensional model by using calendar time
‘s’ and entropy ‘u’ which results in equation (7).

X (s, u) = a

[
1

1 + γ exp
(−ϕ(sβu1−β)

)
]

(7)
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Figure 2 Sample issue reports for Avro product.

 

Figure 3 Avro product code change history on GitHub.

The above model can also be written in the following form

X (s, u) = a F(s, u)

and

F (s, u) =
[

1

1 + γ exp
(−ϕ(sβu1−β)

)
]

(8)

We used model given in equation (7) to predict the potential
number of total issues at any given time for Release 1 data. We
consider the same fixing rate of issues across different releases
for the sake of simplicity.

Multi-Release Modeling based on Leftover Issues
of just previous Release [53 and 54]

In software, different issues, namely bugs, new features and fea-
ture improvements are reported and get fixed in the current re-

lease. The remaining unresolved issues which are leftover move
to the next release. The mean value function of issues based on
calendar time and entropy has been evaluated by using (5) and
(7) respectively

During our empirical investigation, we found that the issues,
namely, new features and feature improvements are fixed in
the current release and the unresolved are fixed in next release,
means next release considers the leftover new features and fea-
ture improvements of the just released version of the software.
But, in case of issues, namely bugs, leftover bugs of Release1
are fixed in Release 2, Release 3 and Release 4. It means, in an
open source development environment leftover bugs of different
releases are passed on to higher releases (up to next three-four
releases). Here, we consider that leftover bugs of Release 1 can
pass up to Release 4. Based on this empirical evidence, the
different mean value functions for different releases have been
modeled as follows:
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We consider that in the first release different bugs are reported
and get fixed are modeled by the following equation

X1 (t) = a1 F (t) , 0 < t < t1 (9)

where a1 is the potential bugs to be fixed in the first release at
time t1. The leftover bugs of first release, i.e. a1 (1 − F1 (t1))
are added to the potential bugs of second release with fixing rate
F2 (t − t1). Therefore, the mathematical equation representing
the cumulative number of bugs fixed in the second release is
given by

X2 (t) = a2 F2 (t − t1)+a1 (1 − F1 (t1)) F2 (t − t1) , t1 < t < t2
(10)

In above equation a2 is the potential bugs to be fixed in the second
release. In the line of modeling for the second release and along
with taking into consideration the fact that the next release will
contain the remaining bugs of all the previous releases, we can
write the expressions for Release 3 and Release 4.

X3 (t) = a3 F3 (t − t2) + a2 (1 − F2 (t2)) F3 (t − t2)

+ a1 (1 − F1 (t1)) (1 − F2 (t2)) F3 (t − t2) , t2 < t < t3(11)

X4 (t) = a4 F4 (t − t3) + a3 (1 − F3 (t3)) F4 (t − t3)

+ a2 (1 − F2 (t2)) (1 − F3 (t3)) F4 (t − t3)

+ a1 (1 − F1 (t1)) (1 − F2 (t2)) (1 − F3 (t3))

F4 (t − t3) , t3 < t < t4
(12)

Multi-Release Modeling based on unresolved Bugs passed on
to different Releases [36, 53 and 54]

If we consider that the next release consists of remaining issues of
just previous release, then we can write the following expressions
for different releases.

The mathematical modeling for cumulative addressed issues
for Release 1 is given as equation (13).

X1 (t) = a1 F (t) , 0 < t < t1 (13)

a1 is the addressed potential issues of Release 1. The leftover
issues, i.e. a1(1 − F1(t1)) with fixing rate F2(t − t1) are added
to the issue content of Release 2. Mathematical equations for
cumulative addressed issues estimation in Release 2 and Release
3 are given in equation (14) and equation (15).

X2 (t) = (
a2 + a1

(
1 − F1

(
t1

)))
F2 (t − t1) , t1 < t < t2 (14)

X3 (t) = (a3 + a2 (1 − F2 (t2))) F3 (t − t2) , t2 ≤ t < t3
(15)

Similarly, we can write equation (16) for the nth release.

Xn (t) = (an + an−1 (1 − Fn−1 (tn−1))) Fn(t − tn−1),

tn−1 ≤ t < tn (16)

4. EXPERIMENTAL SETUP

In this section, we have discussed multi-release based on un-
resolved Bugs passed on to different releases and multi-release
based on the Leftover Issues of just previous release.

Table 1 Next Release Planning.

Release time Planning using different issues
fixed based on calendar time (month)

Case 1 Bugs prediction
Case 2 IMPs prediction
Case 3 NFs prediction
Case 4 NFs+IMPs prediction
Case 5 Bugs+NFs+IMPs prediction
Case 6 Bugs+NFs+IMPs prediction

Multi-Release based on unresolved Bugs passed on to differ-
ent Releases

In an open source development environment, leftover bugs of
different releases are passed on to the higher releases. We vali-
dated the proposed models given in equations (9), (10) and (11)
for case 1 (in Table 1),on weekly bugs fixed data of three releases
of Firefox and Gnome-control-centerprojects [35]. Results have
been presented in Table 3 given in the next section.

Multi-Release based on the Leftover Issues of just previous
Release

If we consider that the next release consists of the remaining
issues of just previous release, then potential values of different
issues (cases 1-5 of Table 1) in Release 1 can be estimated us-
ing equation (13) and the potential value of all the issues (case
6 of Table 1) can be estimated using model given in (7) as this
model takes care of entropy. For Release 2 we have used model
given in (14). For Release 3 we have used model given in (15).
The generalized model for nth release given in equation (16) has
been used to estimate parameters for rest of the further releases
by considering just previous release leftover issues. For the first
release, the leftover issues have been predicted by using the pa-
rameters estimation results of first release. Release 2 parameters
are estimated by considering Release 1 leftover issues along with
Release 2 dataset. For this we have used equation (14). With the
resultant leftover issues, along with Release 3 dataset, we have
estimated Release 3 parameters. For this we have used equation
(15). For Release 4 and Release 5 parameters estimation we
have followed the same process and used equation (16).

We have validated the proposed models discussed here for
Apache open source products, namely Hive, Pig, Avro, jUDDI
and Whirr [10]. We have used Nonlinear Regression (NLR)
in Statistical Package for Social Sciences (SPSS) software to
estimate the parameters (a, φ, β and α). Table 2 shows the values
of different parameters we have used in NLR.

Table 2 Parameters used in Nonlinear Regression.

Parameter Estimation Step Infinite
method limit step size

Value Sequential Quadratic
Programming

2 1.00E+20

From the results, it has been observed that the proposed mod-
els representing all cases of Table 1 give a high goodness of fit.

vol 34 no 1 January 2019 37



MODELING AND ANALYSIS OF LEFTOVER ISSUES AND RELEASE TIME PLANNING IN MULTI-RELEASE

Table 3 Estimated parameter values and numerical results of bug fixing model (case 1 in Table I) for three releases of Firefox and Gnome-control-center

Product
and No. of
release

Different
models

Estimated
parameters
(ai , ϕi and
γi )

Real no. of
Bugs fixed
(Ai )

ai − Ai
(Leftover
bugs of
i th release
added to
different
releases)

MSEi Biasi VARi RMSPEi R2
i

Firefox 3.0
(Release 1)

Prediction of bugs based on
calendar time(month)

a1 = 50, ϕ1 = .070,
γ 1 = 4.827

48 2 6.436 -0.103 2.559 2.561 .995

Firefox 3.5
(Release 2)

Prediction of bugs based on
calendar time(month)

a1 = 45, ϕ1 = .190,
γ 1 = 12.857

45 0 2.813 -0.170 1.699 1.707 .986

Firefox 3.6
(Release 3)

Prediction of bugs based on
calendar time(month)

a1 = 32, ϕ1 = .135,
γ 1 = 7.394

35 -3 2.699 -0.104 1.656 1.659 .972

Gnome 2.0
(Release 1)

Prediction of bugs based on
calendar time(month)

a1 = 43, ϕ1 = .366,
γ 1 = 38.720

42 1 1.396 -0.035 1.217 1.217 .993

Gnome 2.1
(Release 2)

Prediction of bugs based on
calendar time(month)

a2 = 95, ϕ2 = .179,
γ 2 = 19.751

35 60 4.613 -0.082 2.233 2.235 .943

Gnome 2.2
(Release 3)

Prediction of bugs based on
calendar time(month)

a2 = 243, ϕ2 = .125,
γ 2 = 103.139

23 220 6.311 0.23 2.583 2.593 .787

We have used various performance measures (Bias, Variation
(VAR), Mean Squared Error (MSE), Root Mean Squared Pre-
diction Error (RMSPE) and Rsquare (R2)) to measure goodness
of fit of different models.

5. NUMERICAL EXAMPLES

Numerical application examples are given here for the illustra-
tion purpose for Firefox, Gnome-control-center and Apache soft-
ware products. We have measured the performance of different
estimation models for all the releases.

Multi-Release based on unresolved Bugs passed on to differ-
ent Releases

Table 3 shows the parameter estimates of case 1 defined in Table
1, for Firefox and Gnome-control-center projects. Here, we
consider that leftover bugs of Release 1 can pass upto Release
3. The number of fixed real bugs of i th release is shown by ‘Ai ’.
The potential number of bugs of i th release is shown by ‘ai ’ and
the leftover bugs of i th release is shown by ‘ai − Ai ’. The issues
fixing efficiency for i th release is represented by the parameter
φi . γi shows the variation in bug fixing pattern of i th release.

In Table 3, we have documented the leftover bugs of each
release, which are the addons to the fault content of the next
releases. In case of Firefox, the estimation results show that 50
initial bugs are there in Release 1. But, fixed bugs are 48. Hence
50 − 48 = 2 bugs remained unresolved, which added to the
next release fault content. We can draw similar inferences for
other releases. For Release 2, 45 bugs have been fixed and the
estimation also shows (a2 + a1(1 − F1(t1))) = 45 bugs, which
means all the bugs have been detected and fixed in Release 2.

For Release 3, model shows under fit performance.
In case of Gnome-control-center, the estimation results show

that 43 initial bugs are there in Release 1. But, fixed bugs are 42.
Hence 43 − 42 = 1 bug remained unresolved, which added to
the next release fault content. We can draw similar inferences for
other releases. For Release 2, 35 bugs have been fixed and the

estimation shows (a2 +a1(1− F1(t1))) = 95 bugs, which means
60 bugs remained unresolved and added to the third release fault
content. Similarly, we observe that 220 leftover bugs added to
next release from Release 3.

We observe that estimation models, exhibits good fit in terms
of MSE, Bias, VAR, RMSPE and R2 for all the releases.

Multi-Release based on the Leftover Issues of just previous
Release

Tables 4 to 8 present parameter estimates of Case 1 to Case 4
(Table 1) for different Apache datasets. Here, we considered
that leftover issues of just previous release are added to the is-
sue content of next release. The number of fixed real issues
(bugs/IMPs/NFs/NFs+IMPs) of i th release is shown by ‘Ai’. The
potential number of different issues of i th release is shown by
‘ai ’ and the leftover issues of i th release is shown by ‘ai − Ai ’.
The issues fixing efficiency for i th release is represented by the
parameter φi . γi shows the variation in bug fixing pattern of i th

release. γi is the code change elasticity to issues fixing time for
i th release.

In Table 4, we have documented the leftover bugs of each Avro
release, which are the addons to the fault content of the next
releases. The estimation results show that 149 initial bugs are
there in Release 1. But, fixed bugs are 134. Hence 149 − 134 =
15 bugs remained unresolved, which added to the next Release 2
fault content. We can draw similar inferences for other releases.
For Release 2, 81 bugs have been fixed and the estimation also
shows (a2 + a1(a − F1(t1))) = 91 bugs, which means 10 bugs
remained unresolved and added to the third release fault content.
Similarly, we observe that 16 leftover bugs added to Release 4
from Release 3. From Release 4, 2 unresolved bugs are added
to Release 5.

The estimation results of IMPs show that 161 initial IMPs are
there in Release 1. But, addressed IMPs are 153. Hence 161 −
153 = 8 IMPs issues remained unresolved, which added to the
Release 2 issue content. We can draw similar inferences for other
releases. For fourth release, 41 IMPs have been addressed and
the estimation shows 46 IMPs, which means 5 IMPs remained

38 computer systems science & engineering



M. SHARMA ET AL

Table 4 Estimated parameter values and numerical results of different models (cases 1 to 4 mentioned in Table 1) for different releases of Avro.

No. of re-
lease

Different
models

Estimated
parameters
(ai , ϕi and
γi )

Real no.
of Bugs
/ IMPs /
NFs/ (NFs
+ IMPs)
fixed (Ai )

ai − Ai
(Leftover
bugs of
i th release
added to
(i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 Case 1 a1 = 149, φ1 = .487, γ1 =
21.035

134 15 8.42 −0.08 3.04 3.04 0.996

1 Case 2 a1 = 161, φ1 = .696, γ1 =
73.014

153 8 20.43 0.1 4.74 4.74 0.994

1 Case 3 a1 = 49, φ1 = .538, γ1 =
25.072

45 4 2.05 0.07 1.5 1.5 0.991

1 Case 4 a1 = 209, φ1 = .657, γ1 =
55.783

198 11 27.74 0.26 5.52 5.52 0.995

2 Case 1 a2 = 91, φ2 = .429, γ2 =
12.829

81 10 15.2 −0.2 4.08 4.09 0.977

2 Case 2 a2 = 107, φ2 = .265, γ2 =
10.964

68 39 16.34 −0.17 4.24 4.24 0.955

2 Case 3 a2 = 44, φ2 = .29, γ2 = 7.415 34 10 4.11 −0.08 2.12 2.13 0.952
2 Case 4 a2 = 148, γ2 = .272, γ2 =

9.463
102 46 35.86 −0.24 6.28 6.28 0.955

3 Case 1 a3 = 128, γ3 = .341, γ3 =
19.897

112 16 30.98 −0.28 5.79 5.79 0.971

3 Case 2 a3 = 73, γ3 = .464, γ3 =
18.285

73 0 15.51 −1.83 3.63 4.07 0.973

3 Case 3 a3 = 23, φ3 = .576, γ3 =
26.588

24 −1 2.15 −0.04 1.53 1.53 0.964

3 Case 4 a3 = 98, γ3 = .439, γ3 =
16.722

97 1 26.55 −1.23 5.21 5.35 0.973

4 Case 1 a4 = 87, φ4 = .384, γ4 =
11.085

85 2 15.69 −0.27 4.11 4.12 0.975

4 Case 2 a4 = 46, φ4 = .408, γ4 =
22.837

41 5 1.37 −0.1 1.22 1.22 0.992

4 Case 3 a4 = 19, φ4 = .335, γ4 =
19.859

16 3 1.3 0.42 1.11 1.18 0.973

4 Case 4 a4 = 69, φ4 = .336, γ4 =
17.422

57 12 2.08 −0.08 1.5 1.5 0.993

5 Case 1 a5 = 44, φ5 = .463, γ5 =
18.344

42 2 7.9 0.54 2.89 2.94 0.957

5 Case 2 a5 = 20, φ5 = .95, γ5 =
99.752

20 0 0.71 0.12 0.88 0.88 0.986

5 Case 3 a5 = 13, φ5 = .982, γ5 =
146.158

13 0 0.19 0.07 0.46 0.46 0.991

5 Case 4 a5 = 34, φ5 = .558, γ5 = 1 33 1 6.83 −1.39 2.32 2.7 0.951

unresolved and added to the fifth release issue content.
In Release 1, 45 NFs have been addressed and the potential

estimated value is 49. Hence, 49 − 45 = 4 NFs issues remained
unresolved, which added to the Release 2 issue content. For
fourth release, 16 NFs have been addressed and the estimation
shows 19 NFs, which means 3 NFs remained unresolved and
added to the fifth release issue content.

In Release 1, 198 IMPs+NFs have been addressed and the
potential estimated value is 209. Hence, 209 − 198 = 11
IMPs+NFs issues remained unresolved, which added to the Re-
lease 2 issue content. For fourth release, 57 IMPs+NFs have
been addressed and the estimation shows 69 IMPs+NFs, which
means 12 IMPs+NFs remained unresolved and added to the fifth
release issue content.

Similar, interpretations can be drawn for other products.
By analyzing the above empirical results, we can evaluate

the quality of maintainability and the adaptability of software in
fixing of different issues. The number of issues left in different
releases determines the release readiness and the stability of the

software. In case of Apache datasets, we observed that for Avro
product 61.5% of the potential issues get fixed before the next
release. For Pig product except new features fixing in Release 4,
all releases are following the same fixing level. For Hive product,
all the issues fixing process achieved 61.5% performance. We
observe that for jUDDI product issues fixing process for different
issues, namely bugs, NFs and IMPs follow the same pattern
except bug fixing for Release 4 and total issues fixing for Release
2.

The releases of Whirr product follow the same pattern except
improvements and new features fixing in fourth release. Results
show that 61.5% of potential issues of current release get fixed
before the next release except the four cases in all five products.
All the estimation models (Table 1) exhibits a good fit in terms of
R2, MSE, RMSPE, Bias and VAR. The models give R2 greater
than 0.90 in 123 cases out of 138 total cases across all the releases
of Apache.
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Table 5 Estimated parameter values and numerical results of different models (cases 1 to 4 mentioned in Table 1) for different releases of Pig.

No. of re-
lease

Different
models

Estimated
parameters
(ai , ϕi and
γi )

Real no.
of Bugs /
IMPs / NFs
/ (NFs +
IMPs) fixed
(Ai )

ai − Ai
(Leftover
bugs of
i th release
added to
(i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 Case 1 a1 = 299, φ1 = .419, γ1 = 30.657 231 68 19.74 −0.28 4.65 4.66 0.996
1 Case 2 a1 = 75, φ1 = .575, γ1 = 53.178 69 6 4.61 0.25 2.24 2.25 0.992
1 Case 3 a1 = 43, φ1 = .439, γ1 = 24.829 34 9 3.57 0.1 1.98 1.98 0.973
1 Case 4 a1 = 118, φ1 = .522, γ1 = 39.343 103 15 11.7 0.37 3.57 3.59 0.99
2 Case 1 a2 = 408, φ2 = .34, γ2 = 11.678 376 32 100.75 −0.17 10.45 10.45 0.991
2 Case 2 a2 = 121, φ2 = .431, γ2 = 8.763 123 −2 36.83 −0.81 6.26 6.31 0.968
2 Case 3 a2 = 42, φ2 = .432, γ2 = 8.272 43 −1 8.11 −0.6 2.9 2.96 0.947
2 Case 4 a2 = 169, φ2 = .333, γ2 = 5.213 166 3 119.36 −5.86 9.6 11.24 0.944
3 Case 1 a3 = 407, φ3 = .273, γ3 = 4.774 354 53 99.54 −0.27 10.42 10.42 0.987
3 Case 2 a3 = 114, φ3 = .298, γ3 = 8.104 94 20 5.13 −0.08 2.36 2.37 0.992
3 Case 3 a3 = 28, φ3 = .325, γ3 = 10.49 24 4 0.44 −0.03 0.7 0.7 0.991
3 Case 4 a3 = 143, φ3 = .303, γ3 = 8.518 118 25 7.08 −0.11 2.78 2.78 0.993
4 Case 1 a4 = 187, φ4 = .468, γ4 = 15.136 157 30 17.5 −0.42 4.42 4.44 0.992
4 Case 2 a4 = 72, φ4 = .436, γ4 = 7.407 63 9 8 −0.12 3 3 0.975
4 Case 3 a4 = 31, φ4 = .318, γ4 = 13.255 18 13 0.85 0 0.98 0.98 0.967
4 Case 4 a4 = 98, φ4 = .402, γ4 = 7.902 81 17 11.18 −0.12 3.54 3.55 0.978
5 Case 1 a5 = 162, φ5 = .479, γ5 = 6.764 154 8 25.44 −0.27 5.34 5.35 0.985
5 Case 2 a5 = 47, φ5 = .579, γ5 = 9.968 47 0 3.04 −0.12 1.84 1.85 0.983
5 Case 3 a5 = 18, φ5 = .366, γ5 = 8.808 16 2 1.63 −0.05 1.35 1.35 0.906
5 Case 4 a5 = 63, φ5 = .532, γ5 = 8.808 63 0 8.17 −0.18 3.03 3.03 0.974

Table 6 Estimated parameter values and numerical results of different models (cases 1 to 4 mentioned in Table 1) for different releases of Hive.

No. of re-
lease

Different
models

Estimated
parameters
(ai , ϕi and
γi )

Real no.
of Bugs/
IMPs/NFs/
(NFs +
IMPs)fixed
(Ai )

ai − Ai
(Leftover
issues of
i th release
added to
(i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 Case 1 a1 = 308, ϕ1 = .387, γ1 = 8.533 271 37 51.17 −0.42 7.53 7.54 0.991
1 Case 2 a1 = 96, ϕ1 = .479, γ1 = 10.938 96 0 16.84 −0.24 4.32 4.33 0.997
1 Case 3 a1 = 75, ϕ1 = .597, γ1 = 18.381 75 0 8.2 −0.21 3.01 3.02 0.986
1 Case 4 a1 = 171, ϕ1 = .531, γ1 = 13.607 171 0 42.29 −0.45 6.84 6.85 0.984
2 Case 1 a2 = 290, ϕ2 = .321, γ2 = 13.746 244 46 15.97 −0.34 4.14 4.16 0.997
2 Case 2 a2 = 203, ϕ2 = .256, γ2 = 13.929 136 67 8.55 −0.04 3.04 3.04 0.994
2 Case 3 a2 = 88, ϕ2 = .287, γ2 = 6.997 77 11 6.38 −0.07 2.63 2.63 0.985
2 Case 4 a2 = 289, ϕ2 = .256, γ2 = 10.413 213 76 9.88 −0.14 3.27 3.27 0.997
3 Case 1 a3 = 290, ϕ3 = .362, γ3 = 15.835 253 37 11.4 0.11 3.51 3.51 0.998
3 Case 2 a3 = 160, ϕ3 = .392, γ3 = 15.921 153 7 9.92 −0.25 3.27 3.28 0.995
3 Case 3 a3 = 51, ϕ3 = .372, γ3 = 17.936 47 4 1.97 −0.08 1.46 1.46 0.99
3 Case 4 a3 = 211, ϕ3 = .387, γ3 = 16.289 200 11 15.51 −0.33 4.08 4.1 0.996
4 Case 1 a4 = 798, ϕ4 = .271, γ4 = 20.188 523 275 243.48 −1.38 16.18 16.24 0.989
4 Case 2 a4 = 217, ϕ4 = .245, γ4 = 15.833 135 82 6.67 −0.18 2.68 2.69 0.995
4 Case 3 a4 = 76, ϕ4 = .293, γ4 = 16.133 57 19 1.63 −0.03 1.33 1.33 0.994
4 Case 4 a4 = 287, ϕ4 = .26, γ4 = 15.602 192 95 9.45 −0.23 3.19 3.2 0.997
5 Case 1 a5 = 895, ϕ5 = .412, γ5 = 18.615 831 64 824.3 −3.18 29.7 29.87 0.989
5 Case 2 a5 = 47, ϕ5 = .579, γ5 = 9.968 191 4 16.63 −0.75 4.17 4.24 0.996
5 Case 3 a5 = 18, ϕ5 = .366, γ5 = 8.808 44 3 2.59 −0.18 1.67 1.68 0.989
5 Case 4 a5 = 63, ϕ5 = .532, γ5 = 8.808 235 7 29.42 −0.94 5.56 5.64 0.996

Comparison of Performance for the proposed models

The proposed issue estimation models (Case 5 and Case 6 in
Table 1) have been compared with Goel-Okumoto model [37]
(equation (17)) and Yamada delayed S-shaped model [38] (equa-
tion (18)).

Xi (t) = ai(1 − exp(−bi t)) (17)

Xi (t) = ai (1 − (1 + bi t) exp(−bi t)) ai , bi > 0 (18)

Xi (t) denotes the i th release cumulative number of fixed errors
at time t . ‘ai ’ is the potential number of errors. ‘bi ’ is the fixing
rate of errors for i th release.

Tables 9 to 13 present the results of these two models in com-
parison of proposed models. For Avro product (Table 9), the
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Table 7 Estimated parameter values and numerical results of different models (cases 1 to 4 mentioned in Table I) for different releases of jUDDI.

No. of re-
lease

Different
models

Estimated
parameters
(ai , ϕi and
γi )

Real no.
of Bugs/
IMPs/NFs/
(NFs +
IMPs)fixed
(Ai )

ai − Ai
(Leftover
issues of
ith release
added to
(i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 Case 1 a1 = 160, ϕ1 = .253, γ1 = 18.653 109 51 12.95 −0.072 3.724 3.724 0.989
1 Case 2 a1 = 9, ϕ1 = .434, γ1 = 10.628 9 0 0.3 0.023 0.566 0.567 0.962
1 Case 3 a1 = 2, ϕ1 = .688, γ1 = 3.292 2 0 0.025 0.003 0.166 0.166 0.836
1 Case 4 a1 = 11, ϕ1 = .406, γ1 = 6.626 11 0 0.319 0.016 0.584 0.585 0.967
2 Case 1 a2 = 104, ϕ2 = .204, γ2 = 14.994 64 40 9.453 0.013 3.175 3.175 0.974
2 Case 2 a2 = 9, ϕ2 = .459, γ2 = 105.781 8 1 0.351 0.067 0.608 0.612 0.962
2 Case 3 a2 = 3, ϕ2 = .326, γ2 = 7.477 3 0 0.076 −0.005 0.286 0.286 0.912
2 Case 4 a2 = 13, ϕ2 = .344, γ2 = 27.784 11 2 0.695 0.027 0.86 0.861 0.955
3 Case 1 a3 = 21, ϕ3 = .187, γ3 = 1.117 19 2 0.358 0.002 0.621 0.621 0.953
3 Case 2 a3 = 2, ϕ3 = 1, γ3 = 0 2 0 0 0 0 0 *
3 Case 3 a3 = 3, ϕ3 = .185, γ3 = 2.951 2 1 0.058 0.002 0.25 0.25 0.769
3 Case 4 a3 = 6, ϕ3 = .073, γ3 = 1.293 4 2 0.06 0 0.255 0.255 0.757
4 Case 1 a4 = 382, ϕ4 = .226, γ4 = 86.485 103 279 29.157 −0.544 5.56 5.56 0.966
4 Case 2 a4 = 51, ϕ4 = .311, γ4 = 46.207 39 12 6.326 −0.37 2.575 2.601 0.954
4 Case 3 a4 = 29, ϕ4 = .408, γ4 = 62.549 27 2 0.757 −0.07 0.898 0.9 0.991
4 Case 4 a4 = 75, ϕ4 = .355, γ4 = 49.988 66 9 9.917 −0.472 3.222 3.257 0.977

Table 8 Estimated parameter values and numerical results of different models (cases 1 to 4 mentioned in Table 1) for different releases of Whirr.

No. of re-
lease

Different
models

Estimated
parameters
(ai , ϕi and
γi )

Real no.
of Bugs/
IMPs/NFs/
(NFs +
IMPs)fixed
(Ai )

ai − Ai
(Leftover
issues of
i th release
added to
(i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 Case 1 a1 = 60, ϕ1 = .665, γ1 = 17.067 58 2 0.938 0.022 1.026 1.027 0.997
1 Case 2 a1 = 88, ϕ1 = .455, γ1 = 13.508 74 14 8.426 −0.117 3.076 3.078 0.982
1 Case 3 a1 = 19, ϕ1 = .549, γ1 = 41.637 14 5 0.162 0.055 0.422 0.422 0.992
1 Case 4 a1 = 110, ϕ1 = .449, γ1 = 15.338 88 22 7.715 −0.106 2.943 2.945 0.989
2 Case 1 a2 = 35, ϕ2 = .47, γ2 = 18.442 24 11 0.813 0.028 0.963 0.964 0.985
2 Case 2 a2 = 37, ϕ2 = .707, γ2 = 12.288 37 0 5.922 0.002 2.601 2.601 0.95
2 Case 3 a2 = 10, ϕ2 = .663, γ2 = 6.294 10 0 0.088 −0.013 0.371 0.371 0.988
2 Case 4 a2 = 47, ϕ2 = .681, γ2 = 10.163 47 0 5.689 −0.015 2.549 2.549 0.968
3 Case 1 a3 = 61, ϕ3 = .387, γ3 = 15.835 45 16 31.643 0.535 5.986 6.01 0.822
3 Case 2 a3 = 34, ϕ3 = .325, γ3 = 2.674 32 2 6.308 −0.372 2.655 2.681 0.846
3 Case 3 a3 = 6, ϕ3 = .372, γ3 = 16.205 4 2 0.542 −0.036 0.786 0.786 0.68
3 Case 4 a3 = 39, ϕ3 = .4, γ3 = 4.776 36 3 15.126 0.988 4.021 4.141 0.795
4 Case 1 a4 = 7, ϕ4 = .374, γ4 = 7.315 6 1 1.096 0.075 1.144 1.466 0.575
4 Case 2 a4 = 16, ϕ4 = .42, γ4 = 12.016 11 5 2.331 0.371 1.622 1.664 0.714
4 Case 3 a4 = 6, ϕ4 = .51, γ4 = 11.679 4 2 0.259 0.015 0.558 0.558 0.824
4 Case 4 a4 = 26, ϕ4 = .568, γ4 = 28.416 15 11 2.442 0.601 1.711 1.814 0.837

proposed models (Case 5 and Case 6 in Table 1) estimation re-
sults show that 332 issues (bugs+NFs+IMPs) have been fixed in
Release 1. The estimated potential value of issues is 357. This
means 25 issues which would have been fixed in Release 1 now
will be fixed in Release 2. Similarly, 14 issues which would have
been fixed in Release 4 will be fixed in Release 5.

Similar, interpretations can be drawn for other products.
Out of total 23 releases, in 20 releases proposed models give

better R2 than the two existing models.
We designed the experiment to test the statistical significance

of the proposed model as discussed in case 6 in Table 1. The
statistical significance has been validated using non-parametric
Kolmogorov-Smirnov (K-S) test.

Null hypothesis (H0): The distribution of observed and esti-
mated values are same.

Alternate hypothesis (H1): The distribution of observed and
estimated values are not same.

The P-values of the experiment have been given in Table 14.
We have taken level of significance α = 0.025. We observed
that the proposed model is statistically significant.

6. OPTIMAL RELEASE PLANNING

In closed source software, due to time and resource constraints it
is not possible to address/fix all the issues in the current release
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Table 9 Estimated parameter values and numerical results for Avro.

No. of re-
lease

Different
models

Estimated
parameters
(ai , bi , ϕi
and γi )

Real no. of
bugs/issues
fixed (Ai )

ai − Ai
(Leftover
bugs/issues
of i th re-
lease added
to (i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 GO model a1 = 360, b1 = .121 A1 = 332 28 2549.20 0.97 52.94 52.95 0.81
1 S-shaped model a1 = 621, b1 = .173 289 202.30 −0.76 14.90 14.92 0.985
1 Case 5 a1 = 357, ϕ1 = .581, γ1 = 35.664 25 59.84 0.18 8.11 8.11 0.996
1 Case 6 a1 = 357, ϕ1 = .594, 25 60.04 0.21 8.12 8.13 0.996

γ1 = 36.419, β1 = .805
2 GO model a2 = 197, b2 = .13 A2 = 183 14 283.14 1.41 17.59 17.64 0.901
2 S-shaped model a2 = 221, b2 = .268 38 108.00 1.94 10.71 10.88 0.962
2 Case 5 a2 = 223, ϕ2 = .343, γ2 = 9.989 40 86.95 −0.48 9.77 9.78 0.97
2 Case 6 a2 = 223, ϕ2 = .348, 40 87.91 −0.48 9.82 9.83 0.969

γ2 = 9.954, β2 = .816
3 GO model a3 = 264, b3 = .078 A3 = 209 55 442.06 −2.88 21.68 21.87 0.892
3 S-shaped model a3 = 300, b3 = .174 91 71.38 0.15 8.79 8.79 0.983
3 Case 5 a3 = 207, ϕ3 = .423, γ3 = 20.116 −2 101.84 −0.77 10.47 10.50 0.975
3 Case 6 a3 = 214, ϕ3 = .398, 5 107.69 0.57 10.78 10.8 0.974

γ3 = 18.831, β3 = .808
4 GO model a4 = 219, b4 = .063 A4 = 142 77 102.51 1.39 10.44 10.53 0.944
4 S-shaped model a4 = 181, b4 = .211 38 26.45 1.06 5.24 5.34 0.986
4 Case 5 a4 = 156, ϕ4 = .352, 14 28.21 −0.37 5.52 5.53 0.985

γ4 = 12.586
4 Case 6 a4 = 156, ϕ4 = .355, 14 28.19 −0.36 5.51 5.52 0.985

γ4 = 12.586, β4 = .814
5 GO model a5 = 85, b5 = .116 A5 = 75 10 104.55 0.40 10.72 10.72 0.837
5 S-shaped model a5 = 104, b5 = .233 29 24.42 −0.32 5.17 5.18 0.962
5 Case 5 a5 = 71, ϕ5 = .768, γ5 = 54.475 −4 11.01 0.23 3.47 3.48 0.983
5 Case 6 a5 = 77, ϕ5 = .521, 2 20.96 −1.3 4.6 4.78 0.967

γ5 = 16.845, β5 = .803

and in OSS due to active user’s demands. By putting a constraint
on minimum number of fixed issues with different severity lev-
els before the next release of the software, we can maximize
the active user’s satisfaction. The following objective function
considers two different severity groups, Sn1 (average severity for
nth release issues) and Sn2 (average severity for (n − 1)th and
nth release issues which will be addressed in (n + 1)th release).

Maximize Sn (t) = Sn1 Xn (t) + Sn2

× [
an + an−1 (1 − Fn−1 (tn−1)) − (Xn (t))

]
(19)

In IEEE 982.2 defect indices definition [41] 10 weight has been
used for high severity issues, 3 weight for medium severity issues
and 1 for low severity issues. We have also used the same weights
for different severity issues as given in [41]. By using (7) and
(8), we can write the following function to consider active user’s
satisfaction.

Maximize

Sn(sβ, u1−β) = Sn1

[
an

1 + γn exp
(−ϕnsβn u1−βn

)
]

+ Sn2

⎡
⎢⎢⎣ an + an−1

(
1 − 1

1+γn−1 exp
(
−ϕn−1sβn−1 u1−βn−1

)
)

−
(

an
1+γn exp(−ϕn sβn u1−βn )

)
⎤
⎥⎥⎦

Subject to

Xn

(
sβn , u1−βn

)

≥ ρ

(
an + an−1

(
1 − 1

1 + γn−1 exp
(−ϕn−1sβn−1u1−βn−1

)
))

(20)

We consider t ≡ sβ u1−β(0 ≤ β ≤ 1).
We have solved the above nonlinear problem by using Genetic

Algorithm (GA) [28].
To calculate optimal release time of nth release, estimated

parameters of nth and (n−1)th releases have been used. We have
solved equation (20) in MATLAB with an optimization tool by
using solver “ga-Genetic Algorithm”. Table 15 shows different
parameter values to obtain optimal solution. We have taken
Heuristic crossover function and Tournament selection function
with Eliete count 2.

Similarly, we have observed that the estimated optimal re-
lease time for jUDDI third release is 19 months with 92% active
user’s satisfaction. The real release time we have observed is
14 months. The estimated optimal release time is close to the
real release time. For Hive and Pig, we have estimated optimal
release time of 14 months and 10 months for fourth releases at
98% and 98.5% user’s satisfaction levels respectively. In case
of Hive, the real release time is 13 months and in case of Pig it
is 9 months. This shows estimated optimal release time is close
to the real release time.

In case of Whirr product, we have estimated optimal release
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Table 10 Estimated parameter values and numerical results for Pig.

No. of re-
lease

Different
models

Estimated
parameters
(ai , bi , ϕi
and γi )

Real no. of
bugs/issues
fixed (Ai )

ai − Ai
(Leftover
bugs/issues
of i th re-
lease added
to (i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 GO model a1 = 450, b1 = .077 A1 = 334 116 2003.73 −7.07 46.36 46.89 0.829
1 S-shaped model a1 = 1208, b1 = .095 874 94.22 1.58 10.05 10.17 0.992
1 Case 5 a1 = 409, ϕ1 = .451, γ1 = 32.201 75 42.47 0.00 6.83 6.83 0.996
1 Case 6 a1 = 410, ϕ1 = .456, 76 43.19 0.01 6.89 6.89 0.996

γ1 = 32.466, β1 = .813
2 GO model a2 = 739, b2 = .080 A2 = 542 197 815.55 0.27 29.72 29.72 0.991
2 S-shaped model a2 = 603, b2 = .253 61 452.20 5.64 21.34 22.07 0.981
2 Case 5 a2 = 556, ϕ2 = .360, γ2 = 10.087 14 257.65 −0.70 16.69 16.71 0.989
2 Case 6 a2 = 556, ϕ2 = .365, 14 257.43 −0.69 16.68 16.7 0.989

γ2 = 10.148, β2 = .801
3 GO model a3 = 718, b3 = .084 A3 = 472 246 229.77 3.06 15.51 15.81 0.984
3 S-shaped model a3 = 464, b3 = .364 −8 1086.62 9.07 33.10 34.32 0.923
3 Case 5 a3 = 553, ϕ3 = .277, γ3 = 5.472 81 131.88 −0.36 11.99 11.99 0.991
3 Case 6 a3 = 553, ϕ3 = .279, 81 133.61 −0.37 12.07 12.07 0.99

γ3 = 5.438, β3 = .802
4 GO model a4 = 288, b4 = .142 A4 = 238 50 423.07 −8.91 19.66 21.59 0.913
4 S-shaped model a4 = 317, b4 = .283 79 67.18 2.32 8.34 8.65 0.986
4 Case 5 a4 = 287, ϕ4 = .440, γ4 = 11.878 49 38.60 −0.49 6.57 6.59 0.992
4 Case 6 a4 = 286, ϕ4 = .444, 48 38.71 −0.49 6.58 6.6 0.992

γ4 = 11.849, β4 = .814
5 GO model a5 = 391, b5 = .087 A5 = 217 174 12.49 −0.22 3.74 3.75 0.996
5 S-shaped model a5 = 222, b5 = .450 5 77.37 1.96 9.09 9.30 0.978
5 Case 5 a5 = 225, ϕ5 = .493, γ5 = 7.278 8 55.80 −0.44 7.91 7.92 0.984
5 Case 6 a5 = 225, ϕ5 = .497, 8 56.85 −0.44 7.98 8 0.984

γ5 = 7.240, β5 = .811

time of 10 months for third release at 97% user’s satisfaction level
which is 2 months more than the real release time (8 months).

We observed that the release time problem based on the com-
plexity of code change metric is more practical and gives a close
prediction.

7. THREATS TO VALIDITY

Factors affecting the validity of proposed work are as follows:

Internal Validity: Some of the assumptions made by us may not
always reflect the reality (e.g. leftover issues of nth release may
not have a larger severity when they are added in the initial issue
content of (n+1)th release). Moreover, we have not empirically
validated the real number of leftover issues.

External Validity: We have studied five different Apache open
source products. Although, these open source products have
good quality of code change history, our results may not gener-
alize to all software products.

Construct Validity: We used the information available in
GitHub repository, such as code change history for calculating
entropy. This information we calculated manually, and may con-
tain some manual errors. The total code changes in files resulting
from fixing of different issues has been considered in our work.
Statement level code changes need to be considered instead of
file level changes. We have taken some versions collectively
(versions have less data points) as a release. The selection of the

releases is based on the equal data points for every release. We
do not claim any causal findings for other choices of releases.

8. CONCLUSION

We estimated the potential value of different issues based on the
time and the complexity of code changes (entropy) in different
releases of Apache open source products. The issues left unre-
solved in different releases have also been calculated. Results
show that in all the five products out of total 23 releases in 19
releases, at least 61.5% of potential issues have been addressed
before the next release of the software. The leftover issue con-
tent contributes in the upcoming releases. The proposed model
(case 6 of Table 1) performance has been compared with two
models (Goel-Okumoto model and Yamada delayed S-shaped
model). Out of 23 releases for 20 releases, we observed that
the proposed entropy based model results in maximum cases of
maximum R2 in comparison of these two models.

A model for release time prediction using entropy is also pro-
posed. We optimized the objective function of release time prob-
lem using Genetic algorithm in MATLAB. The estimated opti-
mal release time is close to the real release time of jUDDI, Whirr,
Hive, Pig and Avro products at 92, 97, 98, 98.5 and 99.7% sat-
isfaction levels.
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Table 11 Estimated parameter values and numerical results for Hive.

No. of re-
lease

Different
models

Estimated
parameters
(ai , bi , ϕi
and γi )

Real no. of
bugs/issues
fixed (Ai )

ai − Ai
(Leftover
bugs/issues
of i th re-
lease added
to (i +
1)threlease)

MSEi Biasi VARi RMSPEi R2
i

1 GO model a1 = 807, b1 = .070 A1 = 442 365 272.63 0.22 17.40 17.40 0.983
1 S-shaped model a1 = 506, b1 = .316 64 246.24 4.19 15.94 16.48 0.984
1 Case 5 a1 = 474, ϕ1 = .438, γ1 = 9.900 32 171.91 −0.85 13.79 13.82 0.989
1 Case 6 a1 = 474, ϕ1 = .452, 32 175.29 −0.86 13.93 13.95 0.989

γ1 = 9.837, β1 = .811
2 GO model a2 = 526, b2 = .097 A2 = 457 69 1527.73 −4.76 40.38 40.66 0.911
2 S-shaped model a2 = 623, b2 = .189 166 360.76 6.73 18.49 19.67 0.979
2 Case 5 a2 = 574, ϕ2 = .290, γ2 = 11.866 117 40.27 −0.46 6.59 6.60 0.998
2 Case 6 a2 = 580, ϕ2 = .298, 123 38.98 −0.45 6.48 6.5 0.998

γ2 = 12.041, β2 = .806
3 GO model a3 = 588, b3 = .078 A3 = 453 135 1790.54 2.67 43.95 44.04 0.907
3 S-shaped model a3 = 664, b3 = .179 211 148.43 3.83 12.04 12.63 0.992
3 Case 5 a3 = 501, ϕ3 = .372, γ3 = 15.971 48 25.76 −0.23 5.28 5.28 0.999
3 Case 6 a3 = 501, ϕ3 = 0.387, 48 25.56 −0.23 5.26 5.26 0.999

γ3 = 15.877, β3 = .808
4 GO model a4 = 795, b4 = .081 A4 = 715 80 5874.65 −4.00 79.67 79.77 0.858
4 S-shaped model a4 = 1434, b4 = .120 719 723.74 8.66 26.51 27.89 0.983
4 Case 5 a4 = 1050, ϕ4 = .271, γ4 = 18.321 335 339.05 −1.73 19.08 19.16 0.992
4 Case 6 a4 = 1073, ϕ4 = .274, 358 333.76 −1.56 18.95 19.01 0.992

γ4 = 18.668, β4 = .804
5 GO model a5 = 1286, b5 = .092 A5 = 1066 220 13904.41 0.31 122.73 122.73 0.996
5 S-shaped model a5 = 1557, b5 = .188 491 385.22 −0.84 20.41 20.43 0.997
5 Case 5 a5 = 1127, ϕ5 = .439, γ5 = 20.303 61 1092.66 −4.15 34.13 34.38 0.991
5 Case 6 a5 = 1127, ϕ5 = .448, 61 1068.21 −4.11 33.75 34 0.991

γ5 = 20.451, β5 = .813

Table 12 Estimated parameter values and numerical results for jUDDI.

No. of re-
lease

Different
models

Estimated
parameters
(ai , bi , ϕi
and γi )

Real no. of
bugs/issues
fixed (Ai )

ai − Ai
(Leftover
bugs/issues
of i th re-
lease added
to (i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 GO model a1 = 158, b1 = .074 A1 = 120 38 157.15 −5.21 11.80 12.90 0.882
1 S-shaped model a1 = 207, b1 = .131 87 34.67 1.80 5.80 6.08 0.974
1 Case 5 a1 = 167, ϕ1 = .250, γ1 = 15.127 47 12.80 −0.10 3.70 3.70 0.990
1 Case 6 a1 = 168, ϕ1 = .254, 48 13.034 −0.098 3.735 3.736 0.99

γ1 = 15.003, β1 = .813
2 GO model a2 = 81, b2 = .081 A2 = 75 6 86.81 0.71 9.59 9.62 0.832
2 S-shaped model a2 = 136, b2 = .117 61 22.03 1.44 4.61 4.83 0.957
2 Case 5 a2 = 113, ϕ2 = .169, γ2 = 6.052 38 14.44 1.01 3.78 3.92 0.972
2 Case 6 a2 = 79, ϕ2 = 0.411, 4 20.582 1.781 4.309 4.662 0.96

γ2 = 31.944, β2 = .805
3 GO model a3 = 22, b3 = .530 A3 = 23 −1 5.52 0.20 2.43 2.44 0.469
3 S-shaped model a3 = 21, b3 = 1 −2 10.08 0.49 3.25 3.29 .030
3 Case 5 a3 = 26, ϕ3 = .166, γ3 = 1.064 3 0.61 0.00 0.81 0.81 0.941
3 Case 6 a3 = 31, ϕ3 = .199, 8 20.582 1.781 4.309 4.662 0.96

γ3 = 1.385, β3 = .802
4 GO model a4 = 194, b4 = .052 A4 = 169 25 603.44 −4.07 25.08 25.40 0.758
4 S-shaped model a4 = 196, b4 = .136 27 248.69 0.36 16.32 16.32 0.900
4 Case 5 a4 = 290, ϕ4 = .271, γ4 = 48.602 121 69.80 −1.05 8.58 8.64 0.972
4 Case 6 a4 = 273, ϕ4 = .284, 104 0.181 0 0.425 0.425 0.983

γ4 = 31.088, β4 = .811

44 computer systems science & engineering



M. SHARMA ET AL

Table 13 Estimated parameter values and numerical results for Whirr.

No. of re-
lease

Different
models

Estimated
parameters
(ai , bi , ϕi
and γi )

Real no. of
bugs/issues
fixed (Ai )

ai − Ai
(Leftover
bugs/issues
of i th re-
lease added
to (i + 1)th

release)

MSEi Biasi VARi RMSPEi R2
i

1 GO model a1 = 395, b1 = .054 A1 = 176 219 172.28 −1.70 13.80 13.91 0.938
1 S-shaped model a1 = 290, b1 = .221 114 50.05 1.85 7.24 7.48 0.982
1 Case 5 a1 = 219, ϕ1 = .449, γ1 = 15.338 43 30.85 −0.22 5.89 5.89 0.989
1 Case 6 a1 = 218, ϕ1 = .462, 42 9.556 1.7 2.738 3.223 0.989

γ1 = 15.300, β1 = .803
2 GO model a2 = 188, b2 = .086 A2 = 94 94 28.57 −0.31 5.70 5.71 0.960
2 S-shaped model a2 = 100, b2 = .478 6 27.65 0.64 5.58 5.62 0.962
2 Case 5 a2 = 94, ϕ2 = .681, γ2 = 10.163 0 22.75 −0.03 5.10 5.10 0.968
2 Case 6 a2 = 103, ϕ2 = .558, 9 44.216 0.485 7.089 7.106 0.968

γ2 = 7.887, β2 = .815
3 GO model a3 = 81, b3 = .189 A3 = 72 9 61.76 1.07 8.32 8.39 0.730
3 S-shaped model a3 = 58, b3 = .734 −14 103.06 1.54 10.73 10.84 0.549
3 Case 5 a3 = 78, ϕ3 = .373, γ3 = 4.158 6 21.85 0.24 4.99 5.00 0.815
3 Case 6 a3 = 80, ϕ3 = .360, 8 11.706 0.745 7.048 7.087 0.855

γ3 = 3.539, β3 = .802
4 GO model a4 = 40, b4 = .123 A4 = 30 10 19.08 0.05 4.79 4.79 0.699
4 S-shaped model a4 = 109, b4 = .157 79 15.26 1.29 4.04 4.24 0.746
4 Case 5 a4 = 61, ϕ4 = .245, γ4 = 8.109 31 16.67 −0.36 4.46 4.47 0.772
4 Case 6 a4 = 42, ϕ4 = .360, 12 8.939 0.031 3.275 3.275 0.851

γ4 = 10.886, β4 = .801

Table 14 Goodness of Fit Test Using Kolmogorov-Smirnov (K-S) Test.

Product Release D-Value Associated
no. P-Value

Avro 1 0.0909 1.0000
2 0.1818 0.985
3 0.1538 0.995
4 0.0769 1.0000
5 0.1818 0.985

Pig 1 0.0909 1.0000
2 0.0769 1.0000
3 0.0833 1.0000
4 0.1000 1.0000
5 0.1000 1.0000

Hive 1 0.1000 1.0000
2 0.0769 1.0000
3 0.0769 1.0000
4 0.1538 0.995
5 0.1538 0.995

jUDDI 1 0.1333 0.998
2 0.0625 0.999
3 0.1429 0.997
4 0.2667 0.589

Whirr 1 0.1000 1.000
2 0.2000 0.975
3 0.7000 0.700
4 0.6000 0.031
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